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Abstract

We show how the Koide relationships and associated triplet mass matrices can be generalized to derive the observed
sum of the free neutron and proton rest masses in terms of the up and down current quark masses and the Fermi vev to
six parts in 10,000. This sum can then be solved for the separate neutron and proton masses using the neutron minus
proton mass difference derived by the author in a recent, separate paper. The oppositely-signed charges of the up and
down quarks are responsible for the appearance of a complex phase exp(id) and real rotation angle 6 which leads on an
independent basis to mass and mixing matrices similar to that of Cabibbo, Kobayashi and Maskawa (CKM). These
can then be used to specify the neutron and proton mass relationships to unlimited accuracy using 6 as a nucleon fitting
angle deduced from empirical data. This fitting angle is then shown to be related to an invariant of the CKM mixing
angles within experimental errors. ~Also developed is a master mass and mixing matrix which may help to interconnect
all baryon and quark masses and mixing angles. The Koide generalizations developed here enable these neutron and
proton mass relationships to be given a Lagrangian formulation based on neutron and proton field strength tensors that
contain vacuum-amplified and current quark wavefunctions and masses. In the course of development, we also un-
cover new Koide relationships for the neutrinos, the up quarks, and the down quarks.
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1. Introduction

In an earlier paper [1] the author introduced the thesis
that baryons are Yang-Mills magnetic monopoles. Us-
ing the t"Hooft magnetic monopole Lagrangian in [2.1]
of [2] and a Gaussian ansatz for fermion wavefunctions
from [14] of O’Hanian’s [3] to obtain energies according

to E=—j ﬂ ks d3x:%TrHj F, F*d’x , it became

‘gauge
possible in equation [11.22] of [1] to predict the electron
rest mass as a function of the up and down quark masses,
specifically:

mc=3(md—mu)/(27t)%, (1.1)
with the factor (27;)% emerging from three-dimensional

Gaussian integration. Based on a “resonant cavity”
analysis of the nucleons whereby the energies released or
retained during nuclear binding are directly dependent
upon the masses of the quarks contained within the nu-

cleons, it was also predicted that latent, intrinsic binding -

energies of a neutron and proton, see [12.12] and [12.13]
of [1], are given by:
By =2m, +m, ~(m, +4mm, +4m, )/ (27)! =7.640679MeV (1.2)

By =2m, + m, ~(m, +4mm, +4m,)/ (2}’ =9.812358Mev -(1.3)

These predict a latent binding energy of 8.7625185 MeV
per nucleon for a nucleus with an equal number of pro-
tons and neutrons, which is remarkably close to what is
observed for all but the very lightest nuclides, as well as
a total latent binding energy of 493.028394 MeV for
%Fe, in contrast to the empirical binding energy of
492253892 MeV. This is understood to mean that
99.8429093% of the available binding energy in *°Fe is
applied to inter-nucleon binding, with the balance of
0.1570907% retained for the intra-nucleon quark con-
finement. It was also noted that this percentage of en-
ergy released for inter-nucleon binding is higher in *SFe
than in any other nuclide, which further explains that
although the quarks come closer to de-confinement in
36Fe than in any other nuclide (which also explains the
“first EMC effect” [4]), they do always remain confined,
as emphasized by the decline in this percentage for ele-
ments with nuclear weights higher than *°Fe.

In a second paper [5], the author showed how the the-
sis that baryons are Yang-Mills magnetic monopoles
together with the foregoing “resonant cavity” analysis



can be used to predict the binding energies of the 1s nu-
clides, namely “H, *H, 3He and “He to parts per hundred
thousand for *He and in all other cases to parts per mil-
lion, and also to predict the difference between the neu-
tron and proton masses according to:

MN—MP=mu—(3md+2 m”md—3mu)/(27r)%- (1.4)

This relationship, originally predicted in [7.2] of [5] to
about seven parts per ten million in AMU, was later tak-
en in [10.1] of [5] to be an exact relationship, and all of
the other prior mass relationships which had been devel-
oped were then nominally adjusted at the seventh deci-
mal place to implement (1.4) as an exact relationship.
The review of the solar fusion cycle in section 9 of [5]
served to emphasize how effectively this resonant cavity
analysis can be used to accurately predict empirical
binding energies, and suggested how applying gamma
radiation with the right resonant harmonics to a store of
hydrogen may well have a catalyzing effect for nuclear
fusion. This relationship (1.4) will also play a central
role in the development here.

At the heart of these numeric calculations which ac-
cord so well with empirical data were the two outer
products [4.9] and [4.10] in [5] for the neutron and the
proton, with components given by [4.11] and related
relationships developed throughout sections 3 and 4 of
[5]. In particular, the two matrices which stood at the
heart of these successful binding energy calculations
were 3x3 Yang-Mills diagonalized matrices K of mass
dimension Ya with components

diag(Ky)= (\/;_n: NN ) for the  neutron
and diag( K P):(\/m—d NN ) for the proton, where

m, is the “current” mass of the up quark and . is the

current mass of the down quark.

What is very intriguing about these K-matrices (which
we designate with K to reference Koide), is that although
they originate from the thesis that baryons are magpetic
monopoles, they have a form very similar to matrices
which may be used in the Koide mass formula [6] for the
charged leptons, namely:

Rz(\/;l‘l'\/m—z"' m3)22%- (1.5)

m, +m, +my

Above, when we take m =m,, m, =m, and m, =m,

to be the charged lepton masses, the ratio R=3/2
gives a very precise relationship among these masses.
Indeed, if we wuse the 2012 PDG data

m, =0.510998928 +0.000000011MeV

m, =105.6583715+0.0000035Me} and

m, =1776.82£0.16MeV [7], we find using mean ex-
perimental data that R =1.500022828, very close to 3/2.
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Because the binding energies formulated in (1.2) and
(1.3) are rooted in the thesis that baryons are Yang-Mills
magnetic monopoles and specifically emerge from the
calculation of energies via E=_I j’j 4%x, see [11.7] of

[1] et. seq., and because these binding energies can also
be refashioned via Koide relationships as we shall show
in the next section, the author’s previous findings will
provide us with the means to anchor the Koide relation-
ships in a Lagrangian formulation. And, because Koide
provides a generalization of the mass matrices derived by
the author in [5], these matrices will provide us with the
means to derive additional mass relationships as well, in
particular, and especially, the free neutron and proton
rest masses, which is the central goal of this paper.

Specifically, after reviewing in section 2 similarities
between the author’s baryon / magnetic monopole ma-
trices and the Koide matrices, we shall show in section 3
how to reformulate the Koide relationships in terms of
the statistical variance of Koide mass terms across three
generations. This will yield some new Koide relation-
ships for the neutrinos, the up quarks, and the down
quarks. We then show in section 4 how to recast these
Koide relationships into a Lagrangian / energy formula-
tion, which addresses the question as to underlying ori-
gins of these relationships, so that these relationships are
not just curious coincidences, but can rooted in funda-
mental physics principles based on a Lagrangian.

Most importantly, in this paper, we combine the au-
thor’s previous work in [1] and [5] as well as [8], using
the generalization provided by Koide triplet mass matri-
ces of the form (2.1) below, to deduce the observed rest
masses 938.272046 MeV and 939.565379 MeV of the
free neutron and proton as a function of the up and down
quark masses and electric charges and the Fermi vev.
This mass derivation is presented in sections 5 and 6.
In section 7 we connect the masses obtained in section 6
to the empirically-observed Cabibbo, Kobayashi and
Maskawa (CKM) quark mixing matrices. In section 8
we examine “constituent” and “vacuum-amplified” quark
masses for the neutron and proton.  Finally, in section
9 we develop a Lagrangian formulation for these neutron
and proton masses, which underscores that these rela-
tionships are not just close numerical coincidences, but
originate from fundamenta] Lagrangian-based physics.

2. Similarities between Baryon / Magnetic
Monopole Matrices and Koide Matrices

The similarities between the matrices developed by the
author in [5] and those developed by Koide in [6] are
highlighted if we define a Koide matrix g, generally

as:
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2.1)

0 0

Then, the two latent binding energy relationships (1.2)

and (1.3) may be represented as:
1 1

By, =K 15Ky ———3 KuuKps =Tr(K*)- 3

(=)’ (=)

=2m, +my —(m, +4mm, + 4m,)1(27)}! =7.640679MeV @2)

Jmy 0

THK ® K)

0 0 Jmy 0
_ ~Tr| 0 m, 0 [® 0 m, 0
(27
0 0 m, 0 0 Jm,
By =K Ky - 21 KKy = Tr(K) = —— Tr(K®K)
T

=2m, +m, - (m, +4/mm, +4m,) /(27! =9.812358MeV

Jmo 0 0 \(Jm O
=Trl 0 Jm, 0 || 0 Jm,
0 0 Jm 0 0 m

Jm, 0 0 ) (Jm 0 0
Lo ym o0 |® 0 Jm O
G Lo 0 gm) Lo o ym,

where, starting with (2.1), in (2.2) we have set m =m,

(2.3)

[ )

and m, =m, =m, and in (2.3) we have set m, =m, and
m,=m=m,- Again, these originate in the author’s
thesis in [1] that baryons are Yang-Mills magnetic mon-
opoles. Above, ® designates an outer matrix product.

On the other hand, setting m=m,, m,=m, and

m,=m, in (2.1), we may write:

Tr(K*) =K, Ky =m +my+my=m,+m, +m,> 24)
2
TH(K ®K) = K 1Ky =, +Jm, +m) 2.5)

- ()
Then, using (2.4) and (2.5), Koide relationship (1.5) for
charged leptons may be written as:

2
(JE+M+JE) _KuKp _Tr(K®K) 3. (2.6)
m,+m,+m, K ;K Tr(KY 2
Clearly then, the Koide matrices (2.1) provide a gen-
eral form for organizing the study of both binding ener-
gies and fermion mass relationships which lead to very
accurate empirical results.

R=

It thus becomes desirable to .

understand the physical origin of these Koide matrices
and tie them to a Lagrangian formulation so that they are
no longer just intriguing curiosities that yield tantaliz-
ingly-accurate empirical results, but can also be rooted in
fundamental physics principles based on a Lagrangian.
And, it is desirable to see if these matrices can be ex-
tended in their application to make additional mass pre-
dictions and gain a deeper understanding of the particle
mass spectrum, especially the free neutron and proton
masses to be explored here.

