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Abstract

There are limited studies on the automatic detection of T waves in arrhythmic electrocardiogram (ECG)

signals. This is perhaps because there is no available arrhythmia dataset with annotated T waves. Here,

the annotation of the well-known MIT-BIH arrhythmia database is discussed and provided. Moreover,

a simple fast method for detecting T waves is introduced. There is a need for developing numerically-

efficient algorithms to accommodate the new trend toward battery-driven ECG devices and to analyze

long-term recorded signals in a time-efficient manner. A typical T-wave detection method has been

reduced to a basic approach consisting of two moving averages and dynamic thresholds calibrated by

clinical knowledge. In contrast to complex methods, it can be easily implemented in a digital filter

design.

Introduction

According to the World Health Organization, cardiovascular diseases (CVDs) are the number one cause

of death globally; more people die annually from CVDs than from any other cause. An estimated 17.3

million people died from CVDs in 2008, representing 30% of all global deaths. Of these deaths, an

estimated 7.3 million were due to coronary heart disease and 6.2 million were due to stroke. Thus,

medical researchers have placed significant importance on cardiac health research. This has led to a

strong focus on technological advances with respect to cardiac function assessment. One such research

pathway is the improvement of conventional cardiovascular diagnosis technologies used in hospitals and

clinics.

The most common clinical cardiac test is electrocardiogram (ECG) analysis as it is simple, risk-free,

and inexpensive [1]. The signal of each heart beat contains five main events: P wave, Q wave, R wave, S
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wave, and T-wave (as shown in Figure 1). Each event (wave) has its corresponding peak. The analysis

of ECG signals for monitoring or diagnosis requires the detection of these events. Once an event has

been detected, the corresponding signal can be extracted and analyzed in terms of its amplitude (peak),

morphology, energy and entropy distribution, frequency content, intervals between events, and other more

complex parameters. The detection of R peaks and QRS complexes has been extensively investigated over

the past two decades. Conversely, T-event detection has not been investigated as much as QRS detection,

and the T-event detection problem is still far from being solved [2]. Reliable T-wave detection is more

difficult than QRS complex detection for several reasons, including low amplitudes, low signal-to-noise

ratio (SNR), amplitude and morphology variability, and possible overlapping of the P wave and T wave.

Advances in technology have led to much change in the way we collect, store, and diagnose ECG

signals, especially the use of mobile phones to implement the clinical routine of ECG analysis into everyday

life [3–7]. Thus, in the near future, it is expected that Holter devices, which are traditionally used for

ECG analysis in the clinic, will be replaced by portable battery-operated devices, such as mobile phones,

in the near future [8,9]. The reason for this is that Holter devices do not detect arrhythmias automatically

in real time.

In order to develop fast robust algorithms for detecting arrhythmia in ECG collected by portable, wear-

able, and battery-driven devices, we need fully annotated arrhythmia ECG signals first as a benchmark

for evaluation. Unfortunately, the MIT-BIH Arrhythmia Database [10] includes only the annotations of

R peaks. Therefore, in this study, an initiative has been taken to annotate T waves in the MIT-BIH

Arrhythmia Database [10,11]. Moreover, a new fast robust algorithm consisting of two moving averages

that are calibrated by a clinical knowledge base is presented.

Materials and Methods

Data Used

Several standard ECG databases are available for the evaluation of QRS detection algorithms for ECG

signals. Most of these databases contain annotated files for R peaks but not for T-waves. In this study, the

P and T peaks of the MIT-BIH Arrhythmia Database [10,11] will be annotated, then used for evaluation

for the following reasons:
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1. The MIT-BIH Database contains 30-minute recordings for each patient, which is considerably longer

than the records in many other databases, such as the Common Standards for Electrocardiography

database, which contains 10-second recordings [12].

