
Large scale fluid dynamics
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Physical fields

 QPAD’s

 Photon

 Gluon

 Fields from particle properties
 Quaternionic distributions

 Charges are preserved

 Fields represent 
influence of charges

 Electromagnetic field

 Gravitation field

𝛻𝜓 = 𝑚𝜑

 

𝑖

𝑛𝑖𝑒𝑖𝜓𝑖

 

𝑖

𝑛𝑖𝑚𝑖𝜑 𝑖

𝑒𝑖 = ±𝑒

𝛻𝜓 = 0
𝛻2𝜓 = 0

harmonic
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Inertia-1

 Φ0 =  𝑉𝜓 dV

In a uniform background:
𝜓 =  𝜌0

𝑟 ; 𝜌0 is constant

 Φ0 =  𝑉
 𝜌0
𝑟 dV = 𝜌0  𝑉

 1 𝑟 dV = 2π𝑅2𝜌0

 𝐺 = −𝑐2Φ (Dennis Sciama)

 𝚽 =  
𝑉

 𝜌0𝒗
𝑐 𝑟 dV = Φ  𝒗 𝑐 ;    𝚽 = Φ0   𝒗 𝑐

 𝕰 = 𝛻𝟎𝚽 + 𝛁Φ0 =  𝚽 + 𝛁Φ0 = Φ0   𝒗 𝑐 + 𝛁Φ0

State functions of 
distant particles 

Everywhere present 
potential
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Inertia-2
 Φ0 is a scalar potential

 𝜱 is a vector potential

 𝐺 is gravitational constant

 𝕰 = Φ0   𝒗 𝑐 + 𝛁Φ0

 𝕰 ≈ Φ0   𝒗 𝑐 = 𝐺  𝒗

 Acceleration goes together with an extra field 𝕰

 This field counteracts the acceleration
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Inertia-3
 Starting from coupling equation

 𝛻𝜓 = 𝑚𝜑

 𝜓 = χ + χ0 𝒗

 χ represents particle at rest

 𝜓0 = χ0
 𝝍 = χ + χ0 𝒗

 𝛻0𝝍 = χ0  𝒗 = 𝑚𝝋 − 𝜵𝜓0 − 𝜵× 𝝍

 𝕰 ≡ 𝛻0𝝍 + 𝜵𝜓0

SmallSmall

Represents influence 
of distant particles
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Continuity equation
 Balance equation

 Total change within V
= flow into V + production inside V


𝑑

𝑑𝜏
 𝑉 𝜌0 𝑑𝑉 =  𝑆  𝒏𝜌0

𝒗

𝑐
𝑑𝑆 +  𝑉 𝑠0 𝑑𝑉

  𝑉 𝛻0𝜌0 𝑑𝑉 =  𝑉 𝛁, 𝝆 𝑑𝑉 +  𝑉 𝑠0 𝑑𝑉

 𝝆 = 𝜌0𝒗/𝑐

 𝜌 = 𝜌0 + 𝝆

 𝑠 = 𝛻𝜌

 𝑠0 = 2𝛻0𝜌0 − 𝒗 𝑞 , 𝛁𝜌0 − 𝛁, 𝒗 𝜌0
 𝒔 = 𝛻0𝒗 + 𝛁𝜌0+𝜌0𝛁 × 𝒗 − 𝒗 × 𝛁𝜌0

Gauss
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Inversion surfaces


𝑑

𝑑𝜏
 
𝑉
𝜌 𝑑𝑉 +  

𝑆
 𝒏𝜌 𝑑𝑆 =  

𝑉
𝑠 𝑑𝑉

  𝑉 𝛻 𝜌 𝑑𝑉 =  𝑉 𝑠 𝑑𝑉

 The criterion  
𝑆
 𝒏𝜌 𝑑𝑆=0 divides universe in 

compartments

Inversion surface
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Compartments
universe

Huge 
BH

Black holesBlack holesBlack holesBlack holes

Compartments

BH⇔densest packaging

Huge BH ⇔ s tart of new episode

Never ending story

Merge
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History of Cosmology
 Black hole represents natal state of compartment

 Black holes suck all mass from their compartment 

 A passivated huge black hole represents start of new 
episode of its compartment

 Driving force is enormous mass present outside 
compartment ⇒ expansion

 Whole universe is affine space

 Result is never ending story
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Gravitation
 The Palestra is a curved space