We start in the next section by showing how to refor-
mulate the Koide relationships in terms of the statistical
variance of the Koide terms across the three generations.

3. Statistical Reformulation of the Koide
Mass Relationship

We continue to examine the charged leptons by setting
m=m,, m,= m” and my=m, in (21) When we

use the extremes of the experimental data ranges in [7],
specifically, the largest possible tau mass and the lowest
possible mu mass, we obtain R=1.5000024968. Alt-
hough this is an order of magnitude closer to 3/2 than the
ratio obtained from the mean data, is still outside of ex-
perimental errors. This means that while R=3/2 isa
very close relationship, it is still approximate even ac-
counting for experimental error. For this to be within
experimental errors, it would have to be possible to ob-
tain some R<3/2 for some combination of masses at
the edges of the experimental ranges, and it is not.

First, using (2.4), we write the average of masses (m,)

in a Koide mass triplet m, m,, m;, i.e., the “average
of the squares” of the matrix elements in (2.1), as:
(K?)=Tr(K*)/3= K 5Ky /3= (m +m, +m)/3=(m). G.1)

Next, via (2.5), we write the “square of the average” of
these matrix elements as:

(k< TECK) Ky {MW%MT
3

9 9 .32)

2
(o, +Jm; +m;)
9
So, combining (3.1) and (3.2) in the form of (1.5) allows
us for the charged leptons to write:

K TKOK) KoKy (Wt m)
3 = = =
(k?)  TK) KKy
3

=R=z=—
2

This allows us to extract the relationship:

(K) = g(w) = %(1@),

m +m, +m (33)

(3.4)
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which naturally absorbs the 3 from the factor of 3/2.
Now, we simply use (3.1) and (3.4) to form the statis-
tical variance o(K) in the usual way, as:

a(K)=(K2>—<K>2=(1—§)<K2>=(%‘1)<K>2. (3.5)
(3=t <t

The key relationship here, using first and last terms, is:
cr(K)z(m,.>- (3.6)
So the average (m,> of the charged lepton masses is

approximately (and very closely) equal to the statistical
variance o'( K) of Koide matrix (2.1) when used for the

charged leptons. This is a much simpler and more
transparent way to express the Koide mass relationship
(1.5), it completely absorbs the factor of 3/2, and it is
entirely equivalent to (1.5).

Of course, as noted at the outset of this section, this is
a very close, but still approximate relationship. The
exact relationship, also extracted from (3.5), and using
R =1.500022828 based on mean experimental data, is:

o(K)= (% - 1)<m,.) = 0.999969563(m,)=C(m)» G-7)

where we have defined the statistical coefficient C and
the inverse relationship for R as:
c=3_1 R=—_. (3.8)
R 1+

Thus, we may rewrite the basic Koide relationship
(1.5) more generally as:

(\/;1’“\/’"_2’“\/”’_3)2_ 3 _»x (3.9)

m; +m, +m, 1+C .

In the circumstance where the statistical coefficient C=1,
i.e., where the average mass is exactly equal to the statis-
tical variance, we have R=3/2. So the statistical
variance of the square roots of the three charged lepton
masses is just a tiny touch less (x0.999969563 ) than the
average of the three masses themselves. But the factor
of 3/2, which is somewhat mysterious in (1.5), is now
more readily understood when we realize that it corre-
sponds with C=11in (3.7).

This means that the Koide relationship for any given
triplet of numbers with mass dimension 2, may be alter-
natively characterized by the coefficient C. Thus, using
(3.7), the coefficient C for the charged lepton triplet is
(we also include R for comparison):

C(eur) = 0999969563 = 1; R (eu7) =1.500022828 =3/2 3.10)
So what about some other Koide triplets? For the
neutrinos, PDG in [9] provides upper limits m, <2eV,

m, <0.19Mev and m, <182Mey for the neutrino

masses. If we use these mass limits in a Koide triplet,

we find that R=1.202960231. But the significance of
this is much more easily seen by using (3.8) to calculate:
C(v,v,)=14938480=3/2 R (v,v,v,)=120296023= 6/5 (.11
Here, we have another ratio very close to 3/2, but now it
is the coefficient C rather than the coefficient R. So, for
the upper neutrino mass limits, o-( Kv) =(3/2) <mv> .
This in an interesting “coefficient migration” as between
the charged and uncharged leptons, wherein for the
charged leptons masses R=3/2 to parts per 100,000,
while for the neutrino lepton upper mass limits,
C =3/2 within about 0.4%. As we shall see, this is
the start of a new Koide pattern.

Turning to quark masses, we use
m, =2223792405MeV  and  m, =4.906470335MeV
developed in [10.3] and [10.4] of [5] with the conversion
1u=931.494061(21) MeV/c%. We also use
m, =1.275+0.025GeV > m, =95+ 5MeV >
m, =173.5+.6 £.8GeV and m, =4.18+£0.03GeV from
PDG’s [10]. For Koide triplets of a single electric
charge type, we can then calculate that:

C (uct) =1.54688 = 3/ 2; R(uct) =1.177913486 = 6 /5 - (3.12)

C(dsb) =1.18741= 6/5; R(dsb) =1.371483911=15/11- (3.13)

So we now see a distinctive pattern of coefficient mi-
gration among (3.10) through (3.13). For the charged
leptons in (3.10) which are the lower members of a weak
isospin doublet, R(eur)=3/2,8s has long been known.

For neutrinos which are the upper members of this dou-
blet, C(Vey’uyr)g 3/2, which migrates the 3/2 from the

R to the C coefficient. Then, for the up quarks, we find
another coefficient migration such that C(uct) ~3/2,

which is same as the C for the neutrinos. Both the up
quarks and the neutrinos are the upper members of weak
isospin doublets. Finally, we see that the R(uct) ~6/5

coefficient for the up quarks, now migrates to
C(dsb)=6/5 for down quarks.

So the migration is R(e,ur);3/2—>C(VV v )53/2

Ve
for leptons, C(v,v,v,)=3/2-C(uct)=3/2 providing
a “bridge” from “up” leptons to “up” quarks, and then
R(uct)=6/5—>C(dsb)=6/5 migrating from the up to
the down quarks.

The net upshot of this coefficient migration is that we

now have Koide-style close relations for all four sets of
fermions (and anti-fermions) of like-electric charge O,

namely: :
2
RO =0) = (V7o + Mo ) L N AT
Myey + My + My 5
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()

RQ=+1)= =3, (3.15)
m,+m, +m, 2
oty ) 6 g
3 m,+m,+m, 5
R(inl)z(\[@*\ﬁ*\/z) 215 317
3 m, +m +m, 11

Each of these relationships takes twelve a priori inde-
pendent fermion masses and reduces by 1, their mutual
independence. So with (3.14) through (3.17), to first
approximation, we have now eight, rather than twelve
independent fermion masses.

For some other commonly-studied Koide triplets we
have:

C (uds) = 0.69290 =1/+/2; R (uds) =1.772105341 E%%,(MS)
+

C(cth)=1.00939 = 1; R(ctb) = 1492994103 = 3/2, (3.19)

C(usc) = 0.86795; R (usc) =1.606042302, (3.20)
C(csb)=1.02783 =, R(csb) =1.479416975=3/2 (3 51y

(with —+[m,)
C(des)=0.81520; R(des) =1.652718083 - (3:22)
We note that the relationship (3.18) for C(uds) =1/2

is accurate to within experimental errors. Specifically,
given the empirical m =95+5MeV » (3.18) can be made

into an exact relationship to ten digits (the accuracy of
the up and down masses derived in [Error! Bookmark
not defined.]) if we set m =98.95303495MeV - of

course, even the relationship (3.15) for the charged lep-
tons is a close but not exact relationship, see the discus-
sion at the start of this section, so we ought not expect
(3.18) to be exactlyc(uds)zl/ﬁ . But, similarly to

(1.5), see also (3.10), it may well make sense to regard
this as a relationship accurate to the first three or four
decimal places, which would improve our knowledge of
the strange quark mass by four or five orders of magni-
tude.

But this main point of the foregoing is not about the
specific Koide relationships (though the set of relation-
ships (3.14) through (3.17) are important steps forward
in their own right), but about how the ratio parameter R
which for the charged lepton triplet is R=3/2, can be
reformulated for any fermion triplet into the coefficient
C in the statistical variance relationship o-( K) = C(’”f)’

which, for the charged leptons, is C=1. And, as we

see in (3.14) through (3.17), this can lead to additional

relationships via a cascading migration of coefficients.
Turning back to the neutron and proton triplets

g ()= () - 8(,) = ()

which were so central to obtaining accurate binding en-
ergy predictions in [Error! Bookmark not defined.]
and [Error! Bookmark not defined.], we find using the
MeV equivalents of  the mass values
m, =2.223792405MeV > m, =4.906470335MeV’ obtained
in (10.3) and (10.4) of [Error! Bookmark not defined.]
that:

C(p = duu) = 0.0387876019; R(p = duu) = 2.8879821000- (3.23)

C(n= udd) = 0.0298844997; R (n = udd) = 2.9129480061-3 24)

For these triplets which all have a small variance in
comparison to the earlier triplets which cross genera-
tions, the Koide ratio R=3. In the circumstance
where the variance is exactly zero because all three
quarks have the same mass, for example, for the triplets
A* =yuu and A~ =ddd, using the Koide mass rela-
tionship for parameterization, we have C=0; R=3.

