Title: Fermat's Last Theorem

Author: Barry Foster

Abstract: Recall the theorem states that the equation $a^n + b^n = c^n$

cannot exist if all quantities are positive integers and n>2. Fermat maintained he had a short proof but it has never been found, nor has a short proof been supplied by anyone since.

This attempt uses simple mathematics and methods reminiscent of

those taught in English grammar schools in the 1950's.

Fermat's Last Theorem "Hanson Boys' G. S. Proof"

Statement of the Theorem

Fermat's Last Theorem **(FLT)** states that positive integers {a,b,c} cannot be found satisfying the equation:

$$a^n + b^n = c^n \qquad (T)$$

for any integer value of n greater than 2.

Proof

Assume n is prime.

If n is not prime, say $n=p_1p_2...p_r$, where the p_i are primes, not necessarily all different, we may rename p_1 to n, and $\{a, b, c\}$ then become integers raised to the power $(p_2...p_r)$.

To clarify, the equation:

becomes
$$u^{p1p2...pr}_{+v} + v^{p1p2...pr}_{=w} = v^{p1p2...pr}_{=w} \{u,v,w \text{ positive integers; } u < v < w\}$$
 $u^{n(p2...pr)}_{+v} + v^{n(p2...pr)}_{=w} = v^{n(p2...pr)}_{=w}$
i.e. $a^n + b^{n=}c^n$ where $a = u^{(p2...pr)}_{-v} b = v^{(p2...pr)}_{-v}$, $c = w^{(p2...pr)}_{-v}$

Assume that all common factors have been cancelled, noting that all or none of {a,b,c} have a common factor. (A)

Assume the theorem is false and n is an integer >2 such that positive integers $\{a,b,c\}$ **do** exist satisfying the equation:

$$a^n + b^n = c^n$$

Assume a < b, so that a < b < c.

Let
$$a + h = b + i = c$$
 {h, i positive integers, h>i}
Thus $a^n + b^n = (a + h)^n = (b + i)^n = c^n$

We can now rearrange and rewrite **(T)** in 2 different ways:

(I) Using the Binomial Theorem

$$a^{n} = (b + i)^{n} - b^{n} = nb^{n-1}i + n(n-1)/(2!)b^{n-2}i^{2} + \dots + i^{n}$$

 $b^{n} = (a + h)^{n} - a^{n} = na^{n-1}h + n(n-1)/(2!)a^{n-2}h^{2} + \dots + h^{n}$

(II) By factoring

$$a^{n} = (c - b)(c^{n-1} + c^{n-2} b + \dots + b^{n-1})$$

$$= i(c^{n-1} + c^{n-2} b + \dots + b^{n-1})$$

$$b^{n} = (c - a)(c^{n-1} + c^{n-2} a + \dots + a^{n-1})$$

$$= h(c^{n-1} + c^{n-2} a + \dots + a^{n-1})$$

Let a = Gy {G,y integers>0; G = product of primes**not in**i,

thus x>y (h>i) and x,y are co-prime d of (A)

The equations in (I) may now be written:

$$(Gy)^n = i(nb^{n-1} + n(n-1)/(2!)b^{n-2}i + + i^{n-1})$$
 { $i <= y^n$ }
 $(Fx)^n = h(na^{n-1} + n(n-1)/(2!)a^{n-2}h + + h^{n-1})$ { $h <= x^n$ }

Let
$$i=y^p \ \{0$$

Because y still remains on the LHS and also in the powers of i on the RHS one of the following two cases must be true:

- (1) p=n-1 and n=y (since y cannot be in b^{n-1} of (A)), or,
- (2) p=n and all occurrences of y have been cancelled out.
- If (1) is true (T) may now be written:

$$(An^q)^n + b^n = c^n$$
 {1<=q; q integer, A=product of all primes in a other than n}

 \therefore An^q = (cⁿ - bⁿ) ^{1/n} and n is not prime.

Thus $i=y^n$ and similarly $h=x^n$.

The equations in (II) can now be written

$$(Gy)^{n} = y^{n}(c^{n-1} + c^{n-2}b + b^{n-1})$$

$$G^{n} = (c^{n-1} + c^{n-2}b + b^{n-1})$$

$$(Fx)^{n} = x^{n}(c^{n-1} + c^{n-2}a + a^{n-1})$$

$$F^{n} = (c^{n-1} + c^{n-2}a + a^{n-1})$$

$$G>F$$
 {but Fx>Gy $Fx=b$, Gy=a; a

since
$$a + h = b + i = c$$

 $Gy + x^n = Fx + y^n = c$
 $Fx - Gy = x^n - y^n = (x-y)(x^{n-1} + x^{n-2}y \dots xy^{n-2} + y^{n-1})$ {x-y>1
 $= \mathbf{R}(x-y)$ { $\mathbf{R} = (x^{n-1} + x^{n-2}y \dots xy^{n-2} + y^{n-1})$ (C)

from (C) writing (G-u) for F {u integer>0}:
(G-u)x - Gy = R(x-y)

$$G(x-y) - ux = R(x-y)$$

 $G(x-y) = R$

hence ux=k(x-y) {k integer>0; 'all quantities are positive integers, G>R}

 \therefore x(k-u) = ky and {x,y are not co-prime}

This is a contradiction and the conclusion must be that Fermat's Last Theorem is true.