Large scale physics

Large scale fluid dynamics

Physical fields

- QPAD's
- Photon
- Gluon

$$
\begin{gathered}
\nabla \psi=0 \\
\nabla^{2} \psi=0
\end{gathered}
$$

harmonic

- Fields from particle properties
- Quaternionic distributions
- Charges are preserved
- Fields represent influence of charges
- Electromagnetic field

$$
\nabla \psi=m \varphi
$$

- Gravitation field

Inertia-1

State functions of distant particles

- $\Phi_{0}=\int_{V} \psi d V$

Everywhere present potential

In a uniform background:
$\psi={ }^{\rho_{0}} / r ; \rho_{0}$ is constant

- $\Phi_{0}=\int_{V}{ }^{\rho_{0}} / r \mathrm{dV}=\rho_{0} \int_{V}{ }^{1} / r \mathrm{~d} V=2 \pi R^{2} \rho_{0}$
- $G=-c^{2} \Phi$ (Dennis Sciama)
- $\boldsymbol{\Phi}=\int_{V}{ }^{\rho_{0} v} / c r \mathrm{dV}=\Phi^{v} / c ; \dot{\Phi}=\Phi_{0} \dot{v} / c$
- $\mathfrak{E}=\nabla_{0} \boldsymbol{\Phi}+\boldsymbol{\nabla} \Phi_{0}=\dot{\Phi}+\boldsymbol{\nabla} \Phi_{0}=\Phi_{0} \dot{v} / c+\nabla \Phi_{0}$

Inertia-2

- Φ_{0} is a scalar potential
- Φ is a vector potential
- G is gravitational constant
- $\mathfrak{C}=\Phi_{0} \dot{v} / c+\boldsymbol{\nabla} \Phi_{0}$
- $\mathbb{E} \approx \Phi_{0} \dot{v} / c=G \dot{v}$
- Acceleration goes together with an extra field \mathfrak{E}
- This field counteracts the acceleration

Inertia-3

- Starting from coupling equation
- $\nabla \psi=m \varphi$
- $\psi=\chi+\chi_{0} v$
- χ represents particle at rest
- $\psi_{0}=\chi_{0}$
- $\boldsymbol{\psi}=\chi+\chi_{0} \boldsymbol{v}$
- $\nabla_{0} \boldsymbol{\psi}=\chi_{0} \dot{v}=m \varphi$
- $\mathfrak{E} \equiv \nabla_{0} \boldsymbol{\psi}$

Small

Continuity equation

- Balance equation
- Total change within V

$$
\text { = flow into } V+\text { production inside } V
$$

- $\frac{d}{d \tau} \int_{V} \rho_{0} d V=\oint_{S} \widehat{\boldsymbol{n}} \rho_{0} \frac{v}{c} d S+\int_{V} s_{0} d V$
- $\int_{V} \nabla_{0} \rho_{0} d V=\int_{V}\langle\boldsymbol{\nabla}, \boldsymbol{\rho}\rangle d V+\int_{V} s_{0} d V$
- $\rho=\rho_{0} \boldsymbol{v} / c$
- $\rho=\rho_{0}+\boldsymbol{\rho}$
- $s=\nabla \rho$
- $s_{0}=2 \nabla_{0} \rho_{0}-\left\langle v(q), \nabla \rho_{0}\right\rangle-\langle\nabla, v\rangle \rho_{0}$
- $\boldsymbol{s}=\nabla_{0} \boldsymbol{v}+\nabla \rho_{0}+\rho_{0} \nabla \times v-\boldsymbol{v} \times \nabla \rho_{0}$

Inversion surfaces

- $\frac{d}{d \tau} \int_{V} \rho d V+\oint_{S} \widehat{n} \rho d S=\int_{V} s d V$
- $\int_{V} \nabla \rho d V=\int_{V} s d V$
- The criterion $\oint_{S} \widehat{\boldsymbol{n}} \rho d S=0$ divides universe in compartments