 𝒫𝑏𝑙𝑢𝑟𝑟𝑒𝑑 = ℘𝑠ℎ𝑎𝑟𝑝 ∘ 𝜓 𝑏𝑙𝑢𝑟

 𝑑𝑠 𝑥 = 𝑑𝑠𝜈 𝑥 𝑒𝜈 = 𝑑℘ = 
𝜇=0…3

𝜕℘

𝜕𝑥𝜇
𝑑𝑥𝜇 = 𝑞𝜇 𝑥 𝑑𝑥𝜇

 𝑞𝜇 is quaternion

 𝑐2 𝑑𝑡2= 𝑑𝑠 𝑑𝑠∗ = 𝑑𝑥0
2 + 𝑑𝑥1

2 +𝑑𝑥2
2 +𝑑𝑥3

2

 𝑑𝑥0
2 = 𝑑𝜏2 = 𝑐2 𝑑𝑡2− 𝑑𝑥1

2 −𝑑𝑥2
2 −𝑑𝑥3

2

 ∆𝑠𝑓𝑙𝑎𝑡= ∆𝑥0 + 𝒊 ∆𝑥1 + 𝒋 ∆𝑥2 + 𝒌 ∆𝑥3

 ∆𝑠℘= 𝑞0∆𝑥0 + 𝑞1 ∆𝑥1 + 𝑞2 ∆𝑥2 + 𝑞3 ∆𝑥3

Pythagoras

Minkowski

Flat space

Curved space

dr

c dτ

16 partial derivatives
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Metric
 𝑑℘ is a quaternionic metric

 It is a linear combination of 16 partial derivatives

 𝑑℘ = 
𝜇=0…3

𝜕℘

𝜕𝑥𝜇
𝑑𝑥𝜇 = 𝑞𝜇 𝑥 𝑑𝑥𝜇

= 

𝜇=0…3

 

𝜈=0,…3

𝑒𝜈
𝜕℘𝜈

𝜕𝑥𝜇
𝑑𝑥𝜇 = 

𝜇=0…3

 

𝜈=0,…3

𝑒𝜈𝑞𝜈
𝜇
𝑑𝑥𝜇

 Avoids the need for tensors
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The effect of modularization
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Modularization
 Modularization is a very powerful influencer.

 Together with the corresponding encapsulation it 
reduces the relational complexity of the ensemble of 
objects on which modularization works.

 The encapsulation keeps most relations internal to the 
module.

 When relations between modules are reduced to a few 
types , then the module becomes reusable.

 If modules can be configured from lower order 
modules, then efficiency grows exponentially.
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Modularization
 Elementary particles can be considered as the lowest 

level of modules. All composites are higher level 
modules.

 Modularization uses resources efficiently.

 When sufficient resources in the form of reusable 
modules are present, then modularization can reach 
enormous heights. 

 On earth it was capable to generate intelligent 
species.
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Complexity
 Potential complexity of a set of objects is a measure 

that is defined by the number of potential relations 
that exist between the members of that set. 

 If there are n elements in the set,
then there exist n·(n-1) potential relations.

 Actual complexity of a set of objects is a measure that 
is defined by the number of relevant relations that 
exist between the members of the set. 

 Relational complexity is the ratio of the number of 
actual relations divided by the number of potential 
relations.
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Relations
 Modules connect via interfaces. 

 Relations that act within modules are lost to the 
outside world of the module. 

 Interfaces are collections of relations that are used by 
interactions. 

 Physics is based on relations. Quantum logic is a set of 
axioms that restrict the relations that exist between 
quantum logical propositions. 
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Types of physical interfaces
 Interactions run via (relevant) relations. 

 Inbound interactions come from the past. 

 Outbound interactions go to the future. 

 Two-sided interactions are cyclic. 

 They take at least two progression steps. 

 They are either oscillations or rotations of the inter-
actor.

 Cyclic interactions bind the corresponding modules 
together. 
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Modular systems
 Modular (sub)systems consist of connected modules.

 They need not be modules. 

 They become modules when they are encapsulated 
and offer standard interfaces that makes the 
encapsulated system a reusable object.

 All composites are modular systems
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Binding in sub-systems
 Let 𝜓 represent the renormalized superposition of the 

involved distributions.

 𝛻𝜓 = 𝜙 = 𝑚 𝜑

  𝑉 𝜓
2 𝑑𝑉 = 𝑉 𝜑

2 𝑑𝑉 = 1

  𝑉 𝜙
2 𝑑𝑉 =𝑚2

 𝑚 is the total energy of the sub-system

 The binding factor is the total energy of the sub-
system minus the sum of the total energies of the 
separate constituents.
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Random versus intelligent design
 At lower levels of modularization nature designs 

modular structures in a stochastic way. 
 This renders the modularization process rather slow. 
 It takes a huge amount of progression steps in order to 

achieve a relatively complicated structure. 
 Still the complexity of that structure can be orders of 

magnitude less than the complexity of an equivalent 
monolith.