4. Lagrangian / Energy Reformulation of the
Koide Mass Relationship

The appearance of Koide triplets originating from the
thesis that Baryons are Yang-Mills magnetic monopoles
can be seen, for example, by considering equation [11.2]
of [Error! Bookmark not defined.] for the field
strength tensor of a Yang-Mills magnetic monopole con-
taining a triplet of colored quarks in the ze-
ro-perturbation limit, reproduced below:

TeF™ = _{V/R[}/”V;’V ]U’R + Ve [7%7”]‘/’6 + ‘//3[7’””"/ ]‘//B J~(4~1)

"pr—mg" "pe —mg" "py—mp"

If we generalize this to any three fermion wavefunctions
W, W, Such that (4.1) represents the specific case

v=ve W, =W ad wi=y,, and, as we did prior to

[11.19] of [1], if we consider the circumstance in which
the interactions shown in Figure 1 at the start of section 3
in [l] occur essentially at a point, then
[J’”v?"'] N [yﬂ,yv:] approaches an ordinary commuta-

tor, each of the p— 0, and the “quoted” denominator

becomes an ordinary denominator, see [3.9] through
[3.12] of [1] for further background. So also setting
m=my, m,=mg and m, =my, (4.1) generalizes for a

point interaction to a Koide-style field strength tensor:

TrF™ = _i[&. [7”5}"’]‘//1 + ‘/—/2 [7”17“](‘/2 . ‘/_’3[7‘27"]‘//3] .(4.2)
m ny my

Then, we form a pure gauge field Lagrangian
£ =—%Tr(F#VF‘“’)=—%Tr(F~F) as in [11.7] of

gauge

[1]. As discussed in section 3 of [5], we consider both
inner and outer products over the Yang-Mills indexes of
F, i.e., we consider both 7yF? =Tr(FAB' F, C)= F,-F,

and Tr(F® F)=Tr(Fy- Fop)=Fu-Fps - NOte care-
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fully the different index structures in F,,.F,, Versus
F,, - Fy,, and also contrast this to (2.2) through (2.5) in

this paper, which we shall now seek to refashion into a
Lagrangian formulation.
To proceed, we use this Lagrangian Lo

energies according to [11.7] of [1], also [1.8] of [5],
which are reproduced below:

- E=—[[ Suped’x =1 Tx[[[ F, F*d’x-
In the case where y, =y,, y,=y,=y,
F* =F",
whether we contact indexes using £,

to calculate

4.3)
so that
represents the proton, then depending on
“Foy O Fy-Fpps
we obtain the inner and outer products in [3.6] of {5].
When W=, W,=¥s=y, SO F# =F", repre-
sents the neutron, we obtain the inner and outer products

in [3.7] of [5]. Using (2.1), the Koide generalization of
the outer products (K K, index summation) is:

Ey=—[[[ Sod’x =T [[[ F,, @ F*"d’x
= A Te[[[ oy Fopd®x =4 [[[ Fyu- Frpd’x =5 K

Jm 0

—_
[\
8

~—

ot

(2)(\/—+ m2+\/—)

while the Koide generalization of the inner products
(K ,K,, index summation) is:

E=-([[ sdx={Te[[[ F, F*d’x

= %TrHJ.FAB Fyppd’x = %J‘IJ‘F;{B Fpd’x =

Jm 0 0 )Jm 0 0
Lo Jm o0 Jm o
(27) o 0 Jm)lo 0 Jm

my +my +m,

(2 ) —( )

This means that is now becomes possible to express the
Koide relationship (3.9) entirely in terms of energies E
derived from the Lagrangian integration (4.3). Specifi-
cally, combining (3.9) with (4.4) and (4.5) allows us to
write:

'—l_}_KABKBA

oo . (45)

Eg _ m L,d°x
E _m £d’x

_Tef[[F, @ F"dx
- Trj” F, F“dx

_ TrJ..UF(X) Fdx _ ” Fu .FBBd3x _ KK ’
) Tr.m Fd’x ) .m Fas 'FsAd3x - K 5 K4

()

m, +m, +m, 1+C
This expresses the Koide mass relationship in multiple
forms, in terms of an energy integral of the general form
e= —%Tr( F- F) , with general field strength (4.2).

This means for any Koide triplet of given empirical R,
there is an energy E, which vanishes under condition:
Ey = [[[(2o - R®)d*x = Tx[f[(F ® F - RF*)dx=0. (4.7)
This is the Lagrangian / energy formulation of the Koide
relationship (3.9), and although different in appearance,
it is entirely equivalent. So, for example, using the
symbol .. as in figure 1 and Table 3 of [8] to represent
the three generations of the fermions for any given
charge, the four Koide relationships (3.14) through
(3.17) for the pole (low probe energy) masses may be
written as in the entirely equivalent, alternative form:

E, =[[[(8s-$8)dx= Tef[[(F® F - $F)d*x = 0- 4.8)
E,. =|[f( ,S?@—7£)d3x=TrIJI(F®F~—%F2)d3x=O- (4.9)
E,. —_f_U(S@—ﬁS)d3x—Ter (FOF-$F)d’x=0- (4.10)

se)dx=Tr[[[(FOF-1F)d’x=0-(411)

E,. = [[f(%
Whether these become exactly equal to zero for masses
at high-probe energies, and whether there is an underly-
ing action principle involved here, are questions beyond
the scope of this paper which are worth consideration.
What ties all of this together, is that we model the ra-
dial behavior of each fermion in the triplet v, v,, w,

(4.6)

=R

using the Gaussian ansatz borrowed from eq. [14] of [3]
and introduced in [9.9] of [1] which is reproduced below
with an added label ;=1,2,3 for each of the fermions

and masses in (4.2):

Y (r) =Y, (P)(ﬂ'/‘ifz )_Z exp{_%(r_;‘;:iJ ,

and that we also relate each reduced Compton wave-
length %, to its corresponding mass s, via the

DeBroglie relation %, =#7/mc ,

[11.18]. This is what makes it possible to precisely,
analytically calculate the energy in integrals of the form
(4.3), specifically making use of the mathematical
Gaussian relationship [9.11] of [1]:

Iif ; 3exp[— (r;;"y}fx:l,

TR

(4.12)

see [1] following

(4.13)
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and variants thereof. It is (4.12) and (4.13) and
x,=1/m, (in A=c=1 units) which tie everything to-
gether at the “nuts and bolts” mathematical level when
(4.2) is employed in (4.3) through (4.11). And this is
what leads to accurate mass relationship (1.1) and bind-
ing energy predictions (1.2) and (1.3), as well as the
binding energy predictions for 2y, °H, *He and “He and
the proton—neutron mass difference (1.4) found in [5].
The final piece which also ties this together at nuts and
bolts level, is the empirical normalization for fermion
wavefunctions developed in [11.30] of [1], namely:

4'=L(E+m)2 _ 1 (E+m)2 ,
n Gmy 24 (m)
where ;=24 is the total number of fermions over

N (4.14)

three generations including three colors for each quark.
Now, it is important to emphasize that the Gaussian
ansatz (4.12) is not a theory, but rather, it is a modeling
hypothesis that allows us to analytically perform the
necessary integrations and calculate energies which for-
tuitously turn out to correlate very well with empirical
data. That is, explicitly in [1] and implicitly in [S], we
hypothesized - that the fermion wavefunctions can be
modeled as Gaussians with specific Compton wave-
lengths %, =1/m defined to match the current quark

masses, we performed the integrations in (4.3), and we
found that the energies predicted matched empirical
binding data to parts per 100,000 and parts per million.
This, in turn, tells us that for the purpose of predicting
binding energies, it is possible to model the current
quarks as Gaussians (which means they act as free fer-
mions), with masses and wavelengths based on their un-
dressed, current quark masses, and to thereby obtain em-
pirically-validated results.

But, as also discussed at the end of section 11 in [1],
this use of a current quark mass does »ot apply when it
comes predicting the short range of the nuclear interac-
tion which we showed at the end of section 10 in [1] is
indeed short range with a standard deviation of
o= _}Z_x For, if we use the current quark masses that

work so well for binding energies, we find % ~85.65F
and %, ~41.04F, and the predicted short range is still

not short enough. If, however, we turn to the constitu-
ent quark masses which, at the end of section 11 in [1],
for estimation, we took to be 939 MeV/3=313 MeV, then
we have % ~.63F and o= Tlfz_x ~ 45F , which tells us

that the nuclear interaction virtually ceases at about
Ao ~3% ~2F . This is exactly what is observed.

In both cases — for nuclear binding energies and for the
nuclear interaction short range — we found that the
Gaussian ansarz (4.12) does yield empirically-accurate
results. But for binding energies, it was the undressed,
current quark masses which gave us the right results,

while for nuclear short range, it was the fully dressed,
constituent quarks masses that were needed to obtain the
correct result.

Because we shall momentarily embark on a prediction
of the fully dressed rest masses 938.272046 MeV and
939.565379 MeV of the free neutron and free proton,
what we learn from this is that while we might also be
able to approach the neutron and proton masses using a
Gaussian ansatz for fermion wavefunctions, we will,
however, need to be judicious in the fermion wavefunc-
tions we choose and in the masses that we assign to the
fermions. That is, the focus of our deliberations will be,
not whether we can use the Gaussian ansarz, but on how
to select the fermion wavefunctions and masses that we
do use with the Gaussian ansatz, in order to obtain em-
pirically accurate results.

Now, with all of the foregoing as background, let us
see how to predict the neutron and proton masses.

5. Predicting the Neutron plus Proton Mass
Sum to within about 6 Parts in 10,000

Because we can connect any Koide matrix products to a
Lagrangian via (4.4) and (4.5), let us work directly with
the Koide matrix (2.1) to determine how to assign the
masses m,, m,, m; SO as t0 predict the neutron and

proton masses. Then at the end (in section 9), we can
backtrack using the development in section 4 to connect
these masses to their associated Lagrangian. In other
words, we will first fit the empirical mass data, then we
will backtrack to the underlying Lagrangian.

Each of the neutron and proton contains three quarks.
The sum of the current quark masses is
2m, +m, =12.0367331Mey  for the neutron and

2m, +m, =9.35405514Mey  for the proton, using

m, =2.223792405MeV and  m, =4.906470335MeV

earlier introduced before (3.12) as developed in [10.3]
and [10.4] of [5]. For a free neutron and proton, none
of this rest mass is released as binding energy, and so
these quark mass sums are fully included in

M, =939.565379MeV and M, =938.272046MeV  re-

spectively, where we use an uppercase M to denote these
fully-dressed, observed neutron and proton masses. As
demonstrated in sections 11 and 12 of [1] and throughout
[5], these rest masses are reduced when the neutron and
proton fuse with other nucleons. But for free protons
and neutrons, the entire rest mass is retained and all of
the latent binding energy is used to confine quarks.

