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Abstract: Recall the theorem states that the equation an + bn  = cn  
cannot exist if all quantities are positive integers and n>2.
Fermat maintained he had a short proof but it has never been 
found, nor has a short proof been supplied by anyone since.
This attempt uses simple mathematics and methods reminiscent of 
those taught in English grammar schools in the 1950's. 



Fermat's Last Theorem 
“Hanson Boys' G. S. Proof”

Statement of the Theorem
Fermat's Last Theorem (FLT) states that:
positive integers  a, b, and c cannot be found satisfying the equation 

                                          an  + bn  =  cn       (T)
for any integer value of n greater than 2.  

Proof
Assume that all common factors have been cancelled, noting that all or none of {a,b,c} 
have a common factor.    (A)

Assume the theorem is false and n is an integer >2 such that positive integers {a,b,c} 
do exist satisfying the equation:

                                        an  +  bn  =  cn     

Clearly c>{a,b} and a ≠ b as this would require c = (2)1/na and c must be irrational.

Assume a<b, thus a<b<c.

We will now examine the conclusions if n>2.

Let a + h  =  b + i  = c {h,i integers, h>i, h>1}

We can rewrite (T) in terms of  a and b in the following 2 different ways:

(i)   Using the Binomial Theorem

an + bn  =  (a + h)n  = (b + i)n = cn

an = (b + i)n- bn  = nbn-1i + n(n-1)/(2!)bn-2i2 +…...+ in       

bn = (a + h)n - an = nan-1h + n(n-1)/(2!)an-2h2 +…...+ hn    

(ii)   By Factoring

an 
= cn - bn 

       = (c – b)(cn-1 + cn-2 b + .... +  bn-1)

     = i(cn-1 + cn-2 b + .... + bn-1)

bn  = cn – an

         = (c – a)(cn-1 + cn-2 a + .... +  an-1)

      = h(cn-1 + cn-2 a + .... + an-1)

let b  =  Fx {F,x  integers>0,  F = product of primes not in h, 
     x = product of primes in h}

and a  =  Gy {G,y  integers>0,  G = product of primes not in i, 
     y = product of primes in i}

∴ x>y



(i) can now be written

(Fx)n = nan-1h + n(n-1)/(2!)an-2h2 + …... + hn   
(Gy)n = nbn-1i + n(n-1)/(2!)bn-2i2 + …... + in   

∴ h divides xn, h <= xn ; i divides yn,  i <= yn 

Two cases must be considered:
(I) the primes of n are missing from x,y

(II) the primes of n are contained in x or y (not both ∵ of (A))

Case (I)
In the equation containing (Fx)n, h = xn , otherwise, after cancelling h from each term 
on the RHS, with x's on the left, x will still occur in the h's in every term on the RHS 
except the first, and must therefore exist in the first term as a factor of a, violating  
(A). 

Similarly i = yn .

(ii) can now be written
  (Gy)n = yn(cn-1 + cn-2b + ....  bn-1)

Gn = (cn-1 + cn-2b + ....  bn-1)

(Fx)n = xn(cn-1 + cn-2a + ....  an-1)

Fn = (cn-1 + cn-2a + ....  an-1)

∴  G>F but Fx>Gy {∵ Fx=b, Gy=a} (B)

and since a + h  =  b + i  = c 

Gy + xn   =  Fx + yn  =  c
Fx - Gy  = xn - yn  =  (x-y)(xn-1 + xn-2y .... xyn-2 + yn-1)  

            =  R(x-y) {R = (xn-1 + xn-2y ....  xyn-2 + yn-1)  {x,y coprime ∵ of (A)}
i.e. Fx - Gy  = R(x-y) (C)

∴ Fx – Gy = Fx – (F+ w)y = F(x – y) - wy = R(x-y) {w integer >0}
and G>F>R

let F = (R + u), G = (R + v)  {u,v integers, u>v>0}
then (R + u)x - (R + v)y  =  R(x-y)

∴ ux = vy

further, because {u,v} are supposedly positive integers and (x,y) are coprime 
this requires:

u=y, v=x.
This is an impossibility because u>v and y<x.

∴ this proves FLT for Case (I).



Case (II)
We will consider the factors of n to be contained in b but the logic is similar. 

Fx can now be written Fx = Fpnt {p,t positive integers, t>0}.

Considerations of the first term on the RHS similar to those for Case (I) requires 
h = pnnt-1. 

 (T) can thus be written:

an  + (Fpnt)n  =  (a+ pnnt-1)n

Fpnt = a( (1 + (pnnt-1)/a)n – 1 )(1/n) 

This requires that b (=Fpnt), is a non-integer because (pnnt-1)/a is a non-integer  ∵ of 
(A).

Thus Case (II) also proves FLT.