2. The MIT-BIH Arrhythmia Database contains records of normal ECG signals and records of ECG

signals that are affected by non-stationary effects, low SNR, premature atrial complexes, premature

ventricular complexes, left bundle blocks, and right bundle blocks. This provides an opportunity

to test the robustness of T-wave detection methods.

3. The database contains 23 records (the 100 series) that were chosen at random from a set of more

than 4,000 24-hour Holter tapes, and 25 records (the 200 series) that were selected from the same

set, including a variety of rare and clinically important ECG segments [10]. Several records in the

200 series have abnormal rhythms and QRS morphologies and they suffer from a low SNR. These

issues are expected to present significant difficulties for any ECG signal analysis algorithm [10].

Annotation is a difficult task due to inter-annotator discrepancy, as two annotators will never agree

completely on what and how to annotate the T waves in each record. However, Figures 2, 3, and 4 demon-

strate a preliminary annotation of T waves for different beats in the MIT-BIH Arrhythmia Database.

The annotation file of P and T waves can be downloaded from http://www.elgendi.net/databases.htm.

T-waves Detection Algorithm

In this study, a fast robust knowledge-based T-waves detection algorithm will be discussed and evaluated.

The algorithm is based on the framework proposed by Elgendi for detecting QRS complexes in ECG

signals [13, 14], for detecting systolic waves in photoplethysmogram signals [15], and detecting a waves

in the acceleration photoplethysmogram (PPG) signals [16–19]. The same approach will be used here

to detect T waves. The method consists of three main stages: pre-processing (bandpass filtering and

squaring), feature extraction (generating potential blocks using two moving averages), and classification

(thresholding). The structure of the algorithm is given in Figure 5.

Bandpass Filter

Based on Sahambi et al. [20] and our investigation shown in Figure 6, most of the energy of T waves

lies below 10 Hz. Thus, a zero-phase second-order Butterworth filter, with bandpass 0.5–10 Hz, is
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implemented to remove the baseline wander and high frequencies that do not contribute to the T waves.

The output of the zero-phase Butterworth filter applied to the PPG signal will produce a filtered signal

x[n].

QRS Removal

To make the T waves the dominant feature of the signal, the QRS complex is removed. Therefore, R

peaks must be detected before applying the T-waves algorithm. Fortunately, R peaks are annotated in

the MIT-BIH Arrhythmia Database. Removing the QRS complex duration is performed by setting the

signal to zero for the duration of the QRS complex. As the duration of the QRS complex varies with

the heart beat type, a clinical database is required to remove the QRS according to its type. Roskamm

and Csapo divided the ECG into four categories: compensation, reset, interpolation, and reentry [21], as

shown in Figure 7. Based on their analysis, a rule-based knowledge representation of different types of

QRS complexes is established for QRS removal; however, an extra category is added to capture complex

arrhythmias (repetitive, bigeminy, or trigeminy), as demonstrated in Figure 8. The output of this stage

will produce signal y[n].

During the QRS removal, the RR interval that satisfied each category is saved and referred to as RRi,

where i is the category type (compensation, reset, interpolation, reentry, and complex arrhythmias). The

normalized RR intervals average in each category is calculated as Mi = (
∑l

j=1 RRi,j)/fs, where l is the

number of RR intervals saved in category i, and fs is the sampling frequency (a frequency of one beat

per second).

Generating Blocks of Interest

Blocks of interest are generated using two event-related moving averages that demarcate the areas of T

waves, which was first introduced in Ref [22]. The particular method used to generate blocks of interest

has been mathematically shown to detect a waves [17], QRS complexes [13], and systolic waves in PPG

signals [15]. In this procedure, the first moving average (MApeak) is used to emphasize the peak of the

T-wave area, as the dotted signal shown in Figure 9, and is given by

MApeak[n] =
1

W1
(y[n− (W1 − 1)/2] + · · · + y[n] + · · · + y[n + (W1 − 1)/2]), (1)
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where W1 represents the window size of approximately the shortesT-wave (peak) duration in ECG signals.