This means the “mass coverings” m (using a lowercase
m) for the neutron and proton may be calculated to be:
my, = M, —2m, —m, =928.9179915MeV , - (5.1)

My =M, —2m, —m, =927.5286457MeV - (52)
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These mass coverings m represent the observed, ful-
ly-dressed neutron and proton masses M, less the sum
K Ky, =m +m,+m, of the current quark masses, with

m=m;, my=my=m, for the proton, and m =m, ,

m. =m. =m, for the neutron, see (2.4). One may think
, =M 2

of m, and m, as weights of rather heavy “clothing”

“covering” “bare” quarks. The sum of these two mass
covers is:
my, +m, = My, + M, —3m, —3m, =1856.446637MeV -(5.3)
Now, at the end of section 10 of [5], after deriving the
neutron minus proton mass difference (1.4), we noted
that individual masses for the neutron and proton could
now be obtained by deriving some independent expres-
sion related to the sum of their masses, and then solving
these two simultaneous equations — sum equation and
difference equation — for the two target masses, namely,
those of the neutron and proton. We shall do exactly
that here. In particular, it will be our goal to derive the
sum M, +M, of these two masses, and then use (1.4)
as a simultaneous equation to obtain each separate mass.
The benefit of this approach using a sum, referring to the
so-called mass “toolbox” in [4.11] of [5] and also the
discussion of the alpha nuclide following [5.4] of [5], is
that in selecting mass terms to consider, we can eliminate
any candidates not absolutely symmetric under p <> n
and u<>d interchange, because the sum M, +M,

contains three up quarks and three down quarks, as well
as one neutron and one proton. Our empirical target,
therefore is the mass sum A, + M, =1877.837425MeV -
But we can alternatively reach this by finding the mass
cover Sum m,+m, =1856.446637MeV of (5.3) to
which we can then readily add 3m, +3m,- These sums
are what we now seek to predict.

We now return to use the “clues” laid out in [3.6]
through [3.8] of [8]. We start in the simplest way pos-
sible by focusing our consideration on [3.8] of [8], re-
produced below, but multiplied by a factor of 2 and sep-
arated into </§ o, and ‘\‘/‘Trm y in the second term, thus:

2\vr 'ﬁmd = 2</;qu </va¢1 =24v;'m,d, . 5.4
=1803.670518 MeV

Here, v;=246.219651 GeV is the Fermi vev. Because

this is about 3% smaller than m, +m, in (5.3) and is

closer to m, +m, than either [3.6] or [3.7] of [8], and

also is symmetric under u <>d interchange, we shall
see if (5.4) can be used, by itself, to provide the founda-
tion for hitting the m, +m, =1856.446637Me})/ Mass
target (5.3). As we shall, it can be so used!

In [4.11] of [5], we developed a “toolkit” of masses
which we used for calculating the binding and fusion

release energies of all the 1s nuclides with very close
precision. We shall wish to add to this toolkit here, and
in particular, will wish to refine our use of the Fermi vev
y7=246.219651 GeV beyond what is shown in (5.4).
Specifically, as noted after [3.8] of [8], we need to put
(5.4) “and like expressions into the right context and
obtain the right coefficients. And where do such coef-
ficients come from? The generators of a GUT!”

Now it is time to “cash in” on the GUT we developed
in [8] to obtain the coefficients needed to bring (5.4)
closer to the target mass of 1856.446637MeV in (5.3).
Because the vev which seems based on (5.4) to bring us
into the correct “ballpark” is the Fermi vev, we focus on
electroweak symmetry breaking which occurs at the
Fermi vev, and which, in [8.2] of [8], is specified by
breaking electroweak symmetry using electric charge
generator Q via:

dag(0,) = dis('9,) e
=7, (0.3,-3,-4, 711, 1.2) =v,diagQ
For the proton with a fermion triplet (d,u,u), the corre-

sponding eigenvalue entries in (5.5) above are
(—4vp,2vp,dvg). For the neutron and its (u,d,d) tri-

plet, the entries are (%Vm—%"m"%";«-)' We now wish

to use these to establish Koide triplet matrices for the
neutron and proton which can then be used to generate
the sum of their masses.

Looking at these vacuum triplets (_%VF,%VF,%VF) and

(2v;,—Lvp,—1v,)» We see that to match the mass dimen-
sion % of the terms with ¢/ym, and M in (5.4) and

use these as Koide triplets, we will need to take the
fourth roots of these vacuum triplets. So we do exactly
that, and pair these triplets with the mass triplets
(md,mu,m“) and (mu,md,md) for which we also take

the fourth root to match (5.4). Thus, we use

_ly 24 2 i34/l 4{; 42

( 3VF’3VF93VF)—)(Z 3 Ve s\ 3 Ve 535 VM, and
24y 1y _1 4f2 754fL 541

(3vF, Vs 3vF)—>(./3v,,.mu,z Y3vemy i ,/3vad) to

define two new Koide triplets, one for the neutron and
one for the proton, as follows:

Y2v,.m, 0 0
K (N)= 0 P4iv.m, 0 ’ (5.6)
0 0 i ﬂ%vpmd

i*4iv.m, 0 0

Kp(P)= 0 \4/%"qu 0 . G.7)
0 0 #%vpmu

What we have done here is simply develop (5.6) and (5.7)
to match the mass dimensionalities in (5.4) while bringing
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in the coefficients from (5.5) which reflect the electric
charges of the up and down quarks. We see that because
of the negatively-signed (-) charge for the down quark, of
which we have taken the fourth root, each of these triplets
contains components with the complex coefficient

1= =%(1+i)-

In recent years, consideration has been given to having
negative square root terms in Koide mass relations, see for
example (3.21) in which one uses — \/E_ to derive a close

relation for the (csb) triplet (see Rivero’s original find-

ing of this in [11]). The above, (5.6) and (5.7) take this a
step further, because they raise the specter of Koide tri-
plets with complex coefficients! In the next section we
explore the profound implications of these complex co-
efficients, which arise from the oppositely-signed charges
of the up and down quarks. But for the moment, we
ignore ;° in the above and examine magnitudes only,
and form and calculate the following Koide matrix
product of (5.6) and (5.7) with ;* excised:

K 15 (P)K 5 (N)

— i A
,;;vpmd 0 0

5.8
0 0 Y3vpm, SR
=Tr
H2v.m, 0 0
0 Yrvem, 0
0 0 Yyvem,

=3.4/2v,*m,m, =1857.570635 MeV

Comparing to (53) which tells us that
(mp+my),,. ., =1856.446637MeV We see that we

have hit the target to within about 0.06%! That is:
K 5 (P)Ky,(N) _ 1857.570635 MeV _ 1.0006054571 (5-9)
(my +m, ) oot 1856.446637 MeV

This is extremely close, and in particular, we now see that
the sum of the neutron and proton mass coverings may be
expressed solely as a function of the up and down quark
masses and charges and the Fermi vev to within about 6
parts in 10,000! So if we use this close relationship to
hypothesize that a meaningful relationship is given by
my, +my, =K 5 (P)K, (N)> then using the above with (5.3)

to add the current quark masses 3m, +3m, 10 this mass
cover sum, we see that to within about 0.06%:
M, + M, =my +m, +3m, +3m,

=K, (P)K;,(N)+3m, +3m, "

—n.4/2 2
=3-32v.“m,m, +3m, +3m,

So it appears as though we have now discovered the cor-
rect coefficients for the “clue” in (5.4). These coeffi-

(5.10)

cients, which are based on none other than the electric
charges of the quarks, yield the neutron plus proton mass
sum to 6 parts in 10,000!

Further qualifying (5.10) as a proper and not merely
coincidental expression for the neutron plus proton mass
sum, we see that this is symmetric under u<>d inter-
change, and that it is formed by taking the inner product
K 5 (P)K 5, (N) of the Koide proton matrix K(P) and

the Koide neutron matrix K(N), which product is

symmetric under p <> n interchange. Further, both

of these fully embed the electric charges and mass mag-
nitudes of the current quarks as well as the Fermi vev.
So in sum, (5.10) makes sense on multiple bases: it
yields an empirical match to within 6 parts in 10,000; it
is the product of a proton matrix with a neutron matrix;
the proton matrix contains the masses and charges of two
up quarks and one down quark while the neutron matrix
contains the masses and charges of two down quarks and
one up quark; and it is fully symmetric under both
u<>d and p < n interchange.

Furthermore, if we divide (5.8) by 2, we see that:

K 5 (P)K,,(N)/ 2= 242y, 2mm, =928.7853174MeV -(5.11)
This actually falls between m, =928.9179915MeV and

my, =927.5286457MeV from (5.1) and (5.2), so (5.10)

clearly appears to be a correct expression for the leading
terms in the neutron and proton masses. Based on this
close concurrence and “threading the needle” between
the neutron and proton masses with (5.11) and all of the
appropriate symmetries noted in the previous paragraph,
we now regard (5.10) as a meaningful (rather than coin-
cidental) close expression for A, + M, to 0.06%.

It will simplify and clarify the calculations from here
to use an uppercase M notation to define what we shall
hereafter refer to as “vacuum-amplified” up and down
quark masses according to:

M, = [2v.m, =604.1751345MeV , (5.12)
M, = [tv.m, =634.5784463MeV - (5.13)
Consequently:

(MM, =42v,>m,m, =619.1902116MeV - (5.14)

With these definitions, the neutron plus proton mass sum
(5.10) may be rewritten more transparently as:

My + M, =my +mp+3m, +3m, 53(1/M,‘Md +m, +md):(5-15)

while the Koide mass matrices (5.6) and (5.7) for the
neutron and proton with the ;° =%(1+i) coefficient

that we excised to calculate (5.8) restored, become:
M, 0 0
KxP)=| 0 M, o0 |
0 0 M,

(5.16)
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JM, 0 0
K (N)=l 0 i*JM, 0
0 0 M,
Thus, as in (5.8), but including this complex factor, we
now take:
K ;(P)Kyy(N)
M, 0 0 \(JyM, © 0
=Tr|| 0 M, o || o #yM, 0
0 0 JM, || 0 0 M,
=3i° [M, M, =-(1+1)1857.570635 MeV
Having found a very close magnitude, we could make
use of a /2 factor and continue to match the empirical
data by writing 2Re(K 5(P)Kp(N))=m, +my- But
this just sidesteps understanding the meaning of this
complex coefficient and it does not help us past the
0.06% difference that still remains between the predicted
and the empirical data.

We now need to find a more fundamental way to un-
derstand this complex factor ;? :%(1“’), as well as

(5.17)

how to close the remaining 0.06% gap between the pre-
dicted and the observed neutron plus proton mass sum.
That will be the subject of the next two sections.

6. Exact Characterization of the Neutron
and Proton Masses via a Mixing Angle 6
and Phase Angle 0

The complex factor ;3 -_-_\;?(14, i) which arises from the

oppositely-signed up and down quark charges, as we
shall now see, is actually like the subtle clue in a good
detective story which, when pulled like a small thread
and pursued to its logical end, eventually cracks the en-
tire mystery. So, let us start to pull on this thread and
see where it leads us.

