Title: Fermat's Last Theorem

Author: Barry Foster

[^0]
Fermat's Last Theorem

"Hanson Boys' G. S. Proof"

Statement of the Theorem

Fermat's Last Theorem (FLT) states that positive integers $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ cannot be found satisfying the equation:

$$
\begin{equation*}
a^{n}+b^{n}=c^{n} \tag{T}
\end{equation*}
$$

for any integer value of n greater than 2 .

Proof

Assume n is prime.
\{
If n is not prime, say $n=p_{1} p_{2} \ldots p_{r}$, where the p_{i} are primes, not necessarily all different, we may rename p_{1} to n, and $\{a, b, c\}$ then become integers raised to the power ($p_{2 \ldots} p_{r}$).

To clarify, the equation:

$$
\begin{aligned}
& u^{p 1 p 2 \ldots . . p r_{+v} p 1 p 2 \ldots . p r=w}{ }^{p 1 p 2 \ldots . p r} \quad\{u, v, w \text { positive integers; } u<v<w\} \\
& u^{n(p 2 \ldots . p r)}+v^{n(p 2 \ldots . p r)}=w^{n(p 2 \ldots . p r)}
\end{aligned}
$$

becomes
i.e. $\quad a^{n}+b^{n=} c^{n} \quad$ where $a=u^{(p 2 \ldots . p r)} b=v^{(p 2 \ldots . p r)}, c=w^{(p 2 \ldots . p r)}$
\}

Assume that all common factors have been cancelled, noting that all or none of \{a,b,c\} have a common factor. (A)

Assume the theorem is false and n is an integer >2 such that positive integers $\{a, b, c\}$ do exist satisfying the equation:

$$
\mathrm{a}^{\mathrm{n}}+\mathrm{b}^{\mathrm{n}}=\mathrm{c}^{\mathrm{n}}
$$

Assume $\mathrm{a}<\mathrm{b}$, so that $\mathrm{a}<\mathrm{b}<\mathrm{c}$.
Let $\mathrm{a}+\mathrm{h}=\mathrm{b}+\mathrm{i}=\mathrm{c} \quad\{\mathrm{h}$, i positive integers, $\mathrm{h}>\mathrm{i}\}$
Thus $a^{n}+b^{n}=(a+h)^{n}=(b+i)^{n}=c^{n}$
We can now rearrange and rewrite (\mathbf{T}) in 2 different ways:
(I) Using the Binomial Theorem

$$
\begin{aligned}
& a^{n}=(b+i)^{n}-b^{n}=n b^{n-1} i+n(n-1) /(2!) b^{n-2} i^{2}+\ldots \ldots .+i^{n} \\
& b^{n}=(a+h)^{n}-a^{n}=n a^{n-1} h+n(n-1) /(2!) a^{n-2} h^{2}+\ldots \ldots .+h^{n}
\end{aligned}
$$

(II) By factoring

$$
\begin{aligned}
a^{n} & =(c-b)\left(c^{n-1}+c^{n-2} b+\ldots .+b^{n-1}\right) \\
& =i\left(c^{n-1}+c^{n-2} b+\ldots .+b^{n-1}\right) \\
b^{n} & =(c-a)\left(c^{n-1}+c^{n-2} a+\ldots .+a^{n-1}\right) \\
& =h\left(c^{n-1}+c^{n-2} a+\ldots+a^{n-1}\right)
\end{aligned}
$$

Let $\quad a=G y \quad\{G, y$ integers $>0 ; G=$ product of primes not in i,

$$
\mathrm{y}=\text { product of primes in } \mathrm{i}\}
$$

and $b=F x \quad\{F, x$ integers $>0 ; F=$ product of primes not in h, $\mathrm{x}=$ product of primes in h$\}$

thus $x>y$ (${ }^{\prime}$ ' $\mathbf{h > i}$) and $\left\{x, y\right.$ are co-prime ' ${ }^{\prime}$ ' of (A)\}

The equations in (I) may now be written:

$$
\begin{aligned}
& \left.(\mathrm{Gy})^{\mathrm{n}}=\mathrm{i}\left(\mathrm{nb}^{\mathrm{n}-1}+\mathrm{n}(\mathrm{n}-1) /(2!) \mathrm{b}^{\mathrm{n}-2} \mathrm{i}+\ldots \ldots+\mathrm{i}^{\mathrm{n}-1}\right) \quad \mathbf{i}<=\mathbf{y}^{\mathrm{n}}\right\} \\
& (\mathrm{Fx})^{\mathrm{n}}=\mathrm{h}\left(\mathrm{na}^{\mathrm{n}-1}+\mathrm{n}(\mathrm{n}-1) /(2!) \mathrm{a}^{\mathrm{n}-2} \mathrm{~h}+\ldots \ldots .+\mathrm{h}^{\mathrm{n}-1}\right)\left\{\begin{array}{l}
\left\{\mathbf{h}<=\mathbf{x}^{\mathrm{n}}\right\}
\end{array}\right\} .
\end{aligned}
$$

