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V Abstract

In an earlier paper, the author employed the thesis that baryons are Yang-Mills magnetic monopoles and that proton and
neutron binding energies are determined based on their up and down current quark masses to predict a relationship
among the electron and up and down quark masses within experimental errors and to obtain a very accurate relationship
for nuclear binding energies generally and for the binding of ®Fe in particular. The free proton and neutron were un-
derstood to each contain intrinsic binding energies which confine their quarks, wherein some or most (never all) of this
energy is released for binding when they are fused into composite nuclides. The purpose of this paper is to further
advance this thesis by seeing whether it can explain the specific empirical binding energies of the light 1s nuclides,
namely, °H, °H, 3He and *He, with high precision. As the method to achieve this, we show how these 1s binding ener-
gies are in fact the components of inner and outer tensor products of Yang-Mills matrices which are implicit in the ex-
pressions for these intrinsic binding energies. The result is that the binding energies for the “He, *He and *H nucleons
are respectively, independently, explained to less than four parts in one million, four parts in 100,000, and seven parts in
one million, all in AMU. Further, we are able to exactly relate the neutron minus proton mass difference to a function
of the up and down quark masses, which in turn enables us to explain the H binding energy most precisely of all, to just
over 8 parts in ten million. These energies have never before been theoretically explained with such accuracy, which
leads to the conclusion that the underlying thesis provides the strongest theoretical explanation to date of what baryons
are, and of how protons and neutrons confine their quarks and bind together into composite nuclides. As is also re-
viewed in Section 9, these results may lay the foundation for more easily catalyzing nuclear fusion energy release.

Keywords: Nuclides, Binding Energy, Deuteron, Triton, Helion, Alpha, Alpha Decay, Beta Decay, Yang-Mills, Magnetic Mono-
poles, Solar Fusion, Nuclear Fusion, Confinement

1. Introduction: Summary Review of the the classical electric charge and magnetic monopole field

Thesis that Baryons are Yang-Mill Mag-
netic Monopoles with Binding Energies
based on their Current Quark Masses

In an earlier paper [1], the author developed the thesis
that magnetic monopole densities which come into ex-
istence in a non-Abelian Yang-Mills gauge theory of
non-commuting vector gauge boson fields G* are syn-
onymous with baryon densities. That is, baryons, in-
cluding the protons and neutrons which form the vast
preponderance of matter in the universe, are Yang-Mills
magnetic monopoles.  Conversely, magnetic mono-
poles, long pursued since the time of Maxwell, have al-
ways been hiding in plain sight, in Yang-Mills incarna-
tion, as baryons, and especially, as protons and neutrons.
Maxwell’s equations themselves provide the theoreti-
cal foundation for this thesis, because if one starts with

equations (respectively, [2.1] and [2.2] of [1]):

J' =8, F* =8, D*G" =(g"0,D° —9"D")G, (1.1
P* =9 F" +0*F"” +0"F™ (1.2)
(D* =9* —iG*) and combines the magnetic charge
equation (1.2) with a Yang-Mills (non-Abelian) field

strength tensor F*” which is an NxN matrix for a sim-
ple gauge group SUN) ([2.3] of [1]):

F* =8"G" ~8"G* ~i[ G*,G" |= D*G" - D'G* = DG (1.3)

one immediately comes upon the non-vanishing magnet-
ic monopole ({2.4] of [1]): ‘
P =-i(o°[G*,G" |+o*[¢",6" [+’ [67.6])- (14
The question then becomes whether such magnetic
monopoles (1.4) actually do exist in the material uni-
verse, and if so, in what form. The thesis developed in
[1] is not only that these magnetic monopoles do exist,
but that they permeate the material universe in the form
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of baryons, especially as the protons and neutrons ob-
served everywhere and anywhere that matter exists.

Of course, t’Hooft [2] and Polyakov [3] realized sev-
eral decades ago that non-Abelian gauge theories lead to
non-vanishing magnetic monopoles. But their mono-
poles have very high energies which make them not
suitable for being baryons such as protons and neutrons.
Following t’Hooft, the author in [1] does make use of the
t'Hooft monopole Lagrangian from [2.1] of [2] to calcu-
late the energies of these magnetic monopoles (1.4).
But whereas t’Hooft introduces an ansatz about the radi-
al behavior of the gauge bosons G*, the author instead
makes use of a Gaussian ansatz borrowed from equation
[14] of Ohanian’s [4] for the radial behavior of fermions.
Moreover, the fermions for which this ansatz is em-
ployed enter on the very solid foundation of taking the
inverse G, =1,,J° of Maxell’s charge equation (1.1)

(essentially calculating the configuration space inverse
(g’"@, D 5" DV)’I), and then combining this with the
relationship J# = yy#y that emerges from satisfying
the charge conservation (continuity) equation 9,J"=0
in Dirac theory. Specifically, it was found that in the

low-perturbation limit, magnetic monopoles (1.4) can be
re-expressed as a three-fermion system ([3.12] of [1]):

- '8y o o - o
Vo™ Vo ot Voo Yo Py Vo " Ve (L.5)
" " n " 7" "

Py~ May Py ~ M) Py — Mg,

Above, Wy i=1,2,3 are three distinct Dirac spinor

P = -2[3’

wavefunctions which emerge following three distinct
substitutions of G, =1_J° =1I_yy°y — which captures
the inverse of Maxwell’s charge equation (1.1) combined
with Dirac theory — into the (1.4) magnetic monopole
which utilizes the Yang-Mills field strength (1.3) in
combination with Maxwell’s magnetic monopole equa-
tion (1.2). The detailed derivation of (1.5) from (1.4)
also makes use of sections 6.2, 6.14 and 5.5 of [5] per-
taining to Compton scattering and the fermion com-
pleteness relation, and carefully accounts for mass de-
grees of freedom as between fermions and bosons. The
quoted denominators "p . —m " and “quasi commuta-

tors” gAv E%[?”'V}’V] in the above make use of a com-

pact notation developed and explained in section 3 of [1],
see specifically [3.9] and [3.10] therein.

Then, via Fermi-Dirac Exclusion, the author employed
the QCD color group SU(3)c to require that each of the
three be SU@B)¢ vectors in distinct quantum color

eigenstates R, G, B, which then leads in [5.5] of [1] to a
magnetic monopole:

v
TeP™ = —2[6" Yo Ve g

Pr —Mp

- v, o
w W0 Yg
"

"
P — Mg

o Vs ¥ ] (1.6)

" ”
Py — My

This is similar to (1.5) but for the emergence of the trace.
Associating each color with the spacetime index in the
related §° operator, i.e., c~R, u~G and v~B,

and keeping in mind that TrP®” is antisymmetric in all
spacetime indexes, we express this antisymmetry with
wedge products as o A g AV~RAGAB. So the nat-

ural antisymmetry of a magnetic monopole P** leads
straight to the required antisymmetric color singlet
wavefunction R[G, B]+G[B,R]+B[R,G] for a baryon.
Indeed, in hindsight, this antisymmetry together with
three vector indexes to accommodate three vector current
densities and the three additive terms in the P*" of
(1.2) should have been a tip-off that magnetic monopoles
would naturally make good baryons. Further, upon
integration over a closed surface via Gauss’/Stokes’ the-
orem, magnetic monopole (1.6) is shown to emit and
absorb singlets with the symmetric color wavefunction
RR+GG + BB expected of a meson. And, in section 1
of [1], it was shown how magnetic monopoles naturally
contain their gauge fields in non-Abelian gauge theory
via the differential forms relationship dé=0 for precisely
the same reasons rooted in spacetime geometry that
magnetic monopoles do not exist af all in Abelian gauge
theory. Thus, QCD itself deductively emerges from the
thesis that baryons are Yang-Mills magnetic monopoles,
and we began to associate monopole (1.6) with a baryon.

It was then shown in sections 6 through 8 of [1] that
these SU(3) monopoles may be made topologically sta-
ble by symmetry breaking from larger SU(4) gauge
groups which yield the baryon and electric charge quan-
tum numbers of a proton and neutron. Specifically, the
topological stability of these magnetic monopoles was
established in sections 6 and 8 of [1] based on Cheng and
Li [6] at 472-473 and Weinberg [7] at 442. The proton
and neutron are developed as particular types of magnet-
ic monopole in section 7 of [1] making use of SU(4)
gauge groups for baryon minus lepton number B-L
based on Volovok’s [8], Section 12.2.2. The spontane-
ous symmetry breaking of these SU(4) gauge groups is
then fashioned on Georgi-Glashow’s SU(5) GUT model
[9] reviewed in detail in section 8 of [1].

By then employing the earlier-referenced “Gaussian
ansatz” from Ohanian’s [4], namely ([9.9] of [1]):

2\ 1 (r "ro)z
(//(r)= u( p)(ﬂxl ) 4exp ——
2 R

for the radial behavior of the fermion wavefunctions,
together with the t"Hooft monopole Lagrangian from
[2.1] of [2] (see [9.2] of [1]) it became possible to ana-
lytically calculate the energies of these Yang-Mills
magnetic monopoles (1.6) following their development
into topologically stable protons and neutrons.

Specifically, in sections 11 and 12 of [1], the author
used the pure gauge field terms Syee of the t’Hooft

(1.7
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monopole Lagrangian to specify the energy of the
Yang-Mills magnetic monopoles, exclusive of the vac-
uwum @, via[l11.7] of [1]:

E=—”j.ﬁ?gauged3x=%T1'I_UF#VF”Vd3x- (1.8)

We then made use in (1.8) of field strength tensors for
protons and neutrons developed via Gauss’/Stokes’ the-
orem from (1.6) in [11.3] and [11.4] of [1], respectively:

— _{% bl vl e } (1.9)
"‘Dd _mdn "pu _mu"

S _{'?u berlv. v v ] (1.10)
up" _muu "pd —md"

where y, and y, are Dirac wavefunctions for up and

down quarks, to deduce three relationships which yielded
remarkable concurrence with empirical data:

First, we found in [11.22] of [1] that the electron mass
is related to up and down quark masses according to:

m, = 0510998928 MeV =3(m, —m,)/(2z)},  (L1D)
where the divisor (2;:)% results as a natural consequence

of the three-dimensional integration (1.8) when the
Gaussian ansatz for fermions is specified as in (1.7), and
where the wavelengths in (1.7) are taken to be related to
the quark masses via the de Broglie relation % =#%/mc.