We first represent this factor ;5 = %(1 + ,') in terms of

a phase angle ¢’ defined such that §'=7z/4, so that:
1+i)=exp(i6') = cos &' +isin&’- (6.1)

MM, 0 0

M,+M,=EUyE,=3Tt| 0 Jm 0
o o Jm
JM M, exp(i6) 0

=3Tr 0

i.:‘s \_/1_2_(

(5.18)

exp(id)

m, cos 6,

0 —\m,m, sin&,

Then, we briefly rename K — K’ and use this phase to

rewrite (5.18) as:

K5 (P)K 3, (N)
&M, 0 0 M, 0 0 -(6.2)
=Tr 0 M, 0 0 &M, -0
0 0 M, 0 0 e’ M,

=3exp(i8') M M, =m +m,

with * — exp (ié') in the separate matrices (5.16) also.
Then we use this to rewrite mass sum (5.15) with
i’ exp(ié’) restored as:

’ 4 U U
M, + M, = my +mp +3m, +3m,

=3(M,M, exp(i6") +m, +m,,)’

where we have also briefly renamed A — M’ and
mPN_>m;,N,allwith S'=nl4.

(6.3)

Now, (6.3) is important, because it gives us an oppor-
tunity to define a new Koide matrix E,, which we shall

refer to as the “electron generation matrix” E as such:
MM, 0 0
E,=v3| 0 m, 0
0 0 m,
Then, making note of the phase exp(;’é”) which multi-
plies /M, M, in (6.3) and keeping in mind how the

Kobayashi and Maskawa mixing matrices are formed for
three generations, we introduce a new angle ¢, such

(6.4)

that @ =0 and form a unitary matrix y; with e

exp (i5 ') 0 0 ;5
Ui = 0 cos@ sin@ |={0 1 0f 6.5)
0 -sin@ cosf) |0 0 1

So (6.5) multiplied by (6.4) simply generalizes the ap-
pearance of the term ;5 [p/ A, in (5.18). But now,

let us permit both § and @ to rotate freely, 6'—>46,
8'— 5. Then, using (6.4) and (6.5), we may form the
neutron plus proton mass sum according to:

MM, 0 0
m, 0
m

0 m

0 0
cos@ sing, 0
—sin§, cosb, 0

0

Jm,m, sin b,

m, cos 6,

(6.6)

=3(,/MuMd exp(i6)+m, cos6, +m, cosé’l)



For the special case where @-—6'=0 and
§—>& =n/4, we precisely reproduce (6.3). But in
(6.6) we have removed the approximation sign = that
was in (6.3), because we are now going to define the an-
gles 9,5 so as to precisely match up with the empirical

values of the neutron and proton masses to overcome the
remaining 0.06% gap. That is, just as (1.4) is an exact
formula for the proton—neutron mass difference, we shall
now regard (6.6) as an exact formula for the neutron plus
proton mass sum, with the numerical values of 4,5

defined by empirical data so as to make this an exact fit.
Now before we proceed, let us pause to make clear, the

cascading detective work we have just done: We have

used the matrix diaglU = (,’5,1,1) implicit in (6.3) and

explicit in (6.5) as a hint that there exists a matrix
diagU = (exp(i6"),1,1) with 6'=n/4. Then we use

diagU = (exp(ié’),l,l) as a further hint that there exists a

matrix (6.5). Then we allow both of these angles to
freely rotate to form (6.6) which generalizes (6.3).
Following all of this, we will use these freely rotated
angles to permit the otherwise close relationship (6.3) to
be fitted exactly by empirically choosing these angles so
as to yield an exact fit.

But before we do this, however, there is a final, deep
cascade to this hint, which is to recognize that (6.5) with
angles free to rotate is one of the three matrices used to
define the CKM matrices used for electroweak genera-
tion mixing, see [7.11] in [8], and in particular, is the
matrix that is use to introduce the phase angle responsi-
ble for CP violation. We also see that (6.4) is strictly a
function of the first (electron generation) quark masses
and the Fermi vev which makes its upper left component
af MM, containing the “vacuum-enhanced” quark

masses substantially larger than its middle and lower
right components [m and /m, -

Because CKM mixing has two more matrices and also
mixes two more generations, let us now form two more
matrices M and T analogous to (6.4) for the muon
and tauon generation of quarks, following the pattern for
mixing in the original parameterization of Kobayashi and
Maskawa.  Thus, we put the large components
af MM, and 4 MM, into the lower right positions.
And, as a matter of convention, we keep the up (electric
charge = +2/3) series of mass terms in the middle posi-
tion. Thus we define muon and tauon generation ma-
trices as:

N 0 Jm, 0 o ).(6.7)
M,;EE‘/§ 0 \/m—c 0 ;TIIEEJ:; 0 \/m—: 0
0 0 MM, 0 0 MM,

At the same time, analogously to (5.12) and (5.13), we
define vacuum-enhanced higher-generation quark mass-
es:

M, = tvm, =14,467 MeV » (6.8)
M, = Jtvm =2792MeV , (6.9)
M, = \3vm, =168,758 MeV , (6.10)
M, = Jtvm, =18,522 MeV , 6.11)
which yields higher-generation analogues to (5.14):
MM, =6356MeV , (6.12)
MM, =55,908 MeV - (6.13)

These values are calculated from the PDG data [10] laid
out prior to (3.12), rounded to the nearest MeV (recog-
nizing substantial experimental uncertainties).

We also define two more matrices analogous to (6.5)
for the second and third generations in same manner as is
used to form the CKM mixing matrices, again see [7.11]
in [8]:

cosd, sing, 0 cos@, sing;, 0 (6.14)
U, =| —sind, cosf, 0;U;,;=|—sing; cosd, 0 ’
0 0 1 0 0 1

Then, analogously to (6.6), for the second and third
generations, respectively, we form:

MABUZECMCA
m, cos &, Jmm, sin6, 0 (6.15)
=3Tr| —Jmm, sin6,  m,cosb, 0 ‘
0 0 MM,
= 3(./MCMS +m, cosf, +m cosBZ)
TABU3BCTCA
m, cos 6, Jm,m, sin@, 0 (6.16)
=3Tr| —Jm,m, sin6,  m,cosf, 0
0 0 MM,

= 3(./M,M,, +m, cos 6, +m, cosz93)

Then, we multiply all three of (6.6), (6.15) and (6.16)
together in the same manner that the CKM mixing ma-
trices are formed, again see [7.11] in [8], to obtain a
master “mass and mixing matrix” ® with mass dimen-
sion +3, defined as:



®=M-U,-M-E-U,-E-T-U,-T

—m \Jmm, \m,m, €S, S, m,

mgm_m, C, S, Cy

is i
+yM M ,mm,c,c e +yM M, m jmm, c,s;¢e
=27 —mm[m,m, C C,S; m,mm, C, C,Cy

i&
—JM M, \|mm.m,s,c;¢e
\/mumd VMcMs \)mbml 518;

This master matrix contains all six of the quark masses
in all three generations, all three of the real mixing an-
gles and the one phase angle that appears when the three
generations are mixed, and implied in the vacu-
um-enhanced mass terms, the Fermi vev and the electric
charges of all of these quarks. 1f all of the masses are
set to equal 1, this reduces to the usual generational
mixing matrix in the original parameterization of Koba-
yashi and Maskawa, seen in, e.g., [7.11] in [8]. In the
circumstance where s, =0, s5,=0, this reduces to:

JM M mm, e 0 0 (6.1 8)
©=27 0 m,m.m, cos6, I, m,m, M M, sin 6,

0 —:fm,,md‘}MM,m, sing, my MM, MM, cos6,
and in the further circumstance where all of the second
and third generation masses are set to 1, this further re-
duces to 9 times the matrix shown in (6.6):

JM M, e’ 0 0
Jm,m, sin6,

0 =27 0 m, cosé,
m, cos 6,

0 —m,m, sin6,

So in this particular special case, (6.17) even contains the
neutron plus proton mass sum of (6.6):

10 = B(JM"M(, exp(i8)+m, cos6, +m, cos&l) =My+M, 1(6.20)
So this neutron plus proton mass sum now is a special
case of (6.17) which includes all the generation mixing
angles and all the quark masses and their electric charges
and the Fermi vev!

Consequently, one expects that (6.17) can be used to
gain substantial new insights into fermion and baryon
masses generally. And all of this emerges in cascade
fashion from the simple hint of a matrix with
diagU = (,'-5,1,1) in the neutron plus proton mass formula

.(6.19)

(6.3), with the i® itself having emerged from the sim-
ple fact that up and down quarks have oppositely-signed
charges which led to terms containing 41 when we
formed Koide matrices to represent masses. Such is the
nature of this detective mystery!

i
— M M \Jmm,mm, s8¢
—Vmumd M:;Msmt 516G

6.17)

m,m,m, MM, s c,

my MM, (MM, c,

With the important contextual digression of (6.7)
through (6.20) as backdrop, we now return to solve (1.4)
and (6.6) as simultaneous equations, that is, we now
solve the simultaneous equation set:

My,+My= 3(,/M"M(, exp(i6)+m, cosO+m, cosBl) (621)
My =M, =m, ~(3m,+2mm, ~3m,)/ (2}

We now need no more than elementary algebra to deter-
mine that the neutron and proton masses, separately, are
each given by:

3(,/MuMd exp(i6)+cos6, (m, +m, ))
+m, —(3md +2,/m,m, —3mu)/(27c)%
3(,/MuMd exp(i6)+cos 6, (m, +md))

-m, +(3md +2,[m,m, —3mu);’(271:)%

My=3
. (6.22)

=1
M,=5

These can be made into exact theoretical expressions for
the neutron and proton mass by solving for g,,5, to find

their empirical values based on the empirical neutron
and proton masses. Let’s now do so.