Let $\quad \mathrm{i}=\mathrm{y}^{\mathrm{p}}\{0<\mathrm{p}<=\mathrm{n}\}$ and now dividing through by y^{p} gives:

$$
\mathrm{G}^{\mathrm{n}} \mathrm{y}^{\mathrm{n}-\mathrm{p}}=\mathrm{nb}^{\mathrm{n}-1}+\mathrm{n}(\mathrm{n}-1) /(2!) \mathrm{b}^{\mathrm{n}-2} \mathrm{i}+\ldots \ldots+\mathrm{i}^{\mathrm{n}-1}
$$

Because y still remains on the LHS and also in the powers of i on the RHS one of the following two cases must be true:
(1) $\mathrm{p}=\mathrm{n}-1$ and $\mathrm{n}=\mathrm{y}$ (since y cannot be in $\mathrm{b}^{\mathrm{n}-1} \because$ of (A)), or,
(2) $\mathrm{p}=\mathrm{n}$ and all occurrences of y have been cancelled out.

If (1) is true (\mathbf{T}) may now be written:

$$
\left(A n^{q}\right)^{n}+b^{n}=c^{n} \quad\{1<=q ; q \text { integer, } A=\text { product of all primes in a other than } n\}
$$

$\therefore \quad \mathrm{An}^{\mathrm{q}}=\left(\mathrm{C}^{\mathrm{n}}-\mathrm{b}^{\mathrm{n}}\right)^{1 / \mathrm{n}}$ and n is not prime.
Thus $\mathbf{i}=\mathbf{y}^{\mathbf{n}}$ and similarly $\mathbf{h}=\mathbf{x}^{\mathbf{n}}$.
The equations in (II) can now be written

$$
\begin{align*}
& (G y)^{n}=y^{n}\left(c^{n-1}+c^{n-2} b+\ldots b^{n-1}\right) \\
& G^{n}=\left(c^{n-1}+c^{n-2} b+\ldots . b^{n-1}\right) \\
& (F x)^{n}=x^{n}\left(c^{n-1}+c^{n-2} a+\ldots a^{n-1}\right) \\
& F^{n}=\left(c^{n-1}+c^{n-2} a+\ldots . a^{n-1}\right) \tag{B}
\end{align*}
$$

$\therefore \quad G>F \quad\left\{b u t\right.$ Fx>Gy ${ }^{\prime} \cdot \mathbf{F}$ Fx=b, Gy=a; a<b\}
since $\quad a+h=b+i=c$

$$
\mathrm{Gy}+\mathrm{x}^{\mathrm{n}}=\mathrm{Fx}+\mathrm{y}^{\mathrm{n}}=\mathrm{c}
$$

$\therefore \quad$ Fx-Gy $=x^{n}-y^{n}=(x-y)\left(x^{n-1}+x^{n-2} y \ldots . . y^{n-2}+y^{n-1}\right) \quad\{x-y>1\}$

$$
\begin{equation*}
=R(x-y) \quad\left\{R=\left(x^{n-1}+x^{n-2} y \ldots x y^{n-2}+y^{n-1}\right)\right. \tag{C}
\end{equation*}
$$

from (C) writing (G-u) for F \{u integer $>0\}$:
(G-u) $x-G y=R(x-y)$
$\mathrm{G}(\mathrm{x}-\mathrm{y})-\mathrm{ux}=\mathrm{R}(\mathrm{x}-\mathrm{y})$
$\therefore \quad G-u x /(x-y)=R$
hence $\quad u x=k(x-y)\{k$ integer $>0 ; \because$ all quantities are positive integers, $G>R\}$
$\therefore \quad \mathrm{x}(\mathrm{k}-\mathrm{u})=\mathrm{ky}$ and $\{\mathrm{x}, \mathrm{y}$ are not co-prime $\}$
This is a contradiction and the conclusion must be that Fermat's Last Theorem is true.

[^0]: Abstract: \quad Recall the theorem states that the equation $a^{n}+b^{n}=c^{n}$ cannot exist if all quantities are positive integers and $\mathbf{n}>2$. Fermat maintained he had a short proof but it has never been found, nor has a short proof been supplied by anyone since. This attempt uses simple mathematics and methods reminiscent of those taught in English grammar schools in the 1950's.