The initial value for W1 of 70 ms is determined by Trahanias [23]. However, as the ECG signals may

contain different arrhythmias the value of W1 will be calculated relative to the most frequent RR intervals

in all five categories (k = max
i

Mi). Then, the value of W1 = (70 ms) ∗ k, and the result is rounded to

the nearest odd integer. The second moving average (MATwave) is used to emphasise the T-wave area to

be used as a threshold for the first moving average, shown as a dashed signal Figure 9, and is given by

MATwave[n] =
1

W2
(y[n− (W2 − 1)/2] + · · · + y[n] + · · · + y[n + (W2 − 1)/2]), (2)

where W2 represents the window size of approximately the smallest T-wave duration. The initial value

for W2 of 140 ms is determined by Laguna et al. [24]. However, as the ECG signals may contain different

arrhythmias, the value of W2 will be calculated relative to the most frequent RR intervals in all five

categories (k). Then, the value of W2 = (140 ms) ∗ k, and the result is rounded to the nearest odd

integer.

Thresholding

In this stage, the blocks of interest are generated by comparing the MApeak signal with MATwave. Many

blocks of interest will be generated, some of which will contain the T wave and others will contain P

waves, U waves, and noise. Therefore, the next step is to reject blocks that result from noise. Rejection

is based on the relative positions of P and T waves to R peaks and anticipated peak width.

To determine whether the detected blocks contain T waves or not, the number of blocks in each

consecutive RR interval is counted. A threshold based on the distance of the maximum point within a

block to the R peak is applied to distinguish P waves from T waves and noise, as shown in Figure 10.

The search regions for T waves in terms of time occurrence with respect to the current R peak (Ri) and

the next R peak (Ri+1) are calculated as

RiTmin = Dmin ∗ RiRi+1, (3)

RiTmax = Dmax ∗ RiRi+1, (4)

where RiTmin represents the minimum dynamic interval between the T wave and the current R peak,
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RiTmax represents the maximum dynamic interval between the T wave and the current R peak, while

RiRi+1 represents the interval between Ri and Ri+1. The exact values for Dmin and Dmax are 170 ms

and 800 ms, respectively, as determined by Schimpf et al. [25] to represent the minimum RT durations

for subjects with arrhythmia and maximum RT duration for healthy subjects.

After applying the relative-position thresholds, there are three possibilities for the number of detected

blocks within the area of interest:

1. Zero: if there is no block detected, it means the algorithm failed to detect a T wave in the current

RR interval.

2. One: if there is one detected block, it means the algorithm succeeds in detecting T wave, P and

T waves are most likely merged within one block, which is marked as a circle with a black asterisk

inside (see Figures 11 (i, j)).

3. More than one: if there are multiple detected blocks, it means one of the detected blocks contains

T waves. However, in this work the nearest block to the current R peak is considered a T wave.

All detected blocks go through a durational threshold to reject the undesired blocks called THR1,

which rejects the blocks that contain P wave, U wave, and noise. By applying the THR1 threshold, the

accepted blocks will contain T peaks only,

THR1 = W1. (5)

As discussed, the threshold THR1 corresponds to the anticipated T-wave duration. If a block is wider

than or equal to THR1, it is classified as a T wave. If not, it will be classified as noise. The last stage

is to find the maximum absolute value within each block to detect the peak of T wave. Consecutive R

peaks are shown in Figure 9 to demonstrate the idea of using two moving averages to generate blocks of

interest. Not all of the blocks contain potential T waves; some blocks are caused by noise and need to be

eliminated. Blocks that are smaller than the expected width for the T-wave duration are rejected. The

rejected blocks are considered to be noisy blocks, and the accepted blocks are considered to contain a T

wave. The detected T-wave peaks are compared to the annotated T-wave peaks to determine whether

they were detected correctly. The search range for the true T-wave peak is fixed to ±50 ms for both

databases, to ensure consistency of comparison.