Second and third, we found in [12.12] and [12.13] of
[1] that if one postulates the current mass of the up quark
to be equal to the deuteron (*H nucleus) binding energy
based on a) empirical concurrence within experimental
errors and b) regarding nucleons to be resonant cavities
with binding energies determined in relation to their up
and down current quark masses, then the proton and neu-
tron each possess respective intrinsic, latent binding en-
ergies B (i.e., energies intrinsically available for nuclear
binding):

B, =2mu+md—(md+4 m,m, +4mu)/(27z)% (1.12)
=7.640679MeV
By =2m, +m, ~(m, +afmm, +4m, )1 (27)F (113

=9.812358MeV

So for a nucleus with an equal number of protons and
neutrons, the average binding energy per nucleon is pre-
dicted to be 8.726519 MeV. Not only does this explain
why a typical nucleus beyond the very lightest (which we
shall be studying in detail here) has a binding energy in
exactly this vicinity (see Figure 1 in section 5 infra), but
when this is applied to *°Fe with 26 protons and 30 neu-
trons — which has the distinction of using a higher per-
centage of this available binding energy than any other
nuclide — we see that the latent available binding energy
is predicted to be ([12.14] of [1]):
B(Fe**)=26x7.640679MeV +30x9.812358 eV

=493.028394MeV

(1.14)

This contrasts remarkably with the observed *°Fe binding
energy of 492.253892 MeV.  That is, precisely
99.8429093% of the available binding energy predicted
by this model of nucleons as Yang-Mills magnetic mon-
opoles goes into binding together the *Fe nucleus, with a
small 0.1570907% balance reserved for confining quarks
within each nucleon. This means while quarks are very
much freer in the nucleons of *°Fe than in free nucleons
(which also appears to explain the “first EMC effect”
[10), their confinement is never fully overcome. Con-
finement bends but never breaks. Quarks step back
from the brink of becoming de-confined in Fe>® as one
moves to even heavier nuclides, and remain confined no
matter what the nuclide. Iron-56 thus sits at the theo-
retical crossroads of fission, fusion and confinement.

This thesis that protons and neutrons are resonant
cavities which emit and absorb energies that directly
manifest their current quark masses will be central to the
development of this paper.  The foregoing (1.12)
through (1.14) provide strong preliminary confirmation
of this thesis, as well as of the underlying thesis that
baryons are Yang-Mills magnetic monopoles. In this
paper, we shall show how the observed binding energies
of the 1s nuclides, namely of *H, °H, He and “He, as
well as the observed neutron minus proton mass differ-
ence, provide further compelling confirmation of the
thesis that baryons are Yang-Mills magnetic monopoles
which bind at energies which directly reflect the current
quark masses they contain.

In simple summation: with a non-Abelian Yang-Mills
field strength (1.3), Yang Mills magnetic monopole bar-
yons result from simply combining Maxwell’s classical
electric (1.1) and magnetic (1.2) charge equations to-
gether into a single equation, making use of Dirac’s
J# =yy*y based on charge continuity, and imposing
Fermi-Dirac SU(3)¢ Exclusion on the fermions of the
resulting three-fermion monopole system. No further
ingredients or assumptions are required, and all of these
ingredients being so-combined in novel fashion are
among the undisputed, uncontroversial bedrock founda-
tions of modern physics. The Gaussian ansatz (1.7)
enables the energy (1.8) to be analytically calculated, the
mass relation (1.11) naturally emerges, and once we fur-
ther apply the resonant cavity thesis, the resulting ener-
gies turn out to match up remarkably well with nuclear
binding energies.

In even simpler summation: Maxwell’s equations
(1.1), (1.2) themselves, combined together into one equa-
tion using non-Abelian gauge fields (1.3), taken together
with Dirac theory and Fermi-Dirac Exclusion, are the
governing equations of nuclear physics, insofar as nu-
clear physics centers around the study of protons and
neutrons and how they bind and interact, and given that
we were able to show in [1] that protons and neutrons are
particular types of Yang-Mills magnetic monopoles.
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In essence, the purpose of this paper is to further de-
velop the results from [1] into a theory of nuclear bind-
ing which we confirm by predicting the binding energies
of the 1s nuclides as well as the neutron minus proton
mass difference with very high precision, each on the
order of parts per million.

2. Structured Outline of the Contents of this
Paper

In deriving the empirically-accurate binding energy rela-
tionships (1.12) through (1.14) there is an aspect of (1.8)
which, when carefully considered, requires us to amend
the Lagrangian in (1.8) in a slight but important way.
This amendment, developed in section 3, will reveal that

the latent binding energies (1.12) and (1.13) actually-

employ the inner and outer tensor products of two 3x3
SU(3) matrices, one for protons, and one for neutrons.
These matrices, and their inner and outer products, will
be critical to the methodological development thereafter.

In section 4 we lay the foundation for being able to de-
rive the binding energies of the 1s nuclides using the
earlier-discussed postulate that the mass of the up quark
is equal to the deuteron (*H nucleus) binding energy, and
the thesis extrapolated from this that the binding energies
of nuclides generally are direct functions of the current
quark masses which their nucleons contain. Specifical-
ly, in (4.9) through (4.11) infra, we develop two tensor
outer products and their components which will be criti-
cal ingredients for expressing ls binding energies as
functions of up and down current quark masses.

Section 5 shows how this binding energy thesis leads
directly to a theoretical expression for the “He alpha
binding energy which matches empirical data to less than
less than 3 parts in 1 million AMU. Exploring the
meaning of this result, we see that this binding energy
together with that of the ?H deuteron are actually com-
ponents of a (3x3)x(3x3) fourth rank Yang Mills tensor
of which the *H and “He binding energies merely two
samples. Thus, we are motivated to think about binding
energies generally as components of Yang-Mills tensors.
So the method for characterizing binding energies is one
of trying to match up empirical binding energies with
various expressions which emerge from, or are compo-
nents of, these Yang-Mills tensors. In section 6, we
similarly obtain a theoretical expression for *He helion
binding to just under 4 parts in 100,000 AMU as well as
its characterization in terms of these Yang-Mills tensors.

Developing a similar expression for the *H triton to
what ends up being just over three parts in one million
AMU turns out to be less straightforward than for any of
24, *He and *He, and requires us to work with mass ex-
cess rather than binding energy. However, a bonus is
that in the process, we are also motivated to derive an
expression for the neutron minus proton mass difference

accurate to just over 7 parts in fen million AMU. To
maintain clarity and focus on the underlying research
ideas, these results are summarized in section 7, while
their detailed derivation is presented in the Appendix.

Section 8 aggregates the results of sections 5 through
7, and couches them all in terms of mass excess rather
than binding energy. In this form, it becomes more
straightforward to study nuclear fusion processes in-
volving these 1s nuclides.

Section 9 makes use of the mass excess results from
section 8, and shows how these can be combined to ex-
press the approximately 26.73 MeV of energy known to
be released during the solar fusion cycle
4-'H+2e” — }He+2v+Energy entirely in terms of the

up, down and electron fermion masses. _This highlights
not only the accuracy of the results for ’H, *H, ’He and
*He binding energies and the neutron minus proton mass
difference, but it establishes the approach one would use
to do the same for other types of nuclear fusion, and for
fission reactions. And, it vividly confirms the thesis
that fusion and fission and binding energies are directly
based on the masses of the quarks which are contained in
protons and neutrons, regarded as resonant cavities.

But perhaps the most important consequence of the
development in section 9 is technological, because the
possibility is developed via this “resonant cavity” analy-
sis that by bathing a store of hydrogen in gamma radia-
tion at certain specified, discrete frequencies which are
also defined functions of the up and down quark masses,
one can catalyze nuclear fusion and perhaps develop
more effective ways to practically exploit the promise of
nuclear fusion energy release.

In section 10, we take a closer look at experimental
errors that still do reside in the results for *H, *He and
*He binding and the neutron minus proton mass differ-
ence, generally at parts per 10°, 10° or 107 AMU. We
explain why the original postulate identifying the up
quark mass exactly with the ’H deuteron binding energy
should be modified into the substitute postulate that the
theoretical neutron minus proton mass difference is an
exact relationship, and why the equality of the up quark
mass and the deuteron binding energy is simply a very
close approximation (to just over 8 parts in ten million)
rather than an exact relationship. We then are required
to adjust (recalibrate) all of the prior numeric mass and
energy calculations accordingly, by about parts per mil-
lion. As a by-product, the up and down quark masses
become known with the same degree of experimental
precision as the electron rest mass and the neutron minus
proton mass difference, to ten decimal places in AMU.

Section 11 concludes by summarizing and consolidat-
ing these results, laying out most compactly in Table 10,
infra, how the thesis that baryons are Yang-Mills mag-
netic monopoles which fuse at binding energies reflec-
tive of their current quark masses can be used to predict
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the binding energies of the “He alpha to less than four
parts in one million, of the He helion to less than four
parts in 100,000, and of the *H triton to less than seven
parts in one million, all in AMU. And of special im-
port, by exactly relating the neutron minus proton mass
difference to a function of the up and down quark mass-
es, we are enabled to predict the binding energy for the
2H deuteron most precisely of all, to just over 8 parts in
ten million.

What renders this work novel is 1) that the 1s light nu-
clide binding energies and the neutron minus proton
mass difference do not appear to have ever before been
theoretically explained with such accuracy, 2) the degree
to which this accuracy confirms that baryons are
Yang-Mills magnetic monopoles with binding energies
which are components of a Yang-Mills tensor and which
are directly related to current quark masses contained in
these baryons, 3) the finding that nuclear physics appears
to be governed by simply combining Maxwell’s two
classical equations into one equation using Yang-Mills
gauge fields in view of Dirac theory and Fermi-Dirac
Exclusion for fermions, and 4) the prospect of perhaps
improving nuclear fusion technology by applying suita-
bly-chosen resonances of gamma radiation for catalysis.

3. The Lagrangian of Nuclear Binding
Energies

The t'Hooft magnetic monopole Lagrangian used in
(1.8), because of suppression of the Yang-Mills matrix
indexes, actually has an ambiguous mathematical mean-
ing, and can be either an ordinary (inner product) matrix
multiplication, or a tensor (outer) product. The outer
product is the most general bilinear operation that can be
performed on F, _F*, while the inner product repre-

sents a contraction of the outer product which reduces
the Yang-Mills rank by 2. When carefully considered,
this provides an opportunity for developing a nuclear
Lagrangian based on the t’Hooft’s original development
[2] of Yang-Mills magnetic monopoles.

If we know that i F,f., F/" =LF, F# as we do from

the terms in [11.7] of [1] omitted from (1.8) above, and
given that 7y7'7/ =157, then with explicit indexes
A,B,C,D =123 forthe 3x3 Yang-Mills matrices of the
SU(3). isospin-modified color group developed in sec-

tion 8 of [1], an explicit appearance of Yang-Mills in-
dexes would cause (1.8) to be written as:

E = ([ Sd’ v =3 Te[[[F P a2 =4 T [[[F,, , F 1 dx (3.1)
= %Tr_“_”.FAE Fypd®x = %H Fu Fpd’x
where F.F= F, F# suppresses spacetime indexes to

focus attention on contractions of Yang-Mills indexes.
In the fourth and fifth terms above, there is a contraction
over the inner “B” index, which means that F,,.F,, is
an inner product formed with ordinary matrix multiplica-
tion, and is a contraction over inner indexes of the fourth
rank (3x3x3x3) outer product F, ®F" =F, - Fg
down to rank two. In the sixth, final term, we write
TtF - Fyp = Fyp- Fyy via a second “4” index contraction.