 As soon as more intelligent sub-systems arrive, then 
these systems can design and construct modular 
systems in a more intelligent way. 
 They use resources efficiently. 
 This speeds the modularization process in an enormous way.
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Dual space distributions
 A subset of the (quaternionic) distributions have the 

same shape in configuration space and in the linear 
canonical conjugated space.

 We call them dual space distributions

 These are functions that are invariant under Fourier 
transformation.

 The Qpatterns and the harmonic and spherical 
oscillations belong to this class.

 Fourier-invariant functions show iso-resolution, that 
is, ∆p= ∆q in the Heisenberg’s uncertainty relation.
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Why has nature a preference?
 Nature seems to have a preference for this class of 

quaternionic distributions.

 A possible explanation is the two-step generation
process, where the first step is realized in 
configuration space and the second step is realized in 
canonical conjugated space.

 The whole pattern is generated two-step by two-step.

 The only way to keep coherence between a distribution
and its Fourier transform that are both generated step 
by step is to generate them in pairs.
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Conclusion
 Fundament

 Quantum logic

 Book model

 Correlation vehicle

 Main features
 Fundamentally countable  ⇛ Quanta

 Embedded in continuum   ⇛ Fields

 Fundamentally stochastic ⇛ Quantum Physics
 Palestra is curved

 Quaternionic metric
} ⇛ Quaternionic “GR”
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Conclusion
 Contemporary physics works (QED, QCD)

 But cannot explain fundamental features

 Origin of dynamics

 Space  curvature

 Inertia

 Existence of Quantum Physics
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End
Physics made its greatest misstep in the 

thirties when it turned away from the 
fundamental work of Garret Birkhoff and 
John von Neumann. 

This deviation did not prohibit pragmatic 
use of the new methodology. 

However, it did prevent deep understanding 
of that technology because the 
methodology is ill founded.
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Logics

& 

Higgs mechanism



Lattices, 
classical logic and 

quantum logic
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Logic – Lattice structure
 A lattice is a set of elements 𝑎, 𝑏, 𝑐, …that is closed for 

the connections ∩ and ∪. These connections obey:



 The set is partially ordered. With each pair of elements 
𝑎, 𝑏 belongs an element 𝑐, such that 𝑎 ⊂ 𝑐 and 𝑏 ⊂ 𝑐. 

 The set is a ∩ half lattice if with each pair of elements 
𝑎, 𝑏 an element 𝑐 exists, such that 𝑐 = 𝑎 ∩ 𝑏. 

 The set is a ∪ half lattice if with each pair of elements 
𝑎, 𝑏 an element 𝑐 exists, such that 𝑐 = 𝑎 ∪ 𝑏. 

 The set is a lattice if it is both a ∩ half lattice and a ∪ half 
lattice.
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Partially ordered set
 The following relations hold in a lattice: 

𝑎 ∩ 𝑏 = 𝑏 ∩ 𝑎
(𝑎 ∩ 𝑏) ∩ 𝑐
= 𝑎 ∩ (𝑏 ∩ 𝑐)
𝑎 ∩ (𝑎 ∪ 𝑏) = 𝑎
𝑎 ∪ 𝑏 = 𝑏 ∪ 𝑎
(𝑎 ∪ 𝑏) ∪ 𝑐
= 𝑎 ∪ (𝑏 ∪ 𝑐)
𝑎 ∪ (𝑎 ∩ 𝑏) = 𝑎

• has a partial order inclusion ⊂:
a ⊂ b ⇔ a ⊂ b = a

• A complementary lattice 
contains two elements 𝑛 and 𝑒
with each element a an 
complementary element a’ 
𝑎 ∩ 𝑎’ = 𝑛 𝑎 ∩ 𝑛 = 𝑛
𝑎 ∩ 𝑒 = 𝑎 𝑎 ∪ 𝑎’ = 𝑒
𝑎 ∪ 𝑒 = 𝑒 𝑎 ∪ 𝑛 = 𝑎
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Orthocomplemented lattice
 Contains with each element 𝑎 an element 𝑎” such that:

𝑎 ∪ 𝑎” = 𝑒
𝑎 ∩ 𝑎” = 𝑛
(𝑎”)” = 𝑎
𝑎 ⊂ 𝑏 ⟺ 𝑏” ⊂ 𝑎”