7

Results

The algorithm was evaluated using the MIT-BIH database. The T waves were detected successfully even

when the P and T waves are merged in arrhythmia ECG signals that are affected by: high-frequency noise,

baseline wander, normal sinus rhythm (NSR), left bundle branch block (LBBB), right bundle branch block

(RBBB), premature ventricular contraction (PVC), and premature atrial contraction (PAC). All of the

reasons for detection failure are described below. High-frequency noise results from the instrumentation

amplifiers, recording system, and ambient electromagnetic signals received by the cables. The signal

shown in Figure 11 (a) has been corrupted by power-line interference at 60 Hz and its harmonics and

other high frequencies. It can be seen that the proposed algorithm is robust to noise. Moreover, the

proposed algorithm is not sensitive to baseline wander and detected the T waves correctly, as shown in

Figure 11 (b).

NSR is a normal ECG cycle; it is initiated by the sinoatrial node and consists of a P wave followed,

after a brief pause, by a QRS complex and then a T wave [26]. The proposed algorithm correctly detected

T waves in three types of normal beats: 1) NSR without U waves (record 100 of the MIT-BIH database),

as shown in Figure 11 (c), 2) NSR with U waves (record 103), as shown Figure 11 (d), and 3) NSR

with negative polarization (record 108), as shown Figure 11 (e). LBBB results from conduction delays or

blocks at any site in the intraventricular conduction system, including the main LBBB and the bundle of

His. The result of an LBBB is extensive reorganization of the activation pattern of the left ventricles [26].

The proposed algorithms successfully detected normal and merged P and T waves in two types of LBBBs:

1) LBBB beats with merged P and T waves (record 109), as shown in Figure 11 (f) and 2) LBBB beats

with normal T waves (record 111), as shown in Figure 11 (g). However, RBBB is a result of a conduction

delay in a portion of the right-sided intra-ventricular conduction system. The delay can occur in the

main RBBB itself, in the bundle of His, or in the distal right ventricular conduction system. RBBBs may

be caused by a minor trauma, such as right ventricular catheterization [26]. As shown in Figure 11 (h),

the proposed algorithms succeeded in detecting the T waves in ECG signals of RBBB (record 118).

PVCs are characterized by the premature occurrence of a QRS complex that is abnormal in shape

and that has a longer duration than normal QRS complexes, generally exceeding 120 ms. The T wave

is commonly large and opposite in direction to the major deflection of the QRS. The QRS complex is

generally not preceded by a P wave, but it can be preceded by a non-conducted sinus P wave occurring
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at the expected time [26]. In Figure 11 (i), a special case of PVC is shown, called bigeminy, where

the premature ventricular beats occur after every normal beat in an alternating pattern. The proposed

algorithm succeeded in detecting the T waves in the normal beats and the T waves in the premature

ventricular beats (record 200). PACs are among the most common causes of irregular pulses and can

originate from any area in the heart [26]. The impulse is discharged prematurely by an irritable focus in

the atria giving rise to a distorted P wave, usually superimposed on the preceding T wave. As shown in

Figure 11 (j), the proposed algorithms detected the merged T waves in PACs (record 209).

As illustrated in Figure 11, the proposed method successfully detected T waves in ECG signals with a

low SNR, baseline wander, and various arrhythmias. The performance of the T-wave detection algorithms

is evaluated using two statistical measures: SE = TP/(TP + FN) and +P = TP/(TP + FP), where TP

is the number of true positives (T wave detected as T wave), FN is the number of false negatives (T wave

has not been detected), and FP is the number of false positives (non-T wave detected as T wave). The

sensitivity SE reports the percentage of true beats that were correctly detected by the algorithm. The

positive predictivity +P reports the percentage of beat detections that were true beats.

The abnormal heart rhythms caused a large number of FNs compared to the FPs. Table 1 shows the

result of T-wave detection over 48 records of the MIT-BIH database. FNs are mainly caused by noise and

PVC, as in record 219, and atrial fibrillation, as in record 202. The algorithm achieved a sensitivity of

99.86% and a positive predictivity of 99.65%, which are promising results for handling the non-stationary

effects, low SNR, PACs, PVCs, LBBBs, and RBBBs in ECG signals.