We point this out because (1.12) through (1.14) which
successfully match empirical nuclear binding data, em-
body not only (3.1), but also an outer product F,,-F,,

that is, (carefully contrast Yang-Mills indexes between
the final terms in (3.1), (3.2)):

E=~{[[Spud’x =T [[[F,, ® F" @x =4 Te[[[F,, ,F* ,d’x (3.2)

= ITTr'[_[IE»lB Fpd’x = ITH Fuy Fpd'x
Here, in the final terms, we use TrF,, - F, =F,, - Fp,» 88

opposed 10 TrF,, - Fy, = F,,-F,, . This highlights the
notational ambiguity in (1.8) as well as the difference
between the outer ® and inner - matrix products.
Now, in general, the trace of a product of two square
matrices is not the product of traces. The only circum-
stance in which “trace of a product” equals “product of
traces” is when one forms a tensor outer product using:
Tr(4® B)=Tr{4)Tr(B)- (3.3)
Specifically, to obtain the terms m, +4./m m, +4m,

and m,+4 /m"md+4md in (1.12) and (1.13) (and also

[12.4] and [12.5] of [1] which erroneously applied (3.2),
(3.3) rather than (3.1) because of this ambiguity), we
must use (3.2), while to obtain 2m, +m, and 2m,+m,

in (1.12) and (1.13), we instead must use (3.1). So
(1.12) and (1.13) are formed by a linear combination of
both inner and outer products. And because (1.12) and
(1.13) predict binding energies per nucleon in the range
of 8.7 MeV and yield an extremely close match to *5Fe
binding energies, nature herself appears to be telling us
that we need to combine inner and outer products in this
way in order to match up with empirical data. This, in
turn, gives us important feedback for how to construct
our Lagrangian to match the empirical data.

To see this most vividly, we start with [11.8] and
[11.9] from [1]:
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Using these in (3.1) and (3 .2) following the development
in section 11 and [12.12] and [12.13] of [1], we can re-
produce equations (1.12) and (1.13) for the empirical-
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ly-accurate latent binding energies of a proton and neu-
tron using linear combinations of inner and outer
Yang-Mills matrix products, as follows:

B,=J3E,—E,= %Trj”((Z}t)%F E"~F,, ®F" Jx=1T¢|[[ ((Zn)%F,,AB Fppp = Fp 15 Fren )d3x

:%III((Z”)%FPAB'FPBA—FP pBB)dx 2m, +m, — ! (md+4 mmd+4mu)
(2x)

(3.6)
Jm o o Yym o o Jmo0 o) (ym 0 o
=Tr|| O m, 0 0 m, 0 |- ! - 0 m, 0 |® 0 m, 0
0 0 Jm ) 0 0 m @ 5 o m, 0 0 m,
=9356376 MeV —-1715697MeV =7.640679MeV
By =SEy-Ey = %Trﬂj((zﬂ)? FynFy" —Fy, ®F, *'")d3x =17efff ((2:;)T Fyus Fusp — Fus ~FNCD)d3x
1
=%_m’( 2”) Fyap Enpa—Fyaa NBB)daxzzmd-‘_mu—(z”)% (mn+4 mmd+4md) G.7)
m, 0 0 \Jm 0 0 Jm, 0 0 ) (Jm, 0 0
“Tr|| 0 Jm, O o\/m_do-%o\/E0®o w0
o o0 ym)lo o ym) PP o o Jm)lo o Jm
=12.039054 MeV —2.226696 MeV =9.812358MeV
These now provide matrix expressions for intrinsic, la- g-__Tr( F Fﬂv) Tr( D"(I)D”q;)_ LTr(0D) -4 A(Tr(qxp))z
tent binding energies of the proton and neutron, con- ,(3.10)

tracted down to scalar energy numbers which specify
these binding energies and match the empirical data very
well. And it is from these, that we learn how to amend
the Lagrangian in (1.8) to lay a foundation fot consider-
ing nuclear binding energies in general:

Contrasting (3.6) and (3.7) with (3.1) and (3.2), we see
that in order to match up with the empirical data, the
general form of a Lagrangian for the /atent binding en-
ergy of a nucleon, rather than (1.8), needs to be:

Sbmdmg Tr((27z) FVFIN_F:“V®F”V)
5 . 3.8)
=%Tr((2”)2[':48‘FBD"FAB'FCD) (
=%((27[)% Fup-Fp—Fyy 'FBB)

Using this, we now start to amend the t’Hooft Lagrangi-
an [9.2] of [1], reproduced below:

£=—LFLFM ~1D,8,D"¢" 114, -3 2p.9°f - 39
First, we apply 7rT'T/=16", F*=TF" and
@ =T, torewrite (3.9) in the Yang-Mills matrix form:

=—4Tr(F,, 5" ) -Te((D,@) , (D*®) )
— BTE(D Dy, )~ L A(Tr (D 5D5))
= _TEAV,WF,“ BA _(D,I(D)AB (D”(D)BA —/uzd)AB(DBA _%A(QABCDBA )2
with [9.4] of [1] also written in compacted matrix form:
(@), =0,®,,-iG,.®), 3.11)
Now, we compare (3.10) closely with (3.8), especially
comparing 1, p#  in(3.10) with LQ2n) Fyy- Fy
in (3.8). Based on thls, we reconstruct the t’Hooft La-

grangian so the pure gauge terms specify the latent nu-
clear binding energies, that is, we choose to make

%((27:)% Fop-Fo—Fy- FBB) the pure gauge Lagrangian
term, because we know from (3.6) and (3.7) that this

yields latent binding energies very much in accord with
those empirically observed in nuclear physics. Thus,

we take (3.10), introduce a factor of —(27): in front of

all the ordinary matrix products, subtract off a term

F,,-F,, , introduce similarly-contracted terms every-

where else, and so fashion the Lagrangian:

2=(afLF, 77, +(D,0), (D), + 1D 5 + 1 A 4@, P (3-12)
17~ (D,0) (DO~ 0 0,00

T3l w4y
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It is readily seen that the pure gauge terms F, F*” in

the above are identical to (3.8), which means these terms
now represent the empirically-observed latent nuclear
binding energies. However, in constructing this La-

grangian, we carry the same index structure and (27;)%

coefficients forward to all remaining terms and thus ex-
tend this understanding to the vacuum terms.

The benefit of all of this can be seen by now consider-
ing a nucleus with Z protons and N neutrons, which
therefore has A=Z+N nucleons. With (3.6) and (3.7),
we may write the intrinsic, available, latent binding en-
ergy 7B ofany such nuclide as:

18217 ([[((25) Fran* Fons = Foaa-Foua =

+%N'J.”((27T)% Fyap~ Fypa = Fyaa 'FNBB)d3x
=Z7-7.640679MeV + N -9.812358MeV
This simply restates the results found in sections 11 and
12 of [1] in more formal terms. But, it ties formal the-
oretical expressions based on a Lagrangian
Soc—LTe(F-F) and an energy F= —j'”,@fx to a very

practical formula for deriving real, numeric, empirical-
ly-accurate nuclear binding energies. A good example
is (1.14) for 3B, the latent binding energy of *Fe.

On the foregoing basis, we now show how to derive
not only the latent, available binding energies (desig-
nated B) via (3.13), but also the observed binding ener-
gies (which will be designated throughout as B with a

. (3.13)

«“(” subscript) for several basic light nuclides. Specifi-
cally, we now lay the foundation for deriving }B for

the °H triton, 3B, for the *He helion, and most im-
portantly given that it is a fundamental building block of

,Nuclide on

the larger nuclei and many decay process, ;B, for the
“He alpha, all extremely closely to the empirical data.

4. Foundation for Deriving Observed Bind-
ing Energies of the 1s Nuclides

Our goal is to derive the observed, empirical binding
energies for all nuclides with Z <2; N <2 on a rotally

theoretical basis. We thereby embark on the undertak-
ing set forth at the end of [1], to understand in detail,
how collections of Yang-Mills magnetic monopoles —
which monopole collections we now understand to be
nuclei when the monopoles are protons and neutrons —
organize and structure themselves.

The empirical nuclear weights (masses ;) of the 1s

nuclides are set forth below in Table 1 (again, 4=Z+N).
Because we wish to do very precise calculations, and
because nuclide masses are known much more precisely
in u (atomic mass units, AMU) than in MeV due to the
“relatively poorly known electronic charge” [11], we
shall work in AMU. When helpful for illustration, we
shall convert over to MeV via 1 u = 931.494 061(21)
MeV/c?, but only after a calculation is complete. The
data for these nuclides (and the electron mass below) is
from [11] and / or [12], and is generally known to
ten-digit precision in AMU with experimental errors at
the eleventh and twelfth digits. For other nuclides not
listed at these sources, we make use of a very helpful
online compilation of atomic weights and isotopes at
[13]. Vertical columns list isotopes, horizontal rows list
isotones, and diagonal lines link isobars of like-4. The
nuclides with border frames are stable nuclides. The
mass of the neutron is M(n)=gM =1008664916000 u

w N P oz <Z

and the mass of the proton is
M(p)='M =1007276466812 u -
AT
......Ae:4 -------------

Table 1: Empirical Nuclear Weights (%M) of 1s Nuclides (AMU)

The observed binding energies B, are readily calculat-
ed from the above via ;Bo = Z-I'M+N-0'M—;M using
M(p)=M and
M(n)=,M , and are summarized in Table 2 below (again,

the proton and neufron masses

the observed binding energies will be denoted throughout
as B, with a “0” subscript, while latent, theoretical-

Iy-available binding energies denoted simply B will omit
this subscript):



B, sNuclide

v
.........
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Table 2: Empirical Binding Energies (‘zBO) of 1s Nuclides (AMU)

Now let’s get down to business. We already showed
in [12.9] of [1] and discussed in the introduction here,
that by identifying the mass of the up quark with the
deuteron binding energy via the postulate that
m, = B,(*H)=2.224566 MeV , wWe not only can establish

very precise masses for the up and down quarks but also
can explain the confluence of confinement and fission
and fusion at °Fe in a very profound way, wherein
99.8429093% of the available binding energy goes into
binding the Fe’® nucleus and only the remaining
0.1570907% is unused for nucleon binding and so in-
stead confines quarks. And, we extrapolated this to
the thesis to be further confirmed here, that nucleons in
general are resonant cavities fusing at energies reflective
of their current quark masses.

So we now write this postulate identifying (defining)

the up quark mass , with the observed deuteron bind- '

ing energy 2B,, in notations to be employed here, in
AMU, as:

m, = 2B, =0.002388170100 u - @“4.1
In AMU, the electron mass, which we shall also need, is:
m, = 0.000548579909 u - (4.2)

We then use (1.11) (see also [12.10] of [1]) with (4.1) and
(4.2) to obtain the down quark mass:

It will also be helpful in the discussion following to use:
m,m, = 0003547001876 u . 4.4)

see, e.g., (1.12) and (1.13) in which this first arises.