Because each of (6.22) contains a complex phase, we
will need to form the square modulus magnitude

| M‘Z = MM of these masses. So first we deduce:
alpay | =9M,M,

+6c0s 3 M, M, (30059,(»1,, +my)+m, —(3md +2fm,m, —3m")/(21r)§) (6.23)

2
5

+ (3 cos, (m, +m,)+m, - (Bmd +2.Jm,m, - 3m") / (27r)% )
4M,[" =9M, M,

+6c0s8fM M, (30059‘ (m,+m,)—m, +(3md +2,Jm,m, —3m,,)/(27r)§)
+(3 cos @, (m, +my)—m, + (3m,, +2Jmm, — 3m“)/ (Z;r)% )2

Now we solve these as simultaneous equations for 6,

and &. First we restructure (6.23) in terms of J to
arrive at:



-3m, ) / (275)% )2

4\MN12 -9M M, —(?;cos@l (m,+my)+m, —(3m{, +2,/m,m,

cosd = 3
6 MM, (3 cos8, (m, +m,)+m,~(3m, +2,fm,m, —3m,,)/(2n)i) (6.24)
312
a\M, [ -9M M, —(3cos9l (m, +my )= m, +(3my 2 fm,m, —3m")/(271:)7)
cosd = -
6.JM M, (3 cos8, (m, +m,)—~m, +(3m, +2\m,m, —3m,,)/(2n)f)
We now set these two cosS equal to one another to N=4|M, |2 ~9M,M,; P=4] MPr —OM, M,
eliminate & and solve for @. It will be easier to see (6.26)

the underlying structure of these equations as well as
solve them if we write (6.24) above as:

2 2
—(BCOSGI +A) _ P—(BCOSQI —A) (625)
(Bcosé, + 4) (Bcosb, — 4)
using the following substitution of variables:

N
Ccosd =

A=m, —(3md +2,/m,my, —3mu)i(27t)%;

B=3(m, +m,); C=6yMM,
Next, we reduce the second and third terms of (6.25)
successively in five steps as follows:

1: (N—(Bcosgl + A)Z)(Bcosgl -A)= (P—(Bcost9l - A)z\)(Bcosé’1 +4)

2: N(Bcos, —A)—(B2 cos’ 6, -AZ)(Bcosé?l +A)=P(Bcosf, + A)—(BZ cos’ 6, —Az)(Bcost9l - A4)

N(Bcos6,—4)

_ P(Bcosé, +4)
(B2 cos’ BI—AZ) -

(B2 cos” 6, —Az) A

627

4: N(BcosQ,—A)—A(Bzcos2 61—A2)=P(Bcos€l+A)+A(B2 cos’ HI—AZ)

5: 0={24B"}cos’ 6, ~{B(N - P)}cosf +{d(N+P)-24}
In the final step, we arrive at a quadratic for cos@,, and

so obtain a solution via the quadratic equation. Then,
we use the variables (6.26) including the empirical
masses of the neutron and proton, to calculate that:

NP (N -PY -8(4*(N+P)-24")
44B ’

(6.28)

 cosé, =

=0.9474541242
Thus, sing, =0.31989167 -
negative root, because this yields —1<cos <1.

In the above, we use the
This
means the empirically-determined value of ¢, is:

6, =0.32561515 rad =18.65637386° = 7/ 9.64817715.(6.29)
We shall refer to cos 6, =0.9474541242 in (6.28) used to

precisely fit (6.22) to the observed neutron and proton
masses as the “nucleon fitting angle.” In the next sec-
tion we shall show how to tie this angle to the observed
CKM mixing angles, so that it is not a “new” angle but is
related to other known mixing data.

Now, we use (6.28) in (6.25) to solve for &, and cal-
culate to find that:

N—((N—P—FP) ~8(A4 (N +P)-24") )/ A+A)z (6.30)
((N P J(v-P) -8(£(N+P)- 2A‘)
((N P- J(V-PY -8(# (N +P)-24") )//4/1 AT

) C((N P- \/7\/ P -8(4(N+P)- 2A4) )

This numerical calculation reveals that cosd =1, exact-
Iy, to all decimal places, so the phase factor 5=0.

cosd =

This means that when the variables in (6.26) are substi-
tuted into (6.30), the extremely unwieldy-looking result-
ing expression will reduce to 1 identically! So to the
extent that § may be a CP-violating phase, and given
that §=0 is a deduced result for the neutron and pro-
ton masses (6.22), this deductively tells us that there are
no CP—violating effects associated with neutron and
proton. This is validated by empirical data which
shows the mass of the antiproton is equal to that of the
proton, and the mass of the antineutron is equal to that of
the neutron, see, e.g., [12], [13]. So, we take (6.22) to
be exact formulations of the neutron and proton masses,
in the circumstance where empirically-determined angle
cos 8, =0.9474541242 and CP-violating phase & =0.

So we now return to (6.22), set § =0, and so obtain
our final expressions for the neutron and proton masses:

1 3(JM_AT+cose(m +my))
M= em, ~(3m, +2fmm, ~3m)/ (22}t |, (63D
o 3(JM,M, +c0s6, (m, +m,))
" ey (3my 22 fmmg —3m,) 1 (22)

which are exact relations with the empirical substitution
cosd, =0.9474541242 .

These relationships (6.31), in turn, now enable us to go
back to the masses (nuclear weights) for the 1s nuclides
predicted in [5] to high accuracy and rewrite [8.6], [8.1],
[8.3] and [8.5] of [5], respectively, as:

IM = M, + My —m, =3(JM,M, +cos, (m, + m,))-m,6.32)



14 J.R. Yablon

M = M, +2M,, —4m, +2.[m,m, /(271')%

9(JM, M, +cos6, (m, +m, ) (6.33)
=3 3
~Tm, — (Bmd -2 /m,m, — 3mu)(27r)2
3M =2Mp+ My -2m, — [m,m,
. (6.34)

9(JM"M,, +cos6,(m, +md))
L
’ —5m, —2./m,m, +(3md+2 m,m, —3m,,)/(2ﬂ:)%

SM =2M,+2M, —6m, —6m,
+(10m, +10m, +16\fm,m, )/(275)% +2mm; (635
= 6(,/MuMd +cos6,(m, +m;)—m, —md)
+2fmmg +(10m, +10m, +16 mumd)/(Zn')%
Now, #B,=ZM,+NM, - M, which is binding en-
ergy B, for any given nuclide with Z protons and N

neutrons hence A=Z+N nucleons, thus N-Z=A4-2Z,
may also be rewritten generally in relation to nuclear
weights using (6.31), for any nuclide, in the form:

3A(JM,,M,, +cos6, (m, +m, ))
, Ay, 1
7B+ Z'M_—z- (4-22)| m, - 3m, +2 m“rlnd—3m,,
()’

One final exploratory exercise of interest is to return to
the master mass and mixing matrix ®in (6.17) and set

(6.36)

6,=6,=5=0 while using cosf =0.9474541242
found in (6.28). In this circumstance, (6.17) reduces to:
M M mm, 0 0 (6.37)
Q=27 0 m,m_m, cos, 0
0 0 m, W W cosé,

This is in dimensions of mass’. If we take the cubed
root, and divide by 2 (because we know that this origi-
nated with the neutron plus proton mass sum) to get mass
numbers that should be related to individual baryons, we

find 1diagd/® =(939.72MeV,1163MeV,1773MeV’) (and

we also get a coefficient 3/27/2=3/2, back to Koide!).

This first entry is very close to the neutron mass
939.565379 MeV which would not be expected a priori,
but this is because /msmb —630Mel/ Wwhich is not too

far from M M, =619MeV - Perhaps this is yet an-

other close relationship among fermion masses!? The
second entry at 1163 MeV, which would become smaller
when 6,20, 6,#0, is only about 4% larger than the

mass of the A (uds)=1115.683MeV baryon, which
could readily be compensated by non-zero g,,4, angles

as well as experimental errors in the charm and top quark
masses. The final entry at 1773 MeV, is perhaps sug-

gestive of the Q (sss)=1672.45MeV baryon mass,

however, contra, there are no omitted angles and some-
where we should expect to come across a baryon with a
third generation quark.

These (6.37) relationships are simply pointed out in
an exploratory spirit, and it is to be noted that ® in
(6.17) is just one representation of a mass / mixing ma-
trix and that one can also vary the way in which one sets
up the Koide triplets (6.4) and (6.7), so as to be able to
obtain this ® matrix in several different representa-
tions. Whatever the correct fits may turn out to be with
various higher-generation baryons, it should be clear that
the master matrix (6.17) and like matrices that can be
similarly constructed are an exceedingly useful tool for
trying to develop and fit mutual relationships among
mixing angles, CP violating phases, and quark and bary-
on masses.

7. Relation of the Nucleon Fitting Angle 6 to
the CKM Mixing Angles

Following the development in the last section, the nu-
cleon fitting angle cos6, =0.9474541242 found in

(6.28) is a new empirical parameter that enables us to
precisely formulate the neutron and proton masses using
(6.31). While this is an important step forward in un-
derstanding the neutron and proton masses, it would be
even better if this angle could be related in some way to
the empirically-known CKM quark mixing angles, which
could then relate the neutron and proton masses them-
selves to the CKM angles. This is highly preferable to
having cosé, be a new, separate parameter.

Toward this end, we first write the CKM matrix with
the “standard choice” of angles and its empirical values
from PDG’s [14] as:

Va Vs Vs
=\ Vs
. Vo .(7.1)

e
-5
C1Ci3 $12C13 513€

b
RS

Va

!
- _ s _ is
=| =820 ~ 12893513 C12Co3 — S12523513€ S23C13

5 is
812523 ~ C12623513€ —Cp8p3 — 812C3513€ Ca3Ci3

0.97427+0.00015 0.2253420.00065  0.00351:95%013
= -0.22520+0.00065 0.97344+0.00016  0.0412%0%s
~0.00867%22%%2 ~0.04042%1 0.999146"250%%

(We use a negative sign for the three lower-left empirical
entries to match the negative values in these entries
which the standard CKM matrix takes on when the an-
gles are between 0 and 7z/2 .) Now,
cosf, = 0.9474541242 does not fit any particular one of

these elements. But what is of interest is the determi-
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nant IV. which may be calculate from the CKM mixing
and phase angles 6, and & tobe:

VTtV Vala + VeVl Fa =Vl Vo=Vl o =1 (T-2)

Iy‘zVud es” b T ust cb es’id " Vus

and which contains invariant expressions of interest.
(See also [15] which cleverly connects this determinant,
when real as in the standard angle choice (7.1), to the
Jarlskog determinant.) Specifically, if we employ the
mean experimental values in (7.1), we find that the sum
of the three positively-signed (+) terms in the determi-

nant, denoted |V , which is an invariant containing all

+

nine matrix elements, and which we shall refer to as the
“major determinant,” is determined from the mid-range
empirical data in (7.1) to be:

\VL = I/udI/ V + VnsV:':bVJd + VuchdI/;: = 0'947535 :

cs” th

(7.3)
This major determinant is very close to cos6, = 0.947454
based on the neutron and proton masses, truncated to the
known precision of |V|+ . In fact we find
V], =0.947192 = cos, ~0.000262 if we use the lower

bounds of all the experimental error ranges in (7.1), and
|V|+ =0.947854 = cos 6, +0.000400 if we use upper

bounds. So this is within experimental errors. There-
fore, using cosé, =0.947454 as the baseline against

which to compare \VL, we find that:

V], = cos 6, toeaes = 0.947454 3 unsc; - (74)
This means that the nucleon fitting angle cosg, is re-
lated to the invariant scalar || according to:

(7.5)

well within experimental errors! If we now take this to
be a meaningful relationship given that it falls well
within experimental errors, this means that we can go
back to (6.31) and use (7.5) to rewrite the neutron and
proton masses completely in terms of the CKM mafrix
elements, and specifically in terms of the major determi-
nant IV , according to:

+

1 3(JMM, +[1, -(m, +m,))

i +mu—(3md+2 m,m, —3mu)/(27r)%

1 3(JM M, + V], -(m, +m,))

: —mu+(3md+2 m,m, —3m“)/(27r)%

c0s8, =[], = VWV + ViV Vi + ViV Vo

cs’ tb us" cb” te

(7.6)

This now connects the proton and neutron masses to
the major determinant lVl which is an invariant of the

CKM mixing matrix . This not only closes the 0.06%
difference of (5.18) between the predicted and the em-
pirical neutron and proton masses using cosd,, but it

connects cosg, to the CKM mixing angles so that (7.6)

now specifies the exact masses of the free neutron and
proton as a function of the up and down masses and
charges and the Fermi vev and the CKM quark mixing
angles without introducing any new physical parameters
to do so! Because cosf, =0.9474541242 is known

with better precision than \VL —0.947535, we then use

cosf, as the basis for specifying |V| , i.e., we now set:
+

], = cos6, =0.9474541242 a.m

which is then a further ingredient that may be used to
tighten up the empirical data in (7.1).

Further, because when the mixing angles are consid-
ered ‘VL injects into the proton and neutron masses an

term with a Jarlskog determinant
(which may be calculated

imaginary
J = €13°€15C23512513523 SN O
using the angles in (7.1) with § — 5, ) and if we wish

to maintain the proton and neutron masses to be entirely
real based on cosd =1 (the “nucleon phase angle”
8 # Oy ) deduced in (6.30), then we can achieve this

by restoring the phase to the vacuum-enhanced mass
term as in  (6.21), ie., by  restoring

JM M, —> MM, exp(is)» and then choosing & in
ifM M, sins to absorb the terms with the Jarlskog

determinant, again see [15] which shows how the
Jarlskog determinant is “the imaginary part of any one
element among the six components of determinant of V.
.. when the whole determinant is made real” as it is in
(7.2). Specifically, referring to the mass formulation of
(7.6), this means that one would  set
ising-M,M, +Iml|V] -(m, +m,)=0 to maintain CP
symmetry for the neutron and proton. Given that

Im|V|+ —_3J , this means that:

m, +my, N ) m,+m,; (7.8)
A =30,,01,C38128135% SN Oy =
JM M, JM M,

will define a very tiny phase in the term
/ M M, exp (,'5) in the proton and neutron masses such

that these masses remain real and thus maintain CP
symmetry. While beyond the scope of this paper, this
could provide additional insight into the so-called
“strong CP problem.”

Finally, as regards fermion masses, if we write each
elementary fermion mass ; in terms of the Fermi vev

sind =3J

using a dimensionless coupling G, as 2m =GV,

see, e.g., [15.32] of [16], then use these relationships in
(6.17) for ® or a similarly-formed matrix in a CKM
representation (such as (7.1)), we find that the matrix
entries will contain terms of the form G f3vF3, G f3VF4

and depending on representation, G /3VF5' ~ This may
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help us gain further insight into fermion masses as well
as high-order Lagrangian vacuum terms ¢*, ¢, &

All of this mystery cracking is the result of the detec-
tive work embarked upon at the start of section 6, of
pulling on the tiny thread of the complex factor
i’ = %(1 + i) which arises from taking the fourth root of

the minus (-) sign that emanates from the opposite-
ly-signed electric charges of the up and down quarks, in
order to form the Koide matrices (5.6) and (5.7).

8. Vacuum-Amplified and  Constituent
Quark Masses

In (5.12) through (5.14) we defined three very helpful
mass values all between 604 MeV and 635 MeV. It is
natural therefore to inquire whether these “vacu-
um-amplified” quark masses might be related to the
so-called “constituent” quark masses which specify how
much mass each quark contributes to total mass of a nu-
cleon or baryon, as opposed to the bare “current” quark
masses. Specifically, recalling that these were the in-
gredients in the neutron plus proton mass sum, we note
M, 12=302.0875673MeV , M,/2= 317.2892232MeV

in (5.12) and (5.13), which is about 1/3 of the neutron
and proton masses. This suggests that (5.12) to (5.14)
may be related to the constituent masses of the up and
down quarks which specify how much of the observed
neutron and proton masses arise from each of the quarks
and their interactions with the vacuum. The question
we now ask, referring to the neutron and proton mass
formulas (6.31), is how much does each up quark con-
tribute, and how much does each down quark contribute,
to these total masses? In other words, what are the
“constituent” masses of the up quarks and down quarks
in each of the neutron and proton, as opposed to their
bare “current” masses?

Referring to the neutron and proton masses (6.31), for

the square root terms / MM, and mm, » We cannot

directly segregate the up quark mass contribution from
that of the down quark. In these square root terms, the
up and down are coequal mass contributors. So we
shall allocate instead. For the term 3. /M M, in the

neutron mass, we allocate a 1./ MM, contribution to
the one up quark and a total 2. / MM, contribution to

the two down quarks. For the proton, we allocate
1- MM, to the one down quark and 2. /MuMd to

We similarly allocate the | mm,

terms. But as to terms which contain »; alone, or m,

the two up quarks.

alone, we segregate these and apply them directly to the
up and down quark constituent masses, respectively.
Thus, we identically rewrite each of (6.31) while defin-

ing respective constituent quark mass sums U, +2D,
and 2U, +D,, as:

2./”: m,
M, M, +3m,cos6, +m, - wd +_3”’_u

e e |_ ap
YN N

(8.1)

4./m,m, _ 3m,
322} (2n)
4_’”1‘_”’;'__1"% (8.2)
3(2z)°  (2=) U 4D
=2Up+Lp
2
MM, +3m,cosb, + e L
3(2z)°  (27)
with the up and down quark contributions respectively
specified in the upper and lower lines of each of (8.1)
and (8.2). That is, the above represent a deconstruction
of the neutron and proton masses into the separate con-
tributions emanating from up and down quarks. We
then separate out the constituent quark masses and cal-
culate them using cos®, = 0.9474541242, as follows:

2JM M, +3m,cos6 -

2M M, +3m,cos —m, +

1
M,=—
F2

2. /mm

UNzl /MuMd +3mu0059,+m,,——l‘Td+_3@T ,(8.3)
2 3(2x)  (2n)
=314.0092987MeV
1 3 2,/m,my, 3m

Dy =—| M, M, +=m,cost, — -——=1,(8.4

N 2[ d 2 d 1 3(2%)% 2(271:)7]( )

=312.7780400MeV

2./m,m
Uy E%£,/M,,Md +%m" cosf, —m, +——+1 3, ].(8.5)

322 2(20)
=310.0274283MeV’

1 2./m,m
D, =—| JM,M, +3mdcosé?1+——";—d+—3ﬂl— . (8.6)
2 3(2z)  (2n)
=318.2171900MeV
The first expression (8.3) for U, is the constituent con-
tribution of the up quark to the mass of the neutron.
The second expression (8.4) for p, is the constituent

contribution of each of the two down quarks to the mass
of the neutron. U, in (8.5) is the constituent contribu-

tion of each of the two up quarks to the mass of the pro-
ton. Finally, p, in (8.6) is the constituent contribu-

tion of the down quark to the mass of the proton. One
can verify that M, =U,+2D, and M,=2U,+D,,
numerically and analytically. It is important to observe
that U, #U, and D, #D,, which is to say that the

constituent contribution of each quark to the mass of a
nucleon is zot the same for different nucleons, but rather
is dependent upon the particular nucleon in question, in
this case, a proton or a neutron.  So the lone up quark in
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the neutron makes a slightly greater contribution to the
overall neutron mass than each of the two down quarks,
and the lone down quark in the proton makes a slightly
greater contribution to the proton mass than each of the
two up quarks.

This sort of context-dependent variable behavior de-
pending upon nuclide is to be expected based not only on
what we uncovered throughout [5], but more generally
based on the fact that when nucleons bind together, they
release binding energy, so that different nuclides have
different weights per nucleon, and indeed, different nu-
cleons within a given nuclide should be expected to have
different weights from one another based on their shell
characterization.  Constituent mass equations (8.3)
through (8.6) tell us along these same lines, that the con-
stituent mass contributions from each quark will differ
depending upon the particular nuclide in question, and
indeed, upon the particular nucleon with which a quark is
associated within that nuclide. ~ The above, (8.3)
through (8.6), make the point that this type of variable
constituent mass behavior of individual quarks already
starts to appear even as between the free neutron and
proton. :

We also see that the “vacuum-amplified” quark masses
(5.12) through (5.14), are not synonymous with constit-
uent quark masses. These vacuum-amplified masses
are ingredients which are used as part of the calculation
of the constituent quark masses. While the constituent
quark masses vary from one nucleon and nuclide and
nucleon within a nuclide to the next, the , vacu-
um-amplified quark masses do not vary. They are mass
constants (to the same degree that current quark masses
are constants, recognizing mass screening) which do rot
change from one nucleon or nuclide to the next, and
which are used as ingredients for calculating the varying
constituent quark masses, as we see in (8.3) through
(8.6), as well as for calculating neutron and proton
masses (6.31) and nuclear weights (6.32) through (6.36).