Comparison of Performance on the QT Database

As the MIT-BIH is self-annotated, the validation of the detector must be done using a standard annotated

database. For this purpose the easily-availabe QT database [27] is used. This database was annotated

by two cardiologists and includes different morphologies such as ST change, supraventricular arrhythmia,

normal sinus rhythm, sudden death, and long term. The annotation file of the QT database includes the

T peak, onset, and offset. In this work, the T peaks of the whole QT database are used for validation.

The detection performance on the QT database obtained by the proposed T-waves detector record by

record performance is shown in Table 2. The overall comparison of our results with the existing T-wave

detection algorithms on the QT database is demonstrated in Table 3. It summarizes the performances

in terms of number of beats, methodology, SE, and +P. Mart́ınez et al. [28] and Laguna et al. [29]
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scored slightly higher overall performances (average of SE and +P) than the proposed algorithm. This is

because they used only 3,542 heart beats from the QT database, and therefore, their algorithms are not

superior in terms of performance. It is clear that the proposed algorithm succeeds in handling long ECG

recordings with high performance over 111,201 heart beats compared to the well-known publications for

T-wave detection. Moreover, the proposed T-wave detector has not been re-tuned over any databases,

thus the results are promising, and the algorithm can detect T peaks over different databases, sampling

frequencies, types of arrhythmias, and noise.

Limitations of Study and Future Work

It is important to note that the MIT-BIH database is annotated by one annotator as the results are

likely influenced by this. Thus, a second annotation is required; however, annotating P and T waves is

a difficult task due to inter-annotator discrepancy, as the two annotators will never agree completely on

what and how to annotate the P and T waves in each record. The preliminary results are promising,

especially after testing the algorithm on the QT database; however, more testing is necessary to generalize

the findings.

One of the next steps regarding the results of this study is to detect arrhythmic ECG beats using

the RT or ST interval as a main feature. In addition, the detection of P waves based on the accurate

detection of T-wave peaks needs to be examined. Moreover, perhaps, an optimization over the clinical

parameters after splitting the databases into a training set and test set may improve the detection rate

of the T waves.

Technically, exploring the event-related moving average methodology for detecting events in ECG

signals is promising in terms of computational complexity and efficiency. This can be further improved

by investigating other bandpass filters with different orders and also by developing fast-moving average

techniques for real-time analysis and mobile phone applications.

Conclusions

There is a limitation when evaluating T-wave detection algorithms as finding datasets with annotated

T waves is quite difficult. Consequently, comparing the existing algorithms becomes even more difficult.
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Therefore, annotation of T waves is discussed and provided. The use of two moving averages is simple

and computationally efficient for mobile electronic health tools, such as cell phones and telemedicine tech-

nologies. The assessment of the T detector has been reliably done over the existing standard databases

(QT and MIT-BIH), which contain different beat types and morphologies found in ECG signals. The

developed algorithm was evaluated on all ECG recordings in the MIT-BIH database, 48 self-annotated

records containing a total of 109,985 heart beats. It achieved a sensitivity of 95% and a positive predictiv-

ity of 98.59% over the MIT-BIH ECG signals, which contain low SNR, baseline wander, paced beats, and

various arrhythmias. Interestingly, the proposed algorithm succeeds to score high overall performance

(accuracy of 96.7%) over the QT database (111,201 heart beats). Overall, simplicity and efficiency are

required in developing T detection algorithms for processing long-term recordings and large databases as

well as for expanding our telemedicine capabilities in the near future.
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Table 1. T-wave peak detection performance over the annotated MIT-BIH arrhythmia
database [10,11]. To evaluate the performance of the T-wave detection algorithm, two statistical
measures are used: SE = TP/(TP + FN) and +P = TP/(TP + FP), where TP is the number of true
positives (T wave detected as T wave), FN is the number of false negatives (T wave has not been
detected), and FP is the number of false positives (non-T wave detected as T wave).