We then use the foregoing in (1.12) and (1.13) to cal-
culate the latent, available binding energy of the proton
and neutron, designated B without the “0” subscript:

B(p)=B=2m,+m, —(md +4,/m,m, +4mu)/(2n')% (4.5)
=0.008202607332 u

B(n)= ,B=2m,+m, —(mu +4,m,m, +4md)/ (275)% . (4.6)
=0.010534000622 u

Via (3.13), (4.5) and (4.6) may then be used to calculate
generally, the latent, available binding energy:

my, +4mm, +4
;B=Z'[2mu+md— G m“J

(2n)’

m, +4mm, +4m, “.7
(2n)’

=7-0.008202607332 u + N -0.010534000622 u

for any nuclide of given Z, N. For the nuclides in Ta-
bles 1 and 2, this theoretically-available, latent binding
energy B, is predicted to be:

+N-[2md+mu—

my; = (27r)% m, /3+m, =0.005268143299 u - o
B Nuclide ; . )
N . A=t
0 (0008262607353, .ot2 .- R
=
2 per g 0 “92-9‘276608.576 L(MM .
3 - g e

Table 3: Theoretically Available Binding Energies (‘;B) of 1s Nuclides (AMU)
Taking the ratio of the empirical values in Table 2 over the theoretical values in Table 3 and expressing these as per-

centages then yields:
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Bo/B(%)
N

sNuclide

H

0
1
2
3

Table 4: Used-to-Available Binding Energies (QBO/ ’;B(%) ) of 1s Nuclides (%)

So we see, for example, that the *He alpha nucleus us-
es about 81.06% of its total available latent binding en-
ergy to bind itself together, with the remaining 18.94%
retained to confine the quarks inside each nucleon. The
deuteron releases about 12.74% of it latent binding en-
ergy for nuclear binding, while the isobars with 4=3 re-
lease about 31% of this latent energy for nuclear binding
with the balance reserved for quark confinement. The
frree proton and neutron, of course, retain 100% of this
latent energy to bind their quarks and release nothing.
So one may think of the latent binding energy as an en-
ergy that “see-saws” between confining quarks and
binding together nucleons into nuclides, with the exact
percentage of latent energy reserved for quark confine-
ment versus released for nuclear binding dependent on
the particular nuclide in question.

As a point of comparison, we return to 36Fe which has
the highest percentage of used-to-available binding en-
ergy of any nuclide. Its nuclear weight
M =5592067442u (cf. Table 1), its empirical, ob-

served binding energy $B, =052846119u (cf. Table

2), its latent binding energy ¢B=052928781u (ct.

Table 3), and its used-to-available percentage
3B,/ B(%)=99.843825% (cf. Table 4). No nuclide
has a higher such percentage than 3Fe.  While *Ni has
a larger empirical binding energy per nucleon, its
used-to-available percentage is lower, because the calcu-

U sNuclide .
N

0

, = i Az 0
3 | “ U

------------
-------------
-------

0,016348437854

lation in (4.7) literally and figuratively weights the neu-
trons more heavily than the protons by a ratio of:

B(m) (B _ 0010534000622 u

(1l =1284225880325 (4.8)
B(p)

1B 0.008202607332u

The above ratio explains the long-observed phenome-
non why heavier nuclides tend to have a greater number
of neutrons than protons: For heavier nuclides, because
the neutrons carry an energy available for binding which
is about 28.42% larger than that of the proton, neutrons
will in general find it easier to bind into a heavy nucleus
by a factor of 28.42%. Simply put: neutrons bring more
available binding energy to the table than protons and so
are more welcome at the table. The nuclides running
from *'Ga to “*Cd tend to have stable isotopes with neu-
tron-to-proton number ratios (N/Z) roughly in the range
of (4.8). Additionally, and likely for the same reason,
this is the range in which, beginning with *'Nb and Mo,
and as the N/Z ratio grows even larger than (4.8), one
begins to see nuclides which become theoretically unsta-
ble with regard to spontaneous fission.

Next, we subtract Table 2 from table 3, to obtain the
unused (U) binding energy #U for each nuclide.

These unused binding energies represent the amount of
the latent binding energies reserved for and channeled
into intra-nucleon quark confinement, rather than re-
leased and used for inter-nucleon binding, Of course,
for the proton and neutron, all of this energy is unused; it
is fully reserved and channeled into confining the quarks.
These unused, reserved-for-confinement energies are:

H

.........

.......
.....

0.018653612462|| ...

s
oy
.........

---------

Table 5: Unused Latent Binding Energies (‘;U) of 1s Nuclides (AMU)
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Finally, to lay the groundwork for predicting the ob-
served binding energies By in Table 2, let us refer to (3.6)
and (3.7), remove the trace, and specify two (3x3)x(3x3)

outer product matrices, one for the proton, E, = . and

one for the neutron, Eyncn® according to:
(2”)% Epscp = %(27{)% IUFPAB Fpepd’x
Jm, 0 0 ) (Ym0 0
=l 0o Jym o ® 0 Jm 0
0 0 Jm Lo 0 Jm
(2”)% Eyapep = %(2”)% J'H Fyap Fycpd

Jm, 00 m 0 0
=l 0o Jm o0 [® 0 Jm 0
o 0 Jm) 0 0o m

From the above, one can readily obtain the eighteen
non-zero diagonal outer product components (nine for
the proton and nine for the neutron), with
=0 otherwise:

4.9

. (4.10)

Eppsep = Eyipcp

3
— — —_— — p— 2
Eyin=Eppzn=Epsn = Epyzy = Epyzpn =M, /(277)

Epiny=Eynyn =Eyps =Eyps = Eysysn=my /(2”)7 (4.11)

Eppz = Epyyss = Eppon = Epsany

3
= Eyniz = Eynss = Evaon = Eysan =mmy /(275)1
This is why (4.1), (4.3) and (4.4) will be of interest in
the development following. With the “toolkit” (4.9) to
(4.11) we now have all ingredients needed to closely
deduce the empirical binding energies in Table 2 on to-
tally theoretical grounds. We start with the alpha, “He.

5. Prediction of the Alpha Nuclide Binding
Energy to 3 parts in One Million, and
How Binding Energies are Yang-Mills
Tensor Components

The alpha particle is the *He nucleus. It is highly sta-
ble, with fully saturated 1s shells for protons and neu-
trons, and is central to many aspects of nuclear physics
including the decay of nuclides into more stable states
via so-called alpha decay. In this way, it is a bedrock
building block of nuclear physics.

The unused binding energy in Table 5 for the alpha is
U = 0007096629409 u . Looking over the toolkit

(4.11), we see 2.[m m, =0.007094003752u, SO ;U I8
very close to being twice the value of [m m, in (4.4).

In fact, these energies are equal to about 2.26 parts per
million! Might this be an indication that the alpha uses
all its latent binding energy less 2./m m, for nuclear

binding, with the 2 /mum , balance reserved on the oth-

-er side of the “see saw” to confine quarks within each of

its four nucleons? First, let’s look at the numbers, then
examine theoretical reasons why this may make sense.

If in fact this numerical coincidence is not just a coin-
cidence but has real physical meaning, this would mean
the empirical binding energy B, of the alpha is pre-

dicted to be (4.7) for 2B, less 2 /m"m > that is:

m, +4ymm, +4m,
G
m, +4m,m,; +4m, (CRY)
(22)’ J
—2./m,m,; =0.030379212155u
where we calculate using m,, m, from (4.1), (4.3), and

/ m,m, from (4.4).

¢B, = 0.030376586499 u in Table 2. The difference:
2 Bopredicrea — 2 Bo = 0.030379212155 4 - 0.030376586499 u (5 )

=0.000002625656 u
is extremely small, with these two values, as noted just
above for the reserved energy, differing from one another
by less than 3 parts in 1 million AMU!  So, let us re-
gard (5.1) to be a correct prediction of the alpha binding
energy to 3 parts per million. Now, let’s discuss the
theoretical reasons why this makes sense.

In [1], a key postulate was to identify the mass of the
down quark with the deuteron binding energy, see (4.1)
here in which we again reviewed that identification.
Beyond the numerical concurrence, a theoretical expla-
nation is that in some fashion the nucleons are resonant
cavities, so the energies they release (or reserve) during
fusion will be very closely tied to the masses / wave-
lengths of the contents of these cavities. But, of course,
these “cavities” contain up quarks and down quarks, and
their masses are given in (4.1) and (4.3) together with the

[m,m, construct in (4.4), and so these will specify pre-
ferred “harmonics” to determine the precise energies
which these cavities resonantly release for nuclear bind-

ing, or hold in reserve for quark confinement.
We also see that components of the outer products

(2”)% Espen =%(27f)% .U.[FAB F,d’x i (4.9) and (4.10)
take on one of three non-zero values: m , m,, Or
Jm,m, , see (4.11).  So, in trying to make a theoretical

fit to empirical binding data we require that empirical
binding energies be calculated only from these outer

products g, . =1 j‘ I J' Fp-Fopd’x (4.9), (4.10) using

only some combination of a) the components of these
outer products and b) index contractions of these outer

4 = —
2 Bopredicted = 2{2"”,‘ +my

+2-[2md+mu—

In contrast, the empirical
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products. So the ingredients we shall use to do this
numerical fitting will be restricted to a) the latent nuclide
binding energies calculated from (4.7), b) the three ener-

gies m, my, /mum ., of (4.11) and quantized multi-
ples thereof, and c) any of the foregoing with a (27;)%

coefficient or divisor, as suitable. We also permit d) the
rest mass of the electron s, which is related to the up

and down masses via (1.11). The method of this fitting
is trial and error, at least for now, and involves essential-
ly poring over the empirical nuclear binding energy data
and seeing if it can be arrived at closely using only the
foregoing ingredients.

For the alpha, (5.1) meets all these criteria. In fact,
rewritten with (3.6), (3.7) and (4.9) through (4.11), we
find (5.1) can be expressed entirely in terms of the outer
product £, . =1 J'H F,, - Fpd’x as just discussed, as:

;BOPrcdicled =2 ((2”’)S Epppi— EP,-I/IBB)+ 2'((2”)5 Eyippa— ENAABB)

_(2”)% (EPnzz +ENIIZZ)

_. 2mu+m‘i_md+4 mumld+4m,,
(2m)
+4 +4
+2- 2md+m,,—m"———w -2\/m,m
(27)°

This totally theoretical Yang-Mills tensor expression

yields the alpha binding energy to 2.26 parts per million.
In this form, (5.3) tells us that the alpha binding energy

is actually the 11 22 component of a (3x3)x(3x3) outer

product £, , in linear combination with traces of

Epcp- That is, this binding energy is a component ofa

Yang-Mills tensor!