9. The Lagrangian Formulation of the
Neutron plus Proton Mass Sum

Now we revert to the start of section 5, where we noted
that we can connect any Koide matrix products to a La-
grangian via (4.4) and (4.5). Now that we have ob-
tained a theoretical expression for the neutron and proton
masses, it is time to backtrack using the development in
section 4 to connect these masses to their associated La-
grangian expression. This is simply to put all of the
foregoing into a more formal physics context so that this
is understood as going beyond simply playing with mass
numbers to make them numerically fit an equation with
opaque origins. We shall develop such a Lagrangian
formulation for the neutron plus proton mass sum (6.6),
recognizing that a Lagrangian connection for the separate

masses of the neutron and proton can then be developed

using Yang-Mills matrix expressions such as [5.3], [5.4],

[6.3] and [7.4] of [5] to also develop a Lagrangian for-

mulation of neutron minus proton mass difference (1.4).
Using the Pauli spin matrix 7}, a unitary rotation ma-

trix may of course be formed using:

exp(iT,0) = 1+T,0+ 5 (5,6 +%(T,6) +4(iT,0) +..

(v 9, 0 &) ,(6 0 w1 —9’+Le“ 0,
“lo 170 o) o &) e o) "o &)
—LP G . 0-%0 4. cos@ sin@
~(6-16)+.. 1-307+46"+.. —(—sina cos&]
Consequently, the square root of this rotation matrix is:
cosi@ sinid
Jexp(iT,0) = exp(5iT,0) = 2 27 ¥2)
p(iT:0) Je ) [—sin%e cos+8
With this in mind we start with the expression (6.6)
including the phase exp(ié) which we later found in

0.1

(6.30) is exp(ié) -1, and write the neutron plus proton
mass sum using a square root rotation matrix as:
My + M, =E U pcBcs =Eyp \/El-gc Ui cpEos = E'1sEj,
MM, exp(i6) 0 o ).,03
=3Tr 0 \/m—,,cos%Q ﬁsin%&l
0 -\/m_dsin%e, m, cosi6
= 3(exp(i§)m+ m, cos6, +m, cosel)

in combination with a rotated “electron generation ma-
trix” E' defined via left multiplication with /U1 as:

M M, exp(Lid) 0 0

9.4
B =3 0 Jm, cosif,  Jm,sin}6, 04
0 —\/m—"sin 16, Jm,cos36

exp(4i6) 0 0 MM, O 0
=JU, Eez="3 0 coslf, sinif, 0 Jm, 0

( 0 —sin}6, cosge,] 0 0 \/m_d
and an adjoint matrix defined via right-multiplication
with ju, as:

MM exp(is 0 0
My exp(310) (9.5)

Eir=V3 0 Jm_" cos+6, \/m_” sinl6,
0 —J;Z sinig, /m,cos36
yMM, O 0 Jfexp(3is) 0 0
=E, \/f/_lw = 0 \/m_" 0 { 0 cos16, sin%@l}
0 0 \/m_,; 0 -sinif, cos36

In the above, cos6, =0.9474541242 is the empirical
number found in (6.28), and § =0 is identically true as
found in (6.30). The above, E’, and E .5, are just
the Koide triplet matrix E,, for the electron generation

rotated into primed state by multiplying from the left and
from the right via \/(_]I Ecs and E,. \/Ul "
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But we know from (4.4) and (4.5) that as soon as we
have a Koide matrix, we can backtrack into a Lagrangian
formulation. In this case, in (2.1) for a generalized
Koide matrix K, , we are setting m, = / MM, »
m,=m, and m;=m,, and the only new feature is that
we are then rotating this matrix both from the left and the
right via K'=+UK and K=KJU . Consequently,
we may use (9.4) and (9.5) to write the mass sum
M,+M, in (9.3) in a Lagrangian formulation, using
these rotated Koide matrices, via (4.4) and (4.5) as:
My+Mp= —(271')% m.@dﬁ = —;-(27{)3 Tr.m'g,‘..g’”"d}x

= %(271’)% Trjjjgle & d’x = %(Zfr)% m'gfw -8, d°x =E 1E}, ,(9.6)

oMM, exp(Lid) 0 o Y
=3Tr 0 \[m—"cos-;—e, \/m_,,sin%el
0 —Jm, sin %6,
=3(exp(i6)JM,,Md +m, cosf, +m, cos&,):MN +M,

by introducing new field strength tensors defined in the
manner of (4.2) as:

6™ m—f 77 ¥ Vi [ ,’r"]w,’. Ll ’7"]1//; 9.7)
JMM,' m, my

o _ _{?"4[7”,7"]‘11:,‘, . v [rr v v [7%7"]&/&],(9.8)

1
m, cos 36

Tr& A '
v M, ud m, my

where the “vacuum-amplified” masses M, and M, as
well as the square root mass A7 M, are defined as in

(5.12) to (5.14), and where the Koide mass matrices are
formed for &** using left-multiplication (9.4) and for

& using right-multiplication (9.5).

Referring back to sections 2 and 4, this means that here
we have set y, =W, v, =y, W¥;= !, inthe field
strength tensor (4.2) and as just noted, m, = / MM,
m,=m,, my=m, in the Koide matrix (2.1), then fol-

lowed the remaining development of section 4 with the
only addition being that we now are also employing the
rotations (9.4) and (9.5) on these Koide triplet matrices.
We also now have the knowledge which can be exploited
for further future development, that (9.3) for the neutron
plus proton mass sum specifies a special case of the very
general master mass and mixing matrix © as specified in
(6.17), see (6.20). So this gives us a hook into a La-
grangian formulation for other generations of fermion,
and therefore, for formulating other charmed, strange, top
and bottom-containing baryons.

As a consequence of the foregoing, the unrotated fer-
mion eigenstates used to form (9.7) and (9.8) are a triplet
(¥ s VW) consisting of a wavefunction for a vacu-

um-enhanced fermion ¥, (using upper case Greek),

together with the ordinary fermion wavefunctions
vy, for the up and down current quarks (lower case

Greek). It is the  , wavefunction that is responsible

for generating the vast preponderance of the constitu-
ent mass contributions to the neutron plus proton mass
sum, see section 8, while y, ,y, are responsible for the

current mass contributions.
Lastly, as in (4.12) through (4.14), at the nuts and bolts
Jevel, we apply the Gaussian ansatz (4.12), in the form:

i AE) 09
v (r)=d(mn )¢ exp[-g—“;;) ) ©10
9.11)

R e

and for the reduced Compton wavelengths, converting to
h=c=1 units, we specify:

K, =hlm,c=1/m, 9.12)
K,=himec=1/m,; (9.13)
/Kud =h/ M:Md c=1/ MnMd . (9'14)

So, referring back to the discussion at the end of sec-
tion 4, as was the case with the short range of the nuclear
interaction, we can indeed use the Gaussian ansatz to
model fermion wavefunctions as Gaussians and obtain
the fully-dressed neutron and proton masses. But to do
so, in the above we are using the undressed “current”
quarks i, which yielded binding energies in [1] and

[5], together in the same Koide triplet with a vacu-
um-amplified quark wavefunction ¥ , and associated

masses and wavelengths. So here too, it is not a ques-
tion of whether we can use a Gaussian ansatz, but rather,
it is a question of which wavefunctions with which
masses and wavelengths we need to use in the Gaussian
ansatz, in order to obtain a precise concurrence with em-
pirical data.

So, insofar as fully covered protons and neutrons are
concerned, it looks as if the vacuum-amplified quarks in
combination with the current quarks, are behaving as
free fermions, as specified in detail in all of the forego-
ing. This underscores the role of the Gaussian ansatz as
a modeling tool used to derive effective concurrence with
empirical data, rather than as a part of the theory per se.
The theory is centered on baryons being Yang-Mills
magnetic monopoles, and nucleons releasing or retaining
binding energies based on their resonant properties
which in turn depend upon the current quark content of
those nucleons. For calculations which involve the
components and emissions of protons and neutrons such
as their current quarks and their binding energies, the
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current quarks can be modeled as free fermions to obtain
empirically-accurate results. ~ For other calculations
which involve the bulk behavior of protons and neutrons,
accurate results may be obtained by modeling vacu-
um-enhanced quarks in combination with current quarks
as free fermions, in the manner outlined above.

The whole point of the discussion in this section has
been to make clear that the neutron plus proton mass sum
(and thus the individual neutron and proton masses) de-
veloped in this paper is not just the result of developing
formulas which fit the empirical data but have unclear,
opaque origins in the way that the Koide relations have
also had unclear origins. Rather, as shown in (9.6) this
mass sum can, be formulated as _the energy
M, + M, =—(2n)} [[] 8d'x = 4(27) Tr[[[&'&" &’
arising from integrating a Lagrangian  density
£=-15.8" over the entirety of a three-space volume
element d°x. This puts the neutron and proton masses
(and by implication via @ as specified in (6.17), other
baryon masses as well) into the context of fundamental,
Lagrangian-based physics, and shows how these mass
formulas (as well as those of Koide) are not just coinci-
dental numeric coincidences of unexplained origin, but
truly are real physics relationships with a Lagrangian
foundation.

10. Conclusion

In conclusion, we have shown how the Koide relation-
ships and associated triplet mass matrices can be gener-
alized to derive the observed sum of the free neutron and
proton rest masses in terms of the up and down current
quark masses and the Fermi vev to six parts in 10,000,
see (5.18). This sum can then be solved for the separate
neutron and proton masses using the neutron minus pro-
ton mass difference (1.4) earlier derived in [5], as shown
in (6.22). The oppositely-signed charges of the up and
down quarks are responsible for the appearance of a
complex phase exp(id) and real rotation angle 6 which
leads on an independent basis to mass and mixing matri-
ces similar to that of Cabibbo, Kobayashi and Maskawa
(CKM), see (6.5) and (6.14). These can then be used to
specify the neutron and proton mass relationships to un-
Jimited accuracy as shown in (6.31) using 6 as a nucleon
fitting angle deduced in (6.28) from empirical data.
This fitting angle is then shown in (7.5) to be related to
an invariant of the CKM mixing angles within experi-
mental errors. Also developed is a master mass and
mixing matrix developed in (6.17) which may help to
interconnect all baryon and quark masses and mixing

angles. The Koide generalizations developed here ena-
ble these neutron and proton mass relationships to be
given a Lagrangian formulation based on neutron and
proton field strength tensors that contain vacu-
um-amplified and current quark wavefunctions and
masses, as shown in section 9. In the course of devel-
opment, we also uncover new Koide relationships (3.14),
(3.16) and (3.17) for the neutrinos, the up quarks, and the
down quarks.
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