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Abstract

The gravitational energy, momentum, and stress are calculated for the
Robertson-Walker metric. The principle of energy conservation is applied,
in conjunction with the Friedmann equations. Together, they show that the
cosmological constant Λ is non-zero, the curvature index k = 0, and the
acceleration R̈ is positive. It is shown that the gravitational field accounts
for two-thirds of the energy in the Universe.
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1. Introduction

In the standard treatment of cosmology, no attempt is made to directly cal-
culate the energy, momentum, and stress of the gravitational field. The
following calculation derives from the scalar, three-vector theory of gravita-
tion.[1,2] In this theory, displacements in time and space are expressed in the
form

c dt = e0(x)dx0 dr = ei(x)dxi (1)

where eµ = (e0, ei) is a scalar, 3-vector basis. The fundamental interval1 is
given by

ds2 = c2dt2 − dr2 = (e0dx
0)2 − ei · ej dxidxj

= gµνdx
µdxν (2)

where

gµν =


g00 0 0 0
0
0 gij
0

 (3)

is the scalar, 3-vector metric.
The basis eµ(x) varies from point to point according to the formula

∇νeµ = eλQ
λ
µν (4)

This separates into scalar and 3-vector parts

∇νe0 = e0Q
0
0ν (5)

∇νei = ekQ
k
iν (6)

By definitionQk
0ν = Q0

iν ≡ 0. TheQµ
νλ are related to the Christofel coefficients

as follows:

1This interval is invariant under a Lorentz transformation. At any point P , the vector
dr may be projected onto an orthonormal 3-frame: i ·dr, j ·dr, k ·dr. These projections, to-
gether with the time interval dt, are then transformed into new values, which are observed
in a relatively moving 3-frame. No coordinates are involved with this procedure.
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Q0
0λ = Γ0

0λ =
1

2
g00∂λg00 (7)

Qi
j0 = Γij0 =

1

2
gin∂0gnj (8)

Qi
jk = Γijk =

1

2
gin (∂kgjn + ∂jgnk − ∂ngjk) (9)

They comprise the formula

Qµ
νλ = Γµνλ + gµρgληQ

η
[νρ] (10)

where

Qµ
[νλ] ≡ Qµ

νλ −Q
µ
λν (11)

An observer is free to introduce new coordinates {xµ′}. The new coordi-
nates must be at rest with respect to the old. Displacements (1) will then be
invariant, so that the scalar, 3-vector character is preserved. The coordinate
transformations are of the form x0′ = x0′(x0) and xi

′
= xi

′
(xj). In particular,

gµν (3) transforms as a tensor

g0′0′ =
∂x0

∂x0′

∂x0

∂x0′
g00 gi′j′ =

∂xm

∂xi′
∂xn

∂xj′
gmn (12)

The non-zero components of Qµ
[νλ] (11) are

Q0
[0i] = Q0

0i =
1

2
g00∂ig00 Qi

[j0] = Qi
j0 =

1

2
gin∂0gnj (13)

They transform as tensor components

Q0′

0′i′ =
∂xn

∂xi′
Q0

0n Qi′

j′0′ =
∂xi

′

∂xm
∂xn

∂xj′
∂x0

∂x0′
Qm
n0 (14)

This field strength tensor plays a central role in dynamics. It serves to define
the gravitational energy tensor

T (g)
µν =

c4

8πG

{
Qρ

[λµ]Q
λ
[ρν] +QµQν −

1

2
gµνg

ητ (Qρ
[λη]Q

λ
[ρτ ] +QηQτ )

}
(15)

where Qµ = Qρ
[ρµ]. The coefficient is chosen such that T (g)

µν reduces to the
Newtonian stress-energy tensor
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T
(g)
00 =

1

8πG
(∇ψ)2 (16)

T
(g)
0i = 0 (17)

T
(g)
ij =

1

4πG

{
∂iψ ∂jψ −

1

2
δij(∇ψ)2

}
(18)

when

g00 = 1 +
2

c2
ψ (19)

2. Gravitational energy, momentum, and stress

The Robertson-Walker metric is given by [3]

ds2 = (dx0)2 − R2(t)

r2
0(1 + kr2/4r2

0)2

(
dr2 + r2dθ2 + r2 sin2 θ dφ2

)
(20)

where k = −1, 0, or +1. Since g00 = 1, all Q0
0i = 0. This leaves only energy

and stress components in (15)

T
(g)
00 =

c4

16πG
(Qm

n0Q
n
m0 +Q0Q0) (21)

T
(g)
0i = 0 (22)

T
(g)
ij = − c4

16πG
gij (Qm

n0Q
n
m0 +Q0Q0) = −gijT (g)

00 (23)

A straightforward calculation yields

Qm
n0Q

n
m0 = 3

Ṙ2

R2
Q0Q0 = 9

Ṙ2

R2
(24)

where Ṙ is the derivative with respect to x0 = ct. Therefore, the non-zero
components of the mixed energy tensor are

T
(g)0
0 =

3c4

4πG

Ṙ2

R2
T

(g)j
i = −δ ji

3c4

4πG

Ṙ2

R2
(25)
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The stresses are compressive and correspond to an equation of state

pg = ρgc
2 (26)

According to (25), the gravitational energy and pressure are functions of time
alone.