This is reminiscent, for example, of the Maxwell ten-
SO — 44T H = FHEY, _%;;WF“/’FM , which provides a
suitable analogy. The on-diagonal components of the
Maxwell tensor contain both a component term and a
trace term just like (5.3). For example, for the 00 term
—47T® = FF°, —LF¥F,, We analogize F°F°, to

the E\ and FaﬂFap to the (2”)%EABBA_EAABB in
(5.3). The off-diagonal components of the Maxwell
tensor, however, do not include a trace term. For ex-
ample, for the 01 term in Maxwell, if we consider
~4xT" = F*F', -n® LF*F,,=F*F',+0, the Min-
kowski metric z* filters out the trace. This latter,

off-diagonal analogy allows us to represent (4.1) for the
deuteron as a tensor component without a trace term, for
example, as (see (4.11)):

fBOPrcdiclcd =m, = (2” )i Eyyn +0- (5.4)
So we now start to think about individual observed nu-

clear binding energies as components of a fourth rank
Yang Mills tensor of which (5.3) and (5.4) are merely

(5.3)

two samples. Thus, as we proceed to examine many
different nuclides, we will want to see what patterns may
be discerned for how each nuclide fits into this tensor.
Physically, the alpha particle contains two protons and
two neutrons, in terms of quarks, six up quarks and six
down quarks. It is seen that the up quarks enter (5.3) in
a completely symmetric fashion relative to the down
quarks, i.e., that (5.3) is invariant under the interchange
m,<>m,. The factor of 2 in front of /m"m y of

course means that two components of the outer product
are also involved. So have preliminarily associated
2Jmm, =Ep, ,,+Eyy, SO that the neutron pair and

the proton pair each contribute 1 /m“m , to (5.3), and

(5.3) thereby remains absolutely symmetric not only un-
der u<>d,butalsounder p <> n interchange.

We do note that there is some flexibility in these as-
sighments of energy numbers to tensor components, be-
cause each of m , m,, /m”md in the (4.11) toolkit is

associated with several different components of the outer
product. So the choice of E, ,, in (5.3) (while requir-

1122

ing p<>n symmetry) and of £, in (5.4) is flexi-

ble versus the other available possibilities in (4.11), and
should be revisited once we study other nuclides not yet
considered and seek to understand the more general
Yang-Mills tensor structure of which the individual nu-
clide binding energies are components.

One other physical observation is also very notewor-
thy, and to facilitate this discussion we include the
well-known “per-nucleon” binding graph as Figure 1
below. One perplexing mystery of nuclear physics is
why there is such a large “chasm” between binding ener-
gies for the H, *H and 3He nuclides, and the biding en-
ergy of the “He nuclide which we have now predicted to
within parts per million. Contrasting (5.3) for *He with
(5.4) for ?H, we see that for the latter deuteron, we “start
at the bottom” with !B =0 for 'H (the free proton),

and then “add” 12 B,=0+m, worth of energy to bind the
proton and the neutron together into H. Conversely,
for the alpha we “start at the top” with the total latent
binding energy B =0037473215908u, and then sub-

tract off 2. /m m, , to match the empirical data with

4B, =003747321508 4 —2,/m,m, - But as we learned

in section 12 of {1] and have reiterated here, any time we
do not use some of the latent energy for nuclear binding,
that unused energy remains behind in reserve to confine
the quarks in a type of nuclear see-saw.

So what we learn is that for the alpha particle, a total

of 2 /mum , =0.007094004 is held in reserve to confine

the quarks, while the majority balance is released to bind
the nucleons to one another. In contrast, for the deu-
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teron, a total of m, = B, =0.002388170100 u is released

for inter-nucleon binding while the majority balance is

held in reserve to confine the quarks.
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Figure 1

Now to the point: for some nuclides (e.g. the deuteron)
the question is: how much energy is released from quark
confinement to bind nucleons? This is a “bottom to
top” nuclide. For other nuclides (e.g., the alpha) the
question is: how much energy is reserved out of the the-
oretical maximum available, to confine quarks. This is
a “top to bottom” nuclide. For top to bottom nuclides,
there is a scalar trace in the Yang-Mills tensors. For
bottom to top nuclides there is not. Using the Maxwell

tensor analogy, one may suppose that somewhere there is
a Kronecker delta 575 and/or §4%¢p, which filters out
the trace from “off-diagonal” terms and leaves the trace
intact for “on-diagonal” terms. In this way, the “bottom
to top” nuclides are “off-diagonal” tensor components
and the “top to boftom” nuclides are “on diagonal”
components. In either case, however, the “resonance”
for nuclear binding is established by the components of

the Eyisep? which are m , m,, in some

m,m,
combination and / or integer multiple. And, as regards
Figure 1 above, the chasm between the lighter nuclides
and *He is explained on the basis that each of *H, *H and
*He are “bottom to top” “off-diagonal” nuclides, while
*He, which happens to fill the 1s shells, is the lightest
“top to bottom” “on-diagonal” nuclide. *H, °H and *He
start at the bottom of the nuclear see-saw and move up;
“He starts at the top of the see-saw and moves down.

To amplify this point, in Table 6 below we peek ahead
at some heavier nuclides, namely, ;Li and ,Be. Using a
nuclear shell model similar to that used for electron
structure, all nucleons in the *He alpha are in 1s shells.
The two protons are spin up and down each with s, as
are the two neutrons. As soon as we add one more nu-
cleon, by Exclusion, we must jump up to the 2s shell,
which admits four more nucleons and can reach up to
48 Be before we must make an incursion into the 2p shell.

By sNuclide on

N

0

1 10.000068000000
2 S - A=
3 A=3

A .

Table 6: Empirical Binding Energies (;Bo) of Selected 1s and 2s Nuclides (AMU)

We note immediately from the above — which has been
noticed by others before — that the binding energy
3B, =0.060654752 u of *Be is almost twice as large as
that of the alpha particle, to just under one part in ten
thousand AMU. Specifically:

2- 3B, — B, =2-0.030376586499 1 —0.060654752 u (5.5)

=0.000098421 u

This is part of why *Be is unstable and invariably decays
almost immediately into two alpha particles. (*Be is the
stable Be isotope.) But of particular interest here, is to
subtract off the alpha !B =0.030376586499#% from
each of the Li and Be isotopes, and compare them side

by side with the non-zero binding energies from H and
He. The result of this exercise is in Tables 7 below:
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B, ;Nuclide ;H ,He

N

1 0,002388170T00 0008285602874
2 Az 0,009205585415_0,030376586459
3 A=z At

Bo-Bolalpha)  Nuclide 5Li .Be

0.003970507 ,__,Q.D@gggggi.é..

4 ke 0 668__0.030278165

........... A

..............

Tables 7: Comparison of Alpha-subtracted 2s Binding Energies, with 1s Binding Energies (AMU)

Equation (5.5) is represented above by the fact that
j Bo—;BOE;Bo' The table on the left is a “ls square”

and the table on the right is a “2s square.” But they are
both “s-squares.” What is of interest is that the re-
maining three nuclides in the 2s square are not dissimilar
in pattern from the other three nuclides in the 1s square.
This means that three of the four nuclides in the 2s
square start “at the bottom™ “off-diagonal” just as in 1s,
and the fourth, *Be, starts “on diagonal” “at the top.”
But, in the 2s square, the “bottom” is the alpha particle’s
4B, =0.030376586499 u - So the filled 1s shell provides

a “platform” below the 2s shell; a non-zero minimum
energy underpinning binding in the 2s square. And it
appears at least from the 1s and 2s examples that nu-
clides with full shells are “diagonal” tensor components
and all others are off diagonal. The see-saw for 2s is
elevated so its bottom is at the top of the 1s see-saw.

It is also important to note that as we consider much

heavier nuclides — and *°Fe is the best example — even
more of the energy that binds quarks together is released
from all the nucleons. For *°Fe, calculating from the
discussion prior to (4.8), the unused U binding energy
contributed by all 56 nucleons totals only .00082662 u.
But in Table 5 we saw that .00709663 u of the “He bind-
ing energy is unused. Much this, therefore, is clearly
used by the time one arrives at Fe. So, almost all the
binding energy that is reserved for quark confinement for
lighter nuclides becomes released to bind together heavi-
er nuclides, with peak utilization at %Fe. That is, by the
time an *°Fe nuclide has been fused together, much of the
binding energy previously reserved in the 1s and 2s
shells to confine quarks has been released, and this con-
tributes to overall binding for the heavier nuclides. One
may thus think of the unused binding energy in lighter
nuclides as a “reservoir” of energy that will be called
upon for binding together heavier nuclides. For nu-
clides heavier than *°Fe, the used-to- available percent-
age, cf. Table 4, tacks downwards again, and more ener-
gy is channeled back into quark confinement and less
into nuclear binding. So while quark confinement is
“hent” to the limit at *°Fe, with almost all latent binding
energies see-sawed into nucleon binding rather than
quark confinement, quark confinement can never be
“broken.”

Finally, before turning to 3He in the next section, let us
comment briefly on experimental errors. The predic-
tion of (B, ...=0.030379212155u for the alpha in

(5.1), in contrast to ;B =0.030376586499 u from the

empirical data, is an exact match in AMU through the
fifth decimal place, but is still not within experimental
errors. Specifically, the alpha mass listed in [12] and
shown in Table 1 is 4.001506179125(62) u, which is
accurate to fen decimal places in AMU. Similarly, the
proton mass 1.007276466812(90) u and the neutron mass
1.00866491600(43) u used to calculate B, are accurate

to ten and nine decimal places respectively in AMU.
So the match between !B, . . and the empirical ;B,

to under 3 parts per million is still not within the experi-
mental errors beyond five decimal places, because this
energy is known to at least nine decimal places in AMU.
Consequently, (5.1) must be regarded as a very close, but
still approximate relationship for the observed alpha
binding energy. Additionally, because (5.1) is based on
(4.1), wherein the mass of the up quark is identified with
m, = 12 B, =0.002388170100 which is the deuteron

binding energy, the question must be considered whether
this identification (4.1), while very close, is also still
approximate.

Specifically, it is possible to make (5.1) for the alpha
into an exact relationship, within experimental errors, if
we reduce the up quark mass by exactly
£=0.000000351251415 u (in the seventh decimal place),
such that:

m, = 0.002387818849 u = } B, = 0.002388170100 u - (5.6)

That is, we can make (5.1) for the alpha into an exact
relationship if we make (4.1) for the up quark into an
approximate relationship, or vice versa, but not both.
So, should we do this?

A further clue is provided by (5.5), whereby the em-
pirical :B, /!B, =2 is a close, but still approximate

relationship. This close but not exact ratio is not a
comparison between a theoretical prediction and empiri-
cal observation; it is a comparison between two empiri-
cal data points. So this seems to suggest, as one adds
more nucleons to a system and makes empirical predic-
tions such as (5.1) based on the up and down quark
masses, that higher order corrections (at the sixth deci-
mal place in AMU for alpha and the fifth decimal place
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in AMU for ?p)) will still be needed. So because

two-body systems such as the deuteron can generally be
modeled nearly-exactly, and because a deuteron will
suffer less from “large A=Z+N corrections” than any
other nuclide, it makes sense absent evidence to the con-
trary to regard (4.1) identifying the up quark mass with
the deuteron binding energy to be an exact relationship,
and to regard (5.1) for the alpha to be an approximate
relationship that still requires some tiny correction in the
sixth decimal place. Similarly, as we develop other
relationships which, in light of experimental errors, are
also close but still approximate, we shall take the view
that these relationships too, especially given (5.5), will
require higher order corrections. Thus, for the moment,
we leave (4.1) intact as an exact relationship.