Inversion surface

Compartments

Huge $\mathrm{BH} \Leftrightarrow$ s tart of new episode

Never ending story

History of Cosmology

- Black hole represents natal state of compartment
- Black holes suck all mass from their compartment
- A passivated huge black hole represents start of new episode of its compartment
- Driving force is enormous mass present outside compartment \Rightarrow expansion
- Whole universe is affine space
- Result is never ending story

Gravitation

- The Palestra is a curved space
- $\mathcal{P}_{\text {blurred }}=\wp_{\text {sharp }}{ }^{\circ} \psi_{\text {blur }}$
$\mathrm{c} d \tau$

$$
c d t
$$

$$
\mathrm{dr}
$$

- $d s(x)=d s^{\nu}(x) e_{\nu}=d \wp=\sum_{\mu=0 \ldots 3} \frac{\partial \wp}{\partial x_{\mu}} d x_{\mu}=q^{\mu}(x) d x_{\mu}$
- q^{μ} is quaternion
- $c^{2} d t^{2}=d s d s^{*}=d x_{0}^{2}+d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}$

Pythagoras

- $d x_{0}^{2}=d \tau^{2}=c^{2} d t^{2}-d x_{1}^{2}-d x_{2}^{2}-d x_{3}^{2}$

Minkowski

- $\Delta S_{f l a t}=\Delta x_{0}+\boldsymbol{i} \Delta x_{1}+\boldsymbol{j} \Delta x_{2}+\boldsymbol{k} \Delta x_{3}$
- $\Delta s_{\S}=q^{0} \Delta x_{0}+q^{1} \Delta x_{1}+q^{2} \Delta x_{2}+q^{3} \Delta x_{3}$

Flat space

Curved space

Metric

- d§ is a quaternionic metric
- It is a linear combination of 16 partial derivatives
- $d \wp=\sum_{\mu=0 \ldots 3} \frac{\partial \wp}{\partial x_{\mu}} d x_{\mu}=q^{\mu}(x) d x_{\mu}$

$$
=\sum_{\mu=0 \ldots 3} \sum_{v=0, \ldots 3} e_{v} \frac{\partial \wp_{v}}{\partial x_{\mu}} d x_{\mu}=\sum_{\mu=0 \ldots 3} \sum_{v=0, \ldots 3} e_{v} q_{v}^{\mu} d x_{\mu}
$$

- Avoids the need for tensors

Composites

The effect of modularization

Modularization

- Modularization is a very powerful influencer.
- Together with the corresponding encapsulation it reduces the relational complexity of the ensemble of objects on which modularization works.
- The encapsulation keeps most relations internal to the module.
- When relations between modules are reduced to a few types, then the module becomes reusable.
- If modules can be configured from lower order modules, then efficiency grows exponentially.

Modularization

- Elementary particles can be considered as the lowest level of modules. All composites are higher level modules.
- Modularization uses resources efficiently.
- When sufficient resources in the form of reusable modules are present, then modularization can reach enormous heights.
- On earth it was capable to generate intelligent species.

Complexity

- Potential complexity of a set of objects is a measure that is defined by the number of potential relations that exist between the members of that set.
- If there are n elements in the set, then there exist $\mathrm{n} \cdot(\mathrm{n}-1)$ potential relations.
- Actual complexity of a set of objects is a measure that is defined by the number of relevant relations that exist between the members of the set.
- Relational complexity is the ratio of the number of actual relations divided by the number of potential relations.

Relations

- Modules connect via interfaces.
- Relations that act within modules are lost to the outside world of the module.
- Interfaces are collections of relations that are used by interactions.
- Physics is based on relations. Quantum logic is a set of axioms that restrict the relations that exist between quantum logical propositions.

Types of physical interfaces

- Interactions run via (relevant) relations.
- Inbound interactions come from the past.
- Outbound interactions go to the future.
- Two-sided interactions are cyclic.
- They take at least two progression steps.
- They are either oscillations or rotations of the interactor.
- Cyclic interactions bind the corresponding modules together.

