Title: Fermat's Last Theorem

Author: Barry Foster

Abstract: Recall the theorem states that the equation $a^n + b^n = c^n$ cannot exist if all quantities are positive integers and n>2. Fermat maintained he had a short proof but it has never been found, nor has a short proof been supplied by anyone since. This attempt uses simple mathematics and methods reminiscent of those taught in English grammar schools in the 1950's.

<u>Fermat's Last Theorem</u> <u>"Hanson Boys' G. S. Proof"</u>

Statement of the Theorem

Fermat's Last Theorem (FLT) states that: positive integers a, b, and c cannot be found satisfying the equation $a^n + b^n = c^n$ (T) for any integer value of n greater than 2.

Proof

Assume that all common factors have been cancelled, noting that all or none of $\{a,b,c\}$ have a common factor. (A)

Assume the theorem is false and n is an integer >2 such that positive integers $\{a,b,c\}$ **do** exist satisfying the equation:

$$a^n + b^n = c^n$$

Clearly $c > \{a,b\}$ and $a \neq b$ as this would require $c = (2)^{1/n}a$ and c must be irrational.

Assume a<b, thus a<b<c.

We will now examine the conclusions if n>2.

Let
$$a + h = b + i = c$$
 {h,i integers, $h > i$, $h > 1$ }

We can rewrite **(T)** in terms of a and b in the following 2 different ways:

(i) Using the Binomial Theorem

 $\begin{aligned} a^{n} + b^{n} &= (a + h)^{n} = (b + i)^{n} = c^{n} \\ a^{n} &= (b + i)^{n} - b^{n} = nb^{n-1}i + n(n-1)/(2!)b^{n-2}i^{2} + \dots + i^{n} \\ b^{n} &= (a + h)^{n} - a^{n} = na^{n-1}h + n(n-1)/(2!)a^{n-2}h^{2} + \dots + h^{n} \end{aligned}$

(ii) By Factoring

$$a^{n} = c^{n} - b^{n}$$

= (c - b)(cⁿ⁻¹ + cⁿ⁻² b + + bⁿ⁻¹)
= i(cⁿ⁻¹ + cⁿ⁻² b + + bⁿ⁻¹)
bⁿ = cⁿ - aⁿ
= (c - a)(cⁿ⁻¹ + cⁿ⁻² a + + aⁿ⁻¹)
= h(cⁿ⁻¹ + cⁿ⁻² a + + aⁿ⁻¹)

let b = Fx {F,x integers>0, F = product of primes not in h, x = product of primes in h} and a = Gy {G,y integers>0, G = product of primes not in i, y = product of primes in i}

∴ x>y

(i) can now be written

$$\begin{array}{l} (Fx)^n = na^{n-1}h + n(n-1)/(2!)a^{n-2}h^2 + \dots + h^n \\ (Gy)^n = nb^{n-1}i + n(n-1)/(2!)b^{n-2}i^2 + \dots + i^n \end{array}$$

\therefore h divides xⁿ, h <= xⁿ; i divides yⁿ, i <= yⁿ

Two cases must be considered:

(I) the primes of n are missing from x,y

(II) the primes of n are contained in x or y (not both : of (A))

Case (I)

In the equation containing $(Fx)^n$, $h = x^n$, otherwise, after cancelling h from each term on the RHS, with x's on the left, x will still occur in the h's in every term on the RHS except the first, and must therefore exist in the first term as a factor of a, violating **(A)**.

Similarly $\mathbf{i} = \mathbf{y}^{\mathbf{n}}$.

(ii) can now be written

	$(Gy)^{n} = y^{n}(c^{n-1} + c^{n-2}b + \dots b^{n-1})$
	$G^{n} = (c^{n-1} + c^{n-2}b + \dots b^{n-1})$
	$(Fx)^{n} = x^{n}(c^{n-1} + c^{n-2}a + \dots a^{n-1})$
	$F^{n} = (c^{n-1} + c^{n-2}a + \dots a^{n-1})$
.:.	$G>F$ but $Fx>Gy {:: Fx=b, Gy=a}$ (B)
and since	a + h = b + i = c
	$Gy + x^n = Fx + y^n = c$
	$Fx - Gy = x^{n} - y^{n} = (x-y)(x^{n-1} + x^{n-2}y \dots xy^{n-2} + y^{n-1})$
	= $R(x-y) \{R = (x^{n-1} + x^{n-2}y \dots xy^{n-2} + y^{n-1}) \{x, y \text{ coprime } : of (A)\}$
i.e.	Fx - Gy = R(x-y) (C)
	$Fx - Gy = Fx - (F + w)y = F(x - y) - wy = R(x-y)$ {w integer >0}
and	G>F>R
let then	$F = (R + u), G = (R + v) $ {u,v integers, u>v>0} (R + u)x - (R + v)y = R(x-y)
	ux = vy

further, because $\{u,v\}$ are supposedly positive integers and (x,y) are coprime this requires:

u=y, v=x.

This is an impossibility because u>v and y<x.

this proves FLT for Case (I).

Case (II)

We will consider the factors of n to be contained in b but the logic is similar.

Fx can now be written $Fx = Fpn^t$ {p,t positive integers, t>0}.

Considerations of the first term on the RHS similar to those for Case (I) requires $h = p^n n^{t-1}$.

(T) can thus be written:

 $a^{n} + (Fpn^{t})^{n} = (a + p^{n}n^{t-1})^{n}$ $Fpn^{t} = a((1 + (p^{n}n^{t-1})/a)^{n} - 1)^{(1/n)}$

This requires that b (=Fpn^t), is a non-integer because $(p^n n^{t-1})/a$ is a non-integer \because of (A).

Thus Case (II) also proves FLT.