Record
No9of9
beats

TP FP FN SE (%) +P (%)

100 2274 2272 0 0 100.00 100.00

101 1866 1863 1 4 99.79 99.95

102 2187 2185 0 0 100.00 100.00

103 2084 2082 0 4 99.81 100.00

104 2229 2227 0 1 99.96 100.00

105 2602 2586 0 2 99.92 100.00

106 2026 2024 0 56 97.23 100.00

107 2136 2134 0 3 99.86 100.00

108 1763 1757 0 13 99.26 100.00

109 2533 2530 0 0 100.00 100.00

111 2123 2121 0 16 99.25 100.00

112 2539 2537 0 0 100.00 100.00

113 1794 1792 0 0 100.00 100.00

114 1890 1885 0 69 96.34 100.00

115 1953 1951 0 19 99.03 100.00

116 2395 2392 0 2 99.92 100.00

117 1535 1533 0 0 100.00 100.00

118 2278 2276 0 4 99.82 100.00

119 1988 1986 0 4 99.80 100.00

121 1863 1860 0 46 97.53 100.00

122 2476 2474 0 0 100.00 100.00

123 1519 1517 0 0 100.00 100.00

124 1619 1617 0 7 99.57 100.00

200 2601 2599 0 9 99.65 100.00

201 1949 1947 0 57 97.07 100.00

202 2138 2134 0 113 94.70 100.00

203 2988 2965 0 1 99.97 100.00

205 2656 2556 0 0 100.00 100.00

207 2324 2139 0 9 99.58 100.00

208 2953 2949 0 0 100.00 100.00

209 3006 3003 0 5 99.83 100.00

210 2652 2637 0 0 100.00 100.00

212 2748 2746 0 0 100.00 100.00

213 3250 3247 0 0 100.00 100.00

214 2262 2184 0 0 100.00 100.00

215 3362 3354 0 0 100.00 100.00

217 2208 2205 0 3 99.86 100.00

219 2154 2152 0 144 93.31 100.00

220 2048 2046 0 2 99.90 100.00

221 2427 2424 0 0 100.00 100.00

222 2485 2472 0 33 98.67 100.00

223 2604 2601 0 1 99.96 100.00

228 2060 2056 0 52 97.47 100.00

230 2256 2254 0 39 98.27 100.00

231 1571 1569 0 0 100.00 100.00

232 1783 1781 0 1 99.94 100.00

233 3077 2914 0 1 99.97 100.00

234 2751 2749 0 0 100.00 100.00

109985 109284 1 720 99.28 100.00
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Table 2. T-wave peak detection performance over the annotated QT database [27]. To
evaluate the performance of the T-wave detection algorithm, two statistical measures are used:
SE = TP/(TP + FN) and +P = TP/(TP + FP), where TP is the number of true positives (T wave
detected as T wave), FN is the number of false negatives (T wave has not been detected), and FP is the
number of false positives (non-T wave detected as T wave).

Record
No5of5
beats

TP FP FN SE (%) +P (%)