In section 10, however, we shall show why (4.1) is ac-
tually not an exact relationship but is only approximate
to about 8 parts per ten million AMU. But this will be
due not to the closeness of the predicted-versus-observed
energies for the alpha particle, but due to our being able
to develop a theoretical expression for the difference
M (n)- M(p) between the observed masses of the free

neutron and the free proton to better than one part per
million AMU.

6. Prediction of the Helion Nuclide Binding
Energy to 4 parts in 100,000

Now, we turn to the He nucleus, also referred to as the

helion. In contrast with the alpha and the deuteron al-
ready examined which are integer-spin bosons, this nu-
cleon is a half-integer spin fermion. Knowing as
pointed out after (5.4) that we will “start at the bottom”
of the see-saw for this nuclide, and knowing that our
toolkit for constructing binding energy predictions is
m,, my /m"m " it turns out after some trial and error

exercises strictly with these energies that we can make a

fairly close prediction by setting:

Bo(3H oredicted = 23 By pricied = 21, T /MMy
=0.008323342076 u

The empirical energy from Table 2, in comparison, is
3B, =0.008285602824 u , so that:

2 By predicted — 3 Bo = 0.008323342076 u —0.008285602824 u (6.2)

=0.000037739252 u

While not quite as close as (5.2) for the alpha particle,
this is still a very close match to just under 4 parts in
100,000 AMU. But does this make sense in light of the
outer products (4.9), (4.10)?

If we wish to write (6.1) in the manner of (5.3) and
(5.4) in terms of the components of an outer tensor
product E then referring to (4.9), we find that:

ABBA’®

(6.1)

3 3
2By bredicted = (2” ) Epss a4

=2m, +Jmm, =\/n7u(\/m_d+2 m")

So the expression 2m,+ mm, in (6.1) in fact has a
very natural formulation which utilizes the frace
\/% +2\/m—u (AA index summation) of one of the ma-
trices in (4.9), times a ./m, taken from the 33 (or possi-
bly 22) diagonal component of the other matrix in (4.9).
The use in (6.3) of E, from (4.9) rather than of £y
from (4.10), draws from the fact that we need the AA
trace to be +m,+2m, , and not M+2 m, as
would otherwise occur if we used (4.10). So here, the
empirical data clearly causes us to use E, from the
proton matrix in (4.9) rather than E, from the neutron
matrix in (4.10). We also note that physically, *He has
one more proton than neutron.  This is a third data point
in the Yang-Mills tensor for nuclear binding. '

(6.3)

7. Prediction of the Triton Nuclide Binding
Energy to 3 parts in One Million, and the
Neutron Minus Proton Mass Difference to
7 Parts in Ten Million

Now we turn to the *H triton nuclide, which as shown

in Table 2, has a  binding energy
3B, = 0009105585412 % , and as discussed following

Table 7, is a “bottom to top” nuclide. As with the alpha
and the helion, we use the energies from components of
the outer products see again (4.9) to (4.11).

However, following careful trial and error consideration
of all possible combinations, there is no readily-apparent
combination of m, , m,, /m"m . together with m,

EAB cp?

and factors of (2;;-)% which yield a close match to well
under 1 percent, to ?B, =0.009105585412 which is
the observed ’H binding energy.

But all is not lost, and much more is found: When
studying nuclear data, there are two interrelated ways to
formulate that data. First, is to look at binding energies
as we have done so far. Second, is to look at mass ex-
cess. The latter formulation, mass excess, is very help-
ful when studying nuclear fusion and fission processes,
and as we shall now see, it is this approach that enables
us to match up the empirical binding data for the triton to

the m , m,, mm,, m, and factors of (27) that

we have already successfully employed for the deuteron,
alpha, and helion. As a tremendous bonus, we will be
able to derive a strictly theoretical expression for the
observed, empirical difference:

M(n)-M(p)= M- M =0.001388449188 u (7.1)
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between the free, unbound neufron  mass
M(n)=1008664916000u and the free, unbound proton
mass M(p)=1007276466812u, s Table 1.

The derivation of the *He binding energy and the neu-
tron minus proton mass difference is somewhat involved,
and so is detailed in the Appendix. But the results are
as follows: For the neutron minus proton mass differ-
ence, in (A15), also using (1.11), we obtain:

[M (Vl) - M(p) ]Predicled

=m,—m,—2,/m,m, ;’(2;7)%
=m, —(3md +2,/m,m, —3mu)/(27r)%

=0.001389166099 u

which differs from the empirical (7.1) by a mere
0.000000716911 u, Or just over seven parts per ten mil-

lion! And for the *He binding energy in (A17), we use

the above to help obtain:

BO(BH)Predicted = fBOPredicted = 4mu -2 m,umd /(277'-)7 s (73)
=0.009102256308 u

which differs from 2B, =0.009105585412 u, the empir-

ical value in Table 2, by merely 0.000003329104u, or

just over 3 parts per million.

A theoretical tensor expression for (7.3) using compo-
nents of an outer product E as in (5.3), (5.4) and

(7.2)

AB BA
(6.3), may be written as:

3
1 B OPredicted

3
= (271')E (Enz 2+ Eppy+ Epyy + Ep3333)_ Ep2s = Epuszs
=4m,—2.m m, /(27r)%
As earlier noted following (5.4), there will be some flex-
ibility in these tensor component assignments until we
develop a wider swathe of binding energies beyond the
“1s square” and start to discern the wider patterns.

With the foregoing, we have now reached our goal of
deducing precise theoretical expressions for all of the Is
binding energies, solely as a function of elementary fer-
mion masses. In the process, we have also deduced a
like-expression for the neutron-proton mass difference!

From here, after consolidating our binding energy re-
sults and expressing them as excess mass in section 8, we
examine the solar fusion cycle in section 9, including
possible technological implications of these results for
catalyzing nuclear fusion. In section 10 we again focus
on experimental errors as we did at the end of section 5,
and explain why (7.2) should be taken as an exact theo-
retical relationship with the quark masses and binding
energies then slightly recalibrated.

. (7.4)

8. Mass Excess Predictions

Let us now aggregate some of the results so far, as well
as those in the Appendix. First of all, let us draw on
(A4), and use (A14) and the neutron minus proton mass
difference (7.2) to rewrite (A4) as:

Miypiioes = M(p)+2M(n) = 4m, +2.[m.m, /(2z) - (8.1)
Specifically, we have refashioned (A4) to include one
proton mass and two neutron masses, because the *H
triton nuclide in fact contains one proton and two neu-
trons. Thus, —4m, +2 m /(2r); represents a the-
oretical value of the mass excess of two free neutrons
and one free proton with A (p)+2M(n) over the mass

they possess when fused into a triton, expressed via a

negative number as a fusion mass loss.  This is equal in

magnitude and opposite in sign to binding energy (7.3).
Similarly for helium nuclei, first we use (A5) to write:

3By = 2| M+;M—M =2M(p)+M(n)—;M (8.2)
We then place A/ on the left and use (6.1) to write:

3M =2M(p)+ M(n)-2m, —Jm,m, - (8.3)
Here, —2m, —/m,m, is the fusion mass loss for the

helion, also equal and opposite to binding energy (6.1).
Next, we again use (A5) to write:

B, =2 M+ 2 M—=iM =2-M(p)+2-M(n)~iM  (84)
Combining this with (5.1) then yields:
M =2M(p)+2M(n)

(8.5)

10m, +10m, +16/m,m,

(2
The fusion mass loss for the alpha — much larger than for
the other nuclides we have examined — is given by the
lengthier terms after 2M(p)+2M(n). Again, this is
equal and opposite to the alpha binding energy in (5.11),
with terms consolidated above.

Finally, from (4.1), via (AS5), it is easy to deduce for
the deuteron, that:
M =M(p)+M(n)—m,, (8.6)
with a mass loss represented simply by —m, , again,

—6m, —6m, + +2./m,m,

equal and opposite the binding energy (4.1).

9. A Theoretical Review of the Solar Fusion
Cycle, and a Possible Approach to Cata-
lyzing Fusion Energy Release

As a practical exercise, let us now use all of the forego-
ing results to theoretically examine the solar fusion cy-
cle. The first step in this cycle is (A10) for the fusion
of two protons into a deuteron. It is from (A10) that we
determine that an energy (A11) is released in this fusion,
which energy, in light of (A13), now becomes:
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Energy(llH+ 'H—>H+e" +v+Energy) ©.1

= 2.fm,m, | (2x)} =0.000451141003 u
This equates to 0.420235 MeV which is a well-known

energy in solar fusion as is noted in the Appendix. The
positron annihilates with an electron ¢* +e” =y +y to

produce an additional 2m, worth of energy as well.

The second reaction in the solar fusion cycle is:
2H+|H—>;He+Energy 0.2
wherein deuterons produced in (9.1) fuse with protons to
produce helions. 'We write this in terms of masses as:
Energy="M-+M—;M . (9.3)
The proton mass is A/, and these other two masses
have already been found, respectively, in (8.6) and (8.3).
Thus, (9.3) may be reduced to:

Energy(2H + |H — ; He+ Energy
H+H= 5 , ©9.4)

=m, +./m,m, =0.005935171976 u
which equates to 5.528577 MeV, also a well-known en-
ergy in the study of solar fusion.

The final step in this cycle fuses two helions together
to yield alpha particles plus protons, which protons then
are available to repeat the cycle starting at (9.1):

3 He+}He—>, He+ H+H + Energy 9.5)
The mass equivalent of this relationship is as follows:

Energy=M+M—iM—M—-M 9.6)
Here we again make use of A = M(p), together with
(8.3) and (8.5) to write:

Energy(zaHe+ JHe—> jHe+ H+ l'H+Energy)
= 2m, +6m, ~ 4 fm,m, ~(10m, +10m, +16 mm, )/ (27)} 6D
=0.013732528003 u
This equates to 12.791768 MeV, which is also a
well-known energy from solar fusion studies.

Now, as is well known (see, e.g. [14]), the reaction
(9.4) must occur twice to produce the two >He which

are input to (9.7), and the reaction (9.1) must occur
twice to produce the two *H which are in turn input to

(9.4). So pulling this all together from (9.1), (9.4), (9.7)
and e*+e —y+y, we may express the entire solar

fusion cycle in (9.8) below. In the top line below, we
show in detail each energy release from largest to small-
est, followed by the electron and neutrino emissions. In
the second line we segregate in separate parenthesis,
each contribution shown in the top line, including the
neutrino mass which is virtually zero. In the third line,
we consolidate terms. In the final line we use (1.11) to
eliminate the electron rest mass:

Energy (4 [H +2¢” — jHe+y(12.79MeV) +2y(5.52MeV )+ 2y (42MeV) + 4y (e) + 2v)

:[2mu +6my — 4 Jmy - L0ma £107, +16ym,m; ]+2(mu +,/mumd)+2[2—-——-—v(m”)”:d]+4(ma)+2(mv)
2z )’ .