Modular systems

- Modular (sub)systems consist of connected modules.
- They need not be modules.
- They become modules when they are encapsulated and offer standard interfaces that makes the encapsulated system a reusable object.
- All composites are modular systems

Binding in sub-systems

- Let ψ represent the renormalized superposition of the involved distributions.
- $\nabla \psi=\phi=m \varphi$
- $\int_{V}|\psi|^{2} d V=\int_{V}|\varphi|^{2} d V=1$
- $\int_{V}|\phi|^{2} d V=m^{2}$
- m is the total energy of the sub-system
- The binding factor is the total energy of the subsystem minus the sum of the total energies of the separate constituents.

Random versus intelligent design

- At lower levels of modularization nature designs modular structures in a stochastic way.
- This renders the modularization process rather slow.
- It takes a huge amount of progression steps in order to achieve a relatively complicated structure.
- Still the complexity of that structure can be orders of magnitude less than the complexity of an equivalent monolith.
- As soon as more intelligent sub-systems arrive, then these systems can design and construct modular systems in a more intelligent way.
- They use resources efficiently.
- This speeds the modularization process in an enormous way.

Dual space distributions

- A subset of the (quaternionic) distributions have the same shape in configuration space and in the linear canonical conjugated space.
- We call them dual space distributions
- These are functions that are invariant under Fourier transformation.
- The Qpatterns and the harmonic and spherical oscillations belong to this class.
- Fourier-invariant functions show iso-resolution, that is, $\Delta_{\mathrm{p}}=\Delta_{\mathrm{q}}$ in the Heisenberg's uncertainty relation.

Why has nature a preference?

- Nature seems to have a preference for this class of quaternionic distributions.
- A possible explanation is the two-step generation process, where the first step is realized in configuration space and the second step is realized in canonical conjugated space.
- The whole pattern is generated two-step by two-step.
- The only way to keep coherence between a distribution and its Fourier transform that are both generated step by step is to generate them in pairs.

Conclusion

- Fundament
- Quantum logic
- Book model
- Correlation vehicle
- Main features
- Fundamentally countable \Rightarrow Quanta
- Embedded in continuum \Rightarrow Fields
- Fundamentally stochastic \Rightarrow Quantum Physics
- Palestra is curved
- Quaternionic metric \boldsymbol{J}
\Rightarrow Quaternionic "GR"

Conclusion

- Contemporary physics works (QED, QCD)
- But cannot explain fundamental features
- Origin of dynamics
- Space curvature
- Inertia
- Existence of Quantum Physics

End

- Physics made its greatest misstep in the thirties when it turned away from the fundamental work of Garret Birkhoff and John von Neumann.
- This deviation did not prohibit pragmatic use of the new methodology.
- However, it did prevent deep understanding of that technology because the methodology is ill founded.

Appendices

Logics
\&
Higgs mechanism

Logic Systems

Lattices, classical logic and quantum logic

Logic - Lattice structure

- A lattice is a set of elements a, b, c, \ldots that is closed for the connections \cap and U. These connections obey:
- The set is partially ordered. With each pair of elements a, b belongs an element c, such that $a \subset c$ and $b \subset c$.
- The set is a \cap half lattice if with each pair of elements a, b an element c exists, such that $c=a \cap b$.
- The set is a \mathbf{U} half lattice if with each pair of elements a, b an element c exists, such that $c=a \cup b$.
- The set is a lattice if it is both $a \cap$ half lattice and a U half lattice.

Partially ordered set

- The following relations hold in a lattice:
$a \cap b=b \cap a$
$(a \cap b) \cap c$
$=a \cap(b \cap c)$
$a \cap(a \cup b)=a$
$a \cup b=b \cup a$
$(a \cup b) \cup c$
$=a \cup(b \cup c)$
$a \cup(a \cap b)=a$
- has a partial order inclusion C:

$$
\mathrm{a} \subset \mathrm{~b} \Leftrightarrow \mathrm{a} \subset \mathrm{~b}=\mathrm{a}
$$