sel100 1134 1132 0 1 99.91 100.00
sel102 1088 1086 0 2 99.82 100.00
sel103 1048 1046 4 5 99.52 99.62
sel104 1109 1107 9 10 99.10 99.19
sel114 867 864 1 7 99.19 99.88
sel116 1186 1184 0 25 97.89 100.00
sel117 766 764 0 1 99.87 100.00
sel123 756 754 0 0 100.00 100.00
sel213 1641 1639 1 2 99.88 99.94
sel221 1247 1244 0 116 90.68 100.00
sel223 1309 1307 0 6 99.54 100.00
sel230 1077 1075 115 200 81.41 88.40
sel231 732 730 0 1 99.86 100.00
sel232 866 864 18 19 97.80 97.92
sel233 1532 1265 13 112 91.79 98.97
sel301 1352 1348 0 0 100.00 100.00
sel302 1501 1498 1 2 99.87 99.93
sel306 1040 1038 0 30 97.11 100.00
sel307 853 851 0 1 99.88 100.00
sel308 1294 1292 19 21 98.38 98.53
sel310 2012 2008 0 3 99.85 100.00
sel803 1026 1024 0 84 91.80 100.00
sel808 903 901 24 29 96.78 97.32
sel811 704 702 0 1 99.86 100.00
sel820 1159 1157 1 3 99.74 99.91
sel821 1557 1555 2 3 99.81 99.87
sel840 1180 1178 1 2 99.83 99.92
sel847 803 799 0 3 99.62 100.00
sel853 1113 1110 6 8 99.28 99.46
sel871 917 915 2 3 99.67 99.78
sel872 990 988 0 2 99.80 100.00
sel873 859 857 0 1 99.88 100.00
sel883 892 890 30 36 95.96 96.61
sel891 1267 1265 0 1 99.92 100.00

sel16265 1031 1029 10 11 98.93 99.03
sel16272 851 849 0 1 99.88 100.00
sel16273 1112 1110 4 5 99.55 99.64
sel16420 1063 1061 0 1 99.91 100.00
sel16483 1087 1085 1 2 99.82 99.91
sel16539 922 920 0 1 99.89 100.00
sel16773 1008 1006 168 328 67.43 80.17
sel16786 925 923 0 1 99.89 100.00
sel16795 761 759 0 1 99.87 100.00
sel17453 1047 1045 0 1 99.90 100.00
sele0104 804 802 0 1 99.88 100.00
sele0106 897 894 0 1 99.89 100.00
sele0107 823 810 25 34 95.81 96.88
sele0110 872 870 1 3 99.66 99.88
sele0111 908 906 1 1 99.89 99.89
sele0112 684 682 121 189 72.33 80.33
sele0114 698 696 23 28 95.98 96.68
sele0116 560 557 1 3 99.46 99.82
sele0121 1434 1432 2 2 99.86 99.86
sele0122 1414 1412 0 1 99.93 100.00
sele0124 1121 1119 4 5 99.55 99.64
sele0126 945 943 83 793 16.00 64.53
sele0129 672 670 40 55 91.80 93.90
sele0133 840 838 0 1 99.88 100.00
sele0136 810 808 3 4 99.51 99.63
sele0166 813 811 0 1 99.88 100.00
sele0170 897 895 0 1 99.89 100.00
sele0203 1246 1244 0 4 99.68 100.00
sele0210 1063 1061 0 1 99.91 100.00
sele0211 1575 1573 0 1 99.94 100.00
sele0303 1045 1043 1 2 99.81 99.90
sele0405 1216 1214 0 57 95.30 100.00
sele0406 959 957 0 1 99.90 100.00
sele0409 1737 1735 0 1 99.94 100.00
sele0411 1202 1200 0 2 99.83 100.00
sele0509 1028 1026 0 39 96.20 100.00
sele0603 869 867 30 84 90.33 96.32
sele0604 1031 1029 0 2 99.81 100.00
sele0606 1442 1440 0 4 99.72 100.00
sele0607 1184 1182 0 0 100.00 100.00
sele0609 1127 1125 3 4 99.64 99.73
sele0612 751 749 0 1 99.87 100.00
sele0704 1094 1092 0 214 80.40 100.00