(2n)’

10m, +10m, +12,/m m,
=4m,+6m,+4m,—2\/mm,; — <

(2r)"

=4m, +6m, ~2\/mm, + 5
“ (2n)

The above shows at least two things. First, the total
energy of approximately 26.73 MeV known to be re-
leased during solar fusion is expressed entirely in terms
of a theoretical combination of the up and down (and
optionally electron) masses, with nothing else added!
This portends the ability to do the same for other types of
fusion and fission, once the analysis of this paper is ex-
tended to larger nuclides Z>2, N>2.

Secondly, because the results throughout this paper
seem to validate modeling nucleons as resonant cavities
with energies released or retained based on the masses of
their quark contents, this tells us how to catalyze “reso-
nant fusion” which may make fusion technology more
practical, because (9.8) tells us the precise resonances

9.8)

2my = 22m, ~12m My _ 6 133389 MeV

that go into releasing the total 26.73 MeV of energy in
the above. In particular, if one wanted to create an arti-
ficial “sun in a box,” one would be inclined to amass a
store of hydrogen, and subject that hydrogen store to
gamma radiation at or near the specified discrete ener-
gies that appear in (9.8), so as to facilitate resonant cav-
ity vibrations at or near the energies required for fusion
to occur. Specifically, one would bathe the hydrogen
store with gamma radiation at one or more of the fol-
lowing energies / frequencies in combination, some

without, and some with, the Gaussian (27;)‘% divisor (we
convert to wavelengths via 1F =1/(197MeV')):
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6m, = 29.44MeV = 6.69F

m, =222MeV =8856F

2m,(harmonic) = 4.45MeV = 44.28F . 9.9
4m,(harmonic) = 890MeV = 22.14F

m,m, =330MeV =59.62F
2\/;1u7d(harmonic) =6.61MeV =2981F
4,fm,m, (harmonic) = 1322MeV =1491F
2m, /(2x)} =0.62MeV =316.15F

10m, /(2r)} =3.12MeV = 63.23F

10m, /(27:)% =1.41MeV =139.47F
3 .(9.10)
22m, /(2x)’ =3.10MeV = 63.40F

2 Jmm, /(2x)} = 0.42MeV = 469.53F
4 Jmm, /(2x)! (harmonic) = 84MeV =234.77F
12,/m,m, /(2x)} (harmonic) = 2.52MeV =78.26F

16,/m,m, /(2x)} (harmonic) =3.36MeV = 58.69F

In the above, we have explicitly shown each basic fre-
quency / energy which appears in the second, third or
fourth lines of (9.8) as well as harmonics that appear in
(9.8). Also, one should consider frequencies based on
the electron mass and its wavelength.

So, what do we learn?  If the nucleons are regarded as
resonant cavities and the energies at which they fuse de-
pend on the masses of their current quarks as is made
very evident by (9.8), and given the particular energies
and harmonics highlighted in (9.9) and (9.10), the idea
for harmonic fusion is to subject a hydrogen store to
high-frequency gamma radiation proximate at least one
of the frequencies (9.9), (9.10), with the view that these
harmonic oscillations will catalyze fusion by perhaps
reducing the amount of heat that is required. In pre-
sent-day approaches, fusion reactions are triggered using
heat generated from a fission reaction, and one goal
would be to reduce or eliminate this need for such high
heat and especially the need for any fissile trigger. That
is, we at least posit the possibility — subject of course to
laboratory testing to confirm feasibility — that applying
the harmonics (9.9), (9.10) to a hydrogen store can cat-
alyze fusion better than known methods, with less heat
and ideally little or no fission trigger required.

Of course, these energies in (9.9), (9.10) are very high,
and aside from the need to produce this radiation via
known methods such as, but not limited to, Compton
backscattering and any other methods which are known
at present or may become known in the future for pro-
ducing gamma radiation, it would also be necessary to
provide substantial shielding against the health effects of
such radiation. The highest energy / smallest wave-

length component, 6m, =29.44MeV =669F , 1S eX-
tremely energetic and would be very difficult to shield
(and to produce), but this resonance arises from (9.8)
which is for the final >He+?He—>;He+ H+H +Energy
portion of the solar fusion cycle. If one were to forego
this portion of the fusion cycle and focus only on cata-
lyzing !H+H—?H+e" +v+Energy to fuse protons
into deuterons, then the only needed resonance is
2Jm m,/@x) =0.42MeV = 469.53F . Not only is this

easiest to produce because its energy is the lowest of all
the harmonics in (9.9) and (9.10), but it is the easiest to
shield and the least harmful to humans.

Certainly, a safe, reliable and effective method and
associated hardware for producing energy via fusing
protons into deuterons via reaction (9.1), and perhaps
further fusing protons and deuterons into helions as in
(9.4), by introducing at least one of the harmonics (9.9),
(9.10) into a hydrogen store perhaps in combination with
other known fusion methods, while insufficient to create
the “artificial sun” modeled above if one foregoes the
final alpha production in (9.7), would nonetheless repre-
sent a welcome, practical addition to sources of energy
available for all forms of peaceful human endeavor.

10. Recalibration of Masses and Binding
Energies via an Exact Relationship for
the Neutron minus Proton Mass Differ-
ence

At the end of section 5, we briefly commented on ex-
perimental errors. As between the alpha particle and
the deuteron, we determined it was more sensible to as-
sociate the binding energy of the deuteron precisely with
the mass of the up quark, thus making the theoretical-
ly-predicted alpha binding energy a close but not exact
match to its empirically observed value, rather than vice
versa. But the prediction in (7.2) for the neutron minus
proton mass difference to just over 7 parts in ten million
is a very different matter. This is even more precise by
half an order of magnitude than the alpha mass predic-
tion, and given the fundamental nature of the relationship
for M(n)— M(p) Wwhich is central to beta-decay, we now

argue why (7.2) should be taken as an exact relationship
with all other relationships recalibrated accordingly, so
that now the up quark mass will still be very close to the
deuteron binding energy, but will no longer be exactly
equal to this energy.

First of all, as just noted, the M(n)— M(p) mass dif-

ference is the most precisely predicted relationship of all
the relationships developed above, to under one part per
million AMU. Second, we have seen that all the other
nuclear binding energies we have predicted are close
approximations, but not exact, and would expect that this
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inexactitude will grow larger as we consider even heavi-
er nuclides, see, for example, ®Be as discussed in Tables
6 and 7. So, rhetorically speaking, why should the
deuteron be so “special,” as opposed to any other nu-
clide, such that it gets to have an “exact” relation to some
combination of elementary fermion masses while all the
other nuclides do not?  Yes, the deuteron should come
closest to the theoretical prediction (namely the up mass)
of all nuclides, because it is the smallest composite nu-
clide. Closer than all other nuclides, but still not exact.
After all, even the 4=2 deuteron should suffer from
“large A=Z+N" effects even if only to the very slightest
degree of parts per ten million. Surely it should suffer
these effects more than the 4=1 proton or neutron.

Third, if this is so, then we gain a new footing to be
able to consider how the larger nuclides differ from the
theoretical ideal, because even for this simplest 4=2
deuteron nuclide, we will already have a precise-
ly-known deviation of the empirical data from the theo-
retical prediction, which we may perhaps be able to ex-
trapolate to larger nuclides for which this deviation cer-
tainly becomes enhanced. That is, the deviations be-
tween predicted and empirical binding data for all nu-
clides itself becomes a new data set to be studied and
hopefully explained, thus perhaps providing the ability to
theoretically eliminate even this remaining deviation.

Fourth, in a basic sense, the deuteron, which is one
proton fused to one neutron, has a mass which is a meas-
ure of “neutron plus proton,” while M(n)—M(p) is a

measure of “neutron minus proton.” So we are really
faced with a question of what gets to be exact and what
must be only approximate: n+p, or n-p? Seen in this
light, M(n)— M(p) measures an energy feature of neu-

trons and protons in their native, unbound states, as sep-
arate and distinct entities, and thus characterizes these
elemental nucleons in their purest form. In the deuter-
on, by contrast, we have a two-body system which is
less-pure. So if we must choose between one or the
other, we should choose M(n)—M(p) to be exact rela-

tionship, with the chips falling where they may for all
other relationships, including the deuteron binding ener-
gy. Now, the deuteron binding energy is relegated to
the same “approximate” status as that of all other com-
pound poly-nuclides, and only the proton and neutron as
distinct mono-nuclides get to enjoy “exact” status.

Let us therefore do exactly that. Specifically, for the
reasons given above, we now abandon our original pos-
tulate that the up quark mass is exactly equal to the deu-
teron binding energy, and in its place we substitute the
postulate that (7.2) is an exact relationship, period.
That is, we now define, by substitute postulate, that the
exact relationship which drives all others, is:

[M(n) - M(D)],,,....a =0-001388449188 u

=m, —(3md +2,fm,m, —3m,,)/(271:)% =[M(n)— M©®)), sea

Then, we modify all the other relationships accordingly.
The simplest way make this adjustment is to modify

the original postulate (4.1) to read:

m, =B, +¢=0.002388170100 u + & » (10.2)

and to then substitute this into (10.1) with & taken as very
small but unknown. This is most easily solvable nu-
merically, and it turns out that &=-0.000000830773 u,
which is just over 8 parts in ten million u. That is, sub-
stituting ¢ =-0.000000830773  into (10.2), then using
(1.11) to derive the down quark mass, then substituting
all of that into (10.1), will make (10.1) exact through all
twelve decimal places (noting that experimental errors
are in the last two places).

As a consequence, the following critical mass/energies
developed earlier become nominally adjusted starting at
the sixth decimal place in AMU, and now become (con-
trast (4.1), (4.3), (4.4), (4.5) and (4.6) respectively):

(10.1)

, = 0.0023873393 27 u, (10.3)
m, = 0.0052673125 26 u (10.4)
Jm,m; =0.0035461052 36 u » (10.5)
B, =2m, +m, —(md +4Jmm, +4mu)/(2n:)% (10.6)

=0.008200606481 u
B, =2m,+m, —(mu +4ym,m, +4md)/ (275)% . (10.7)
=0.010531999771u

Additionally, this will slightly alter the binding ener-
gies that were predicted earlier. The new results are as
follows (contrast (5.1), (6.1) and (7.3) respectively):

4 Bypregicea = 0030373002032 5 (10.8)
3Biprticed = 0-008320783890 1 - (10.9)
3 By predicied = 0-009099047078 u - (10.10)
and, via (10.3) and this adjustment of masses,

2B peticed = M, =0.002387339327 u - (10.11)

In (10.11), we continue to regard the predicted deuteron

binding energy 2B, . O D€ equal to the mass of the

up quark, but because the mass of the up quark has now
been slightly changed because of our substitute postulate,
the observed energy, which is ?B =.002388170100x

will no longer be exactly equal to the predicted energy
(10.11). Rather, we will now have ’B = 2 By predicted *

with a difference of less than one part per million AMU.
The precise, theoretical exactitude now belongs to the
M(n)—-M(p) difference in (10.1). As a bonus, the up
and down quark masses now become known to ten-digit
precision in AMU, with experimental errors in the 1"
and 12% digits, which is inherited from the precision with
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which the electron, proton and neutron masses are
known.