Distributive lattice
𝑎 ∩ (𝑏 ∪ 𝑐)
= (𝑎 ∩ 𝑏) ∪ ( 𝑎 ∩ 𝑐)
𝑎 ∪ (𝑏 ∩ 𝑐)
= (𝑎 ∪ 𝑏) ∩ (𝑎 ∪ 𝑐)

Modular lattice
(𝑎 ∩ 𝑏) ∪ (𝑎 ∩ 𝑐) = 𝑎 ∩ (𝑏 ∪ (𝑎 ∩ 𝑐))

Classical logic is an orthocomplemented  modular lattice
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Weak modular lattice
There exists an element 𝑑 such that

𝑎 ⊂ 𝑐 ⇔ 𝑎 ∪ 𝑏 ∩ 𝑐
= 𝑎 ∪ (𝑏 ∩ 𝑐) ∪ (𝑑 ∩ 𝑐)

where 𝑑 obeys:

(𝑎 ∪ 𝑏) ∩ 𝑑 = 𝑑

𝑎 ∩ 𝑑 = 𝑛 𝑏 ∩ 𝑑 = 𝑛

[(𝑎 ⊂ 𝑔) and (𝑏 ⊂ 𝑔) ⇔ 𝑑 ⊂ 𝑔
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Atoms
 In an atomic lattice

∃
𝑝 𝜖 𝐿

∀
𝑥 𝜖 𝐿

{𝑥 ⊂ 𝑝 ⇒ 𝑥 = 𝑛}

∀
𝑎 𝜖 𝐿

∀
𝑥 𝜖 𝐿

{(𝑎 < 𝑥 < 𝑎 ∩ 𝑝)

⇒ (𝑥 = 𝑎 𝑜𝑟 𝑥 = 𝑎 ∩ 𝑝)}

𝑝 is an atom
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Logics
Classical logic has the structure of an 

orthocomplemented distributive 
modular and atomic lattice.

Quantum logic has the structure of an 
orthocomplented weakly modular and 
atomic lattice. 

Also called orthomodular lattice.
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Hilbert space

The set of closed subspaces of an 
infinite dimensional separable 

Hilbert space forms an 
orthomodular lattice

Is lattice isomorphic to quantum 
logic
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Hilbert logic
 Add linear propositions

 Linear combinations of atomic propositions

 Add relational coupling measure

 Equivalent to inner product of Hilbert space

 Close subsets with respect to realational coupling
measure

 Propositions ⇔ subspaces

 Linear propositions ⇔ Hilbert vectors
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Superposition principle

Linear combinations of linear
propositions are again linear

propositions that belong to the same
Hilbert logic system
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Isomorphism
Lattice isomorhic

Propositions ⇔ closed subspaces

Topological isomorphic

Linear atoms ⇔ Hilbert base 
vectors
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The HBM has its own solution

http://www.youtube.com/watch?v=JqNg819PiZY
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Higgs mechanism
Energy V(ψ)

Goldstone boson 
at bottom

Higgs boson 
at wall

ψ

𝜓 𝜌, 𝜃 = 𝜌(𝑓) 𝑒𝑖𝜃

𝜕𝜇𝜓 = 𝜕𝜇𝜌 + 𝑖𝜌𝜕𝜇𝜃 𝑒𝑖𝜃

ℒ = 𝜕𝜇𝜓𝜕𝜇𝜓
∗

ℒ = 𝜕𝜇𝜌
2
+ 𝑖𝜕𝜇𝜃 [𝜌𝜕𝜇𝜌

∗ − 𝜌∗𝜕𝜇𝜌] + 𝜌2 𝜕𝜇𝜃
2

Thus, 𝑒𝑖𝜃 is no symmetry!

Complex number based 
QP

Lagrangian

Wave function
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Higgs mechanism⇔HBM

Two 
fields

Mexican hat
fields graph

Particle oscillates 
between fields at 
lowest energy

40

Qpattern 
pair

𝛻𝜓𝑥 = 𝑚 𝜓𝑦

Coupling equation



Gauge transformation
Covariant derivative

𝐷𝜇𝜓 = 𝜕𝜇𝜓 − 𝑖 𝐴𝜇𝜓

= (𝜕𝜇𝜃 + 𝐴𝜇)𝑖𝜌𝑒
𝑖𝜃

The new Lagrangian is

ℒ = 𝐷𝜇𝜓𝐷𝜇𝜓
∗ = 𝑓2(𝜕𝜇𝜃 + 𝐴𝜇)

2 = 𝑓2𝐴𝜇
′ 2

𝜃 is replaced by a new field 𝐴𝜇
′

The factor 𝑓 represents mass

𝐴𝜇
′ = 𝜕𝜇𝜃 + 𝐴𝜇
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