sel30 1018 1014 0 3 99.70 100.00
sel31 1087 1084 45 385 64.52 93.96
sel32 1196 1194 0 3 99.75 100.00
sel33 527 525 0 4 99.24 100.00
sel34 897 895 0 0 100.00 100.00
sel35 882 880 0 384 56.36 100.00
sel36 948 946 135 227 76.03 84.21
sel37 682 679 0 511 24.74 100.00
sel38 1563 1561 0 0 100.00 100.00
sel40 1171 1169 0 9 99.23 100.00
sel41 1069 1067 0 24 97.75 100.00
sel42 1366 1363 2 24 98.24 99.85
sel43 1247 1245 0 63 94.94 100.00
sel44 1430 1427 0 46 96.78 100.00
sel45 1337 1335 0 57 95.73 100.00
sel46 971 968 66 96 90.09 92.97
sel47 856 854 0 98 88.52 100.00
sel48 886 884 0 88 90.05 100.00
sel49 1398 1396 0 4 99.71 100.00
sel50 833 831 0 4 99.52 100.00
sel51 661 659 0 32 95.14 100.00
sel51 749 747 0 29 96.12 100.00
sel52 1411 1409 0 1 99.93 100.00

sel17152 1628 1626 0 0 100.00 100.00
sel14046 1260 1258 0 0 100.00 100.00
sel14157 1081 1079 0 9 99.17 100.00
sel14172 663 661 0 73 88.96 100.00
sel15814 1036 1034 0 34 96.71 100.00

111201 110696 1016 4840 95.00 98.59
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Table 3. T-waves detection performance comparison on the QT database [27]. (N/R: not
reported).

Publication Method # beats SE (%) +P (%)
This work Blocks of Interest 111,201 95.0 98.59

Mart́ınez et al. [28] Wavelet 3,542 99.77 97.79

Laguna et al. [29] Low-pass-differentiator 3,542 99.0 97.74

Vila et al. [30] Modelling 3,542 96.2 N/R
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Figure 1. Main Events in ECG signals. A typical ECG trace of the cardiac cycle (one heart beat)
consists of a P wave, Q wave, R wave, S wave, and T wave.
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Figure 2. Annotation of P and T waves in normal beats. Here, + represents the P wave and *
represents the T wave.
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Figure 3. Annotation of Pand T waves in irregular heart beats. Each row contains three
different morphologies for a certain type of arrhythmia: (a) premature ventricular beats, (b) premature
atrial beats, (c) paced beats, (d) left bundle branch block beats, (e) right bundle branch block beats.
Here, + represents the P wave and * represents the T wave, while the green circle with asterisk
represents merged P and T waves.
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Figure 4. Annotation of P and T waves in unusual beats. Each row contains two different
morphologies for a certain type of unusual beats: (a) unclassified beats, (b) nodal premature beat, (c)
nodal escape beat, (d) fusion of ventricular and normal beat, (e) fusion of paced and normal beat. Here,
+ represents the P wave and * represents the T wave, while the green circle with asterisk represents
merged P and T waves.
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Figure 5. Structure of the T waves detection algorithm. The algorithm consists of four stages:
bandpass filter, QRS removal (based on clinical knowledge), feature extraction (generating blocks of
interest), and thresholding.
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Figure 9. Demonstrating the effectiveness of using two moving averages to detect T
waves. The dotted line is the first moving average, while the dashed line is the second moving average.
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Figure 10. Search regions for T waves in terms of time occurrence with respect to the
current R peak (Ri) and the next R peak (Ri+1). Where RiTmin represents the minimum
interval between the T wave and current R peak and RiTmax represents the maximum interval between
the T wave and the current R peak.
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Figure 11. Demonstrating the performance of the proposed T-wave detection algorithm
on the MIT-BIH Database. The algorithm succeeds to detect T-wave peaks in ECG signals that
contain: (a) high-frequency noise, (b) baseline wander, (c) normal sinus rhythm without U waves, (d)
normal sinus rhythm with U waves, (e) normal sinus rhythm with negative polarization, (f) LBBB
beats with merged P and T waves, (g) LBBB beats, (h) RBBB beats from record 118, (i) PVC beats
from record 200, (j) PAC beats from record 209. Here, the empty red circle represents the detected T
wave while the a circle with a black asterisk represents detection of merged P and T waves.