One other point is very much worth noting. With an
entirely theoretical, exact expression now developed for
the neutron minus proton mass difference via (10.1), we
start to target the full, dressed proton and neutron masses
themselves. Specifically, it would be extremely desira-
ble to be able to specify the proton and neutron masses as
a function of the elementary up, down, and electron fer-
mion masses, as we have here with binding energies.
Fundamentally, by elementary algebraic principles, tak-
ing each of the proton and neutron masses as an un-
known, we can deduce these masses if we have can find
two independent equations, one of which contains an
exact expression related to the sum of these masses, and
the other which contains an exact expression related to
the difference of these masses.  Equation (10.1)
achieves the first half of this objective: for the first time,
we now have an exact theoretical expression for the dif-
ference between these masses. But we still lack an in-
dependent expression related to their sum.

Every effort should now be undertaken to find another
relationship related to the sum of these masses. In all

likelihood, that relationship, which must inherently ex-
plain the natural ratio just shy of 1840 between the
masses of the nucleons and the electron, and / or similar
ratios of about 420 and 190 involving the up and down
masses, will need to emerge from an examination of the
amended t’Hooft Lagrangian terms in (3.10) which we
have not yet explored, particularly those terms which
involve the vacuum @. While analyzing binding en-
ergies and mass excess and nuclear reactions as we have
done here is a very valuable exercise, the inherent limita-
tion is that all of these analyses involve differences.
What is needed to obtain the “second” of the desired two
independent equations, are sums, not differences. (Note:
the author lays the GUT foundation for, and then tackles
this very problem, in two separate papers published in
this same special issue of IMP).

11. Summary and Conclusion

Summarizing our results here, we now have the follow-
ing theoretical predictions for the binding energies in
Table 2, with isobar lines shown, and with equation
numbers for result referenced for convenience:

A=4

Table 8: Binding Energies (;BO) of 1s Nuclides (Theoretical, AMU)

The mass loss (negative mass excess) discussed in sec-
tion 8 which was very helpful to the exercise of examin-
ing the solar fusion cycle in section 9, is simply the neg-
ative (positive) of the above. 'Having just considered
the M(n)— M(p) mass difference, it is useful to also look
at the difference between the *H and *He isobars, 4=3 in
the above. Given that *He is the stable nuclide and that
*H undergoes B~ decay into *He, we may calculate the

predicted difference in binding energies to be:

2
|:2330 - lgBO]Predicted = —2mu +[1+ (27[)% J "y

=-0.000778263189 u

(11.1)

The empirical difference -.000819982588 u differs from
the predicted difference by .000041719399 u. It is
helpful to contrast the above to (the negative of) (10.1)
which represents the most elementary g~ decay of a
neutron into a proton. Similar calculations may be car-
ried out as between the isotopes and isotones in Table 8.

The numerical values of these theoretical binding en-
ergies in Table 8, in AMU, using the recalibrated
(10.8) through (10.11), are now predicted to be:
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2387339327 0,008326783890

Table 9: Binding Energies (;BO) of 1s Nuclides (Predicted, AMU)

These theoretical predictions should be carefully compared to the empirical values in Table 2.

Indeed, subtracting

each entry in Table 2 from each entry in Table 9, we summarize our results for all of the 1s nuclides below:

Boredicted-observed Nuclide
N
0
1 ---------
2 A
3 .

___________

Table 10: Predicted Minus Observed Binding Energies (;Bo) of 1s Nuclides (AMU)

This shows how much each predicted binding energy
differs from observed empirical binding energies. As
has been reviewed, every one of these predictions is ac-
curate to under four parts in 100,000 AMU (*He has the
largest difference). Specifically: we have now used the
thesis that baryons are resonant cavity Yang-Mills mag-
netic monopoles with binding energies reflective of their
current quark masses to predict the binding energies of
the “He alpha to under four parts in one million, of the
3He helion to under four parts in 100,000 and of the ’H
triton to under seven parts in one million. Of special
import, we have exactly related the neutron minus proton
mass difference — which is central to beta decay — to the
up and down quark masses. This in turn enables us via
the substitute postulate of section 10 to predict the bind-
ing energy for the 211 deuteron most precisely of all, to
just over 8 parts in ten million.

These energies as well as the neutron minus proton
mass difference do not appear to have ever before been
theoretically explained with such accuracy, and each of
the foregoing energy predictions is mutually-independent
from all the others. So even if any one prediction is
thought to be nothing more than coincidence, the odds
against five independent predictions on the order of 1
part in 10° or better being mere coincidence exceed 10%
to 1. This is not mere coincidence!

This leads to the conclusion that the underlying thesis
that baryons generally, and neutrons and protons espe-
cially, are resonant cavity Yang-Mills magnetic mono-
poles with binding energies determined by their current

quark masses, provides the strongest theoretical explana-
tion to date of what baryons are, and of how protons and
neutrons confine their quarks and bind together into
composite nuclides. The theory of nuclear binding first
developed in [1] and further amplified here, establishes a
basis for finally “decoding” the abundance of known
data regarding nuclear masses and binding energies, and
by viewing the proton and neutron as resonant cavities,
may lay the foundation for technologically realizing the
theoretical promise of nuclear fusion.

Appendix — Detailed Derivation of the Tri-
ton Nuclide Binding Energy and the Neutron
Minus Proton Mass Difference

To derive the triton binding energy, we start by consid-
ering a hypothetical process to fuse a |H nucleus (pro-
ton) with a 2H nucleus (deuteron) to produce a ’H
nucleus (triton), plus whatever by-products emerge from
the fusion. Because the inputs 'H and }H each
have a charge of +1, and the output }/ also has a

charge of +1, a positron will be needed to carry off the
additional electric charge, and this will need to be bal-
anced with a neutrino. Of course, there will be some
fusion energy released. So in short, the fusion reaction
we now wish to study is:

|H+:H—>:H +e* +v+Energy

The question: how much energy is released?

(AD)
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As we can see, this process includes a g* decay. If
we neglect the neutrino mass m, =0, and since
m,.=m,, We can reformulate (A1) using the nuclide
masses in Table 1, as the empirical relationship:
Energy='M+2M~M —m, = 0.004780386215 u (A2)
If we then return to our “toolkit” (4.11), we see that
2m, =0.004776340200u . The difference:

Energy —2m, = 0.004780386215 u —0.004776340200 « (A3)

=-0.000004046015u

is four parts per million! So, we now regard
Energy = 2m, to be very close relationship to the empir-

ical data for the reaction (A1) with energy release (A2).
For the deuteron, alpha and helion, our toolkit matched
up to a binding energy. But for the triton, in contrast,
our toolkit instead matched up to a fusion-release energy.
A new player in this mix, which has not heretofore be-
come directly involved in predicting binding energies, is
the electron rest mass in (A2). So, based on (A3), we

set Energy=2m, , and then rewrite (A2), using
IM = M(p), as:
IBMPredicled = M(p) + le - 2mu —m,- (A4)

Now let’s reduce. To translate between Table 1 and
Table 2, we of course used:

4By =Z-\M + N-gM— ;M (AS)
which relates observed binding energy B, in general, to

nuclear mass/weight M in general. So we now use (AS5)
specifically for 3B, and combine this with (A4) using

M =M(n),t0 write:

fBOPredicted = 1.11M + 201M_?M = 2M(n)_fM + 2mu + me (A6)
Then, to take care of the remaining deuteron mass 2pf
in the above, we use (A5) a second time, now for 2B, :

1By =1 MM =M = M(p)+ M(n)—1M (AT)
We then combine (A7) rewritten in terms of 237, with
(A6) to obtain:

?BOPredicted = M(n)— M(p)+ B, predictea T 21, + 1, (A8)

Now all we need is B, . .. But this is just the deu-

teron binding energy in (5.4). So a final substitution of
’B =m, into (A8) yields:
2By praicea = M (1) —M(p)+3m, +m,- (A9)
So now, we do have a prediction for the triton binding
energy, and it does include the electron rest mass, but it
also includes the difference (7.1) between the free neu-
tron and proton masses. It would be highly desirable
for many reasons beyond the present exercise to also
express this on a completely theoretical basis.

0 Predicted

To do this, we repeat the analysis just conducted, but
now, we fuse two A nuclei (protons) into a single
2H nucleus (deuteron). ~Analogously to (A1), we write:
IH+/H—H +e* +v+Energy, (A10)
and again ask, how much energy? This fusion, it is
noted, is the first step of the process by which the sun
and stars produce energy, and is the simplest of all fu-
sions, so is interesting from a variety of viewpoints.

As in (A2), we first reformulate (A10) using the nu-
clide masses in Table 1, as the empirical:

Energy = \M + M — }M —m, = 2M(p)— (M —m,
=0.000451141003 u

As a point of reference, this is equivalent to 0.420235

MeV, which will be familiar to anybody to who has

studied hydrogen fusion. As before, we pore over the

“toolbox” in (4.11), including (27;)% divisors, to dis-
cover that 2 [m m,/(2x)F =0.000450424092u . Once

again, we see a very close match, specifically:

(Al1)

Energy —2,/m,m, /(27:)%
=0.000451141003  —0.000450424092 u

=0.000000716911 u

Here, the match is to just over 7 parts in ten million, and
it is the closest match yet! ~ So we take this too to be a
meaningful relationship, and use this to rewrite (A11) as:

2,/m,m, /(2n) =2M(p)-M —m,, (A13)
Now we need to reduce this expression. First, using

(4.1), namely ?B, = m, , we write (A7) as:

M = M(p)+M(n)—m,. (Al4)

Then we combine (A14) with (A13) and rearrange, and

also use (1.11), to obtain the prediction:

[M(n) - MP)], e

=m,—m,=2.[mm, /(27r)%

(A12)

(A15)
=m, —(3md +2.[m,m, —3m")/(27r)%
=0.001389166099 u

This is_an_extremely important relationship relating
the observed difference (7.1) between the neutron and

proton mass M (n)— M(p) = 0.001388449188u solely to
the up and down (and optionally electron) rest masses.
This is useful in a wide array of circumstances, especial-
ly between nuclear isobars (along the diagonal lines of
like-4 which are shown in the Tables here) which by
definition convert into one another via beta decay.
Comparing (A15) with (7.1), we see that:

[M(I’I) - M(p) ]Predicted - [M(n) - M(p )]Observed
=0.001389166099 u —0.001388449188 u
=0.000000716911 u

(A16)
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This is the exact same degree of accuracy, to just over 7
parts in ten million AMU, which we saw in (A12). So
this is yet another relationship matched very closely by
empirical data.

Because of this, we now take (A15) to be a meaningful
relationship, and use this in (A9) to write:

BO(SH)Predictad = ?BOPredicled = 4mu - 2\) myma' /(27”.)7 . (A17)
=0.009102256308 u

As a result, we finally have a theoretical expression for
the binding energy of the triton, totally in terms of the up
and down quark masses. The empirical value
3B, = 0.009105585412 u is shown in Table 2, and doing

the comparison, we have:

? Bopredicea — 1 By = 0.009102256308 2 —0.009105585412 u (A18) [9]

=-0.000003329104u
We see that this result is accurate to just over three parts
in one million AMU!
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