- A complementary lattice contains two elements n and e with each element a an complementary element a'

$$
\begin{array}{ll}
a \cap a^{\prime}=n & a \cap n=n \\
a \cap e=a & a \cup a^{\prime}=e \\
a \cup e=e & a \cup n=a
\end{array}
$$

Orthocomplemented lattice

- Contains with each element a an element a " such that:

$$
\begin{aligned}
& a \cup a^{\prime \prime}=e \\
& a \cap a^{\prime \prime}=n \\
& \left(a^{\prime \prime}\right) \prime=a \\
& a \subset b \Leftrightarrow b^{\prime \prime} \subset a^{\prime \prime}
\end{aligned}
$$

Distributive lattice

$$
\begin{aligned}
& a \cap(b \cup c) \\
& =(a \cap b) \cup(a \cap c) \\
& a \cup(b \cap c) \\
& =(a \cup b) \cap(a \cup c)
\end{aligned}
$$

Modular lattice

$$
(a \cap b) \cup(a \cap c)=a \cap(b \cup(a \cap c))
$$

Classical logic is an orthocomplemented modular lattice

Weak modular lattice

- There exists an element d such that

$$
\begin{aligned}
& a \subset c \Leftrightarrow(a \cup b) \cap c \\
& \quad=a \cup(b \cap c) \cup(d \cap c)
\end{aligned}
$$

- where d obeys:

$$
\begin{aligned}
& (a \cup b) \cap d=d \\
& a \cap d=n \quad b \cap d=n \\
& {[(a \subset g) \text { and }(b \subset g) \Leftrightarrow d \subset g}
\end{aligned}
$$

Atoms

- In an atomic lattice

$$
\begin{aligned}
& \exists_{p \in L} \forall_{x \in L}\{x \subset p \Rightarrow x=n\} \\
& \forall_{a \in L} \forall_{x \in L}\{(a<x<a \cap p) \\
& \quad \Rightarrow(x=a \text { or } x=a \cap p)\}
\end{aligned}
$$

p is an atom

Logics

- Classical logic has the structure of an orthocomplemented distributive modular and atomic lattice.
- Quantum logic has the structure of an orthocomplented weakly modular and atomic lattice.
- Also called orthomodular lattice.

Hilbert space

-The set of closed subspaces of an infinite dimensional separable Hilbert space forms an orthomodular lattice

- Is lattice isomorphic to quantum logic

Hilbert logic

- Add linear propositions
- Linear combinations of atomic propositions
- Add relational coupling measure
- Equivalent to inner product of Hilbert space
- Close subsets with respect to realational coupling measure
- Propositions \Leftrightarrow subspaces
- Linear propositions \Leftrightarrow Hilbert vectors

Superposition principle

Linear combinations of linear propositions are again linear propositions that belong to the same Hilbert logic system

Isomorphism

-Lattice isomorhic
-Propositions \Leftrightarrow closed subspaces
-Topological isomorphic
-Linear atoms \Leftrightarrow Hilbert base vectors

The Higgs mechanism

The HBM has its own solution

http://www.youtube.com/watch?v=JqNg819PiZY

Higgs mechanism

Complex number based QP

Thus, $e^{i \theta}$ is no symmetry!

Higgs mechanism \Leftrightarrow HBM

$$
\nabla \psi^{x}=m \psi^{y}
$$

Coupling equation

Mexican hat

 fields graphParticle oscillates between fields at lowest energy

Gauge transformation

Covariant derivative

$$
\begin{aligned}
D_{\mu} \psi & =\partial_{\mu} \psi-i A_{\mu} \psi \\
& =\left(\partial_{\mu} \theta+{ }^{`}\right) i \rho e^{i \theta} \\
& A_{\mu}^{\prime}=\partial_{\mu} \theta+A_{\mu}
\end{aligned}
$$

The new Lagrangian is

$$
\mathcal{L}=D_{\mu} \psi D_{\mu} \psi^{*}=f^{2}\left(\partial_{\mu} \theta+A_{\mu}\right)^{2}=f^{2} A_{\mu}^{\prime 2}
$$

θ is replaced by a new field A_{μ}^{\prime} The factor f represents mass