3. Field equations

The gravitational field equations are derived by variation of the action

δ
∫ { c4

16πG

(
gµνRµν − 2Λ

)
+ L(m)

}√
−g d4x = 0 (27)

There are seven field equations, corresponding to the seven variations δgµν =
(δg00, δgij)

R ν
µ −

1

2
δ ν
µ R + Λδ ν

µ = −8πG

c4
T (m)ν
µ (28)

Components R i
0 and T

(m)i
0 do not appear. Substitute the Robertson-Walker

metric (20) and the material energy tensor

T (m)ν
µ =


ρmc

2

−pm 0
0 −pm

−pm

 (29)

in order to obtain the Friedmann equations [3]

3Ṙ2

R2
+

3k

R2
− Λ =

8πG

c4
ρmc

2 (30)

2R̈

R
+
Ṙ2

R2
+

k

R2
− Λ = −8πG

c4
pm (31)

At the present time, the material pressure pm � ρmc
2. It will be ignored for

the remainder of the paper (pm = 0). Equation (31) then becomes

2R̈

R
+
Ṙ2

R2
+

k

R2
− Λ = 0 (32)
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Eliminate k and Ṙ2 from (30) and (32) to find

R̈

R
=

Λ

3
− 4πG

3c2
ρm (33)

It follows that a positive cosmological constant is required, if R̈ > 0.

4. Energy conservation

The differential law of energy and momentum conservation is (appendix)

div T ν
µ = T ν

µ ;ν +Qβ
[αµ]T

α
β = 0 (34)

where T ν
µ ;ν is the covariant derivative. The total density of energy, momen-

tum, and stress is given by

T ν
µ = T (g)ν

µ + T (m)ν
µ + T (Λ)ν

µ (35)

The final term is implied by the cosmological constant in the field equations.
It is yet to be determined, but it must have the form T (Λ)ν

µ = Cδ ν
µ where C

is a constant. The material equations of motion give

T (m)ν
µ ;ν = 0 (36)

so that energy conservation is expressed by

div T ν
0 = T

(g)ν
0 ;ν + T

(Λ)ν
0 ;ν +Qj

[i0](T
(g) + T (m) + T (Λ))ij

= ∂0T
(g)0
0 + Γnn0T

(g)0
0 + Γnn0T

(Λ)0
0 = 0 (37)

Substitute (25) to find

2R̈

R
+
Ṙ2

R2
+

4πG

c4
T

(Λ)0
0 = 0 (38)

Comparison with (32) shows that k = 0 and

T (Λ)ν
µ = − c4

4πG
Λδ ν

µ (39)

This energy tensor corresponds to an equation of state
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pΛ = −ρΛc
2 (40)

In equation (30), set k = 0 and rearrange to find

Λ =
3Ṙ2

R2
− 8πG

c2
ρm (41)

Substitution into (35) gives

T 0
0 =

3c4

4πG

Ṙ2

R2
+ ρmc

2 − c4

4πG
Λ

= 3ρmc
2 (42)

Therefore, the gravitational field (with the cosmological term) accounts for
two-thirds of the energy in the Universe.

5. Concluding remarks

Formula (41) makes possible an evaluation of the constant Λ, in terms of the
mass density and the Hubble ratio

H

c
=
Ṙ

R
(43)

The experimental value of the Hubble constant is stated to be

H0 = 71
km-s−1

Mpc
= 2.3× 10−18 s−1 (44)

For historical reasons, the mass density is expressed in terms of a “critical
density”

ρcr =
3H2

0

8πG
= 9.5× 10−30 g-cm−3 (45)

The mass density, including the missing mass, is estimated to be

ρ0 = 0.27 ρcr = 2.6× 10−30 g-cm−3 (46)

Substitution into (41) yields a positive cosmological constant
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Λ =
8πG

c2

(
3H2

0

8πG
− ρ0

)

=
8πG

c2
(0.73 ρcr) = 1.3× 10−56 cm−2 (47)

According to formula (33), the acceleration will be positive, if

ρm <
c2

4πG
Λ = 1.46 ρcr = 1.4× 10−29 g-cm−3 (48)

Therefore, the acceleration R̈ is now positive and will remain so in the future.
It was apparently negative at times in the distant past. The total pressure is

p = pg + pΛ =
c4

4πG

(3H2

c2
+ Λ

)
(49)

which is positive.

Appendix: Conservation of energy and momentum

The differential law of conservation is derived by summing the invariant ex-
pression eµT

µν dVν∑
δR

eµT
µν dVν =

{
eµ ∂ν(

√
−g T µν) + (∇νeµ)

√
−g T µν

}
d4x (50)

The region δR is closed and infinitesimal, while dVν is the vector

dVν =
√
−g (dx1dx2dx3, dx0dx2dx3, . . .) (51)

By definition, ∇νeµ = eλQ
λ
µν , so that

∑
δR

eµT
µν dVν = eµ

{ 1√
−g

∂ν(
√
−g T µν) +Qµ

λνT
λν
}√
−g d4x (52)

Energy and momentum are conserved, if

divT µν =
1√
−g

∂ν(
√
−g T µν) +Qµ

λνT
λν = 0 (53)

The Qµ
λν are related to the Christofel coefficients Γµλν by the formula
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Qµ
λν = Γµλν + gµαgνβQ

β
[λα] (54)

Therefore, the divergence may be written in the form

divT µν = T µν;ν + gµαQβ
[λα]T

λ
β (55)

where T µν;ν is the (contracted) covariant derivative. Similarly, the divergence
of the mixed energy tensor is

divT ν
µ = T ν

µ ;ν +Qβ
[αµ]T

α
β (56)
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