
Large scale fluid dynamics
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Physical fields

 QPAD’s

 Photon

 Gluon

 Fields from particle properties
 Quaternionic distributions

 Charges are preserved

 Fields represent 
influence of charges

 Electromagnetic field

 Gravitation field

𝛻𝜓 = 𝑚𝜑

 

𝑖

𝑛𝑖𝑒𝑖𝜓𝑖

 

𝑖

𝑛𝑖𝑚𝑖𝜑 𝑖

𝑒𝑖 = ±𝑒

𝛻𝜓 = 0
𝛻2𝜓 = 0

harmonic
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Inertia-1

 Φ0 =  𝑉𝜓 dV

In a uniform background:
𝜓 =  𝜌0

𝑟 ; 𝜌0 is constant

 Φ0 =  𝑉
 𝜌0
𝑟 dV = 𝜌0  𝑉

 1 𝑟 dV = 2π𝑅2𝜌0

 𝐺 = −𝑐2Φ (Dennis Sciama)

 𝚽 =  
𝑉

 𝜌0𝒗
𝑐 𝑟 dV = Φ  𝒗 𝑐 ;    𝚽 = Φ0   𝒗 𝑐

 𝕰 = 𝛻𝟎𝚽 + 𝛁Φ0 =  𝚽 + 𝛁Φ0 = Φ0   𝒗 𝑐 + 𝛁Φ0

State functions of 
distant particles 

Everywhere present 
potential
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Inertia-2
 Φ0 is a scalar potential

 𝜱 is a vector potential

 𝐺 is gravitational constant

 𝕰 = Φ0   𝒗 𝑐 + 𝛁Φ0

 𝕰 ≈ Φ0   𝒗 𝑐 = 𝐺  𝒗

 Acceleration goes together with an extra field 𝕰

 This field counteracts the acceleration
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Inertia-3
 Starting from coupling equation

 𝛻𝜓 = 𝑚𝜑

 𝜓 = χ + χ0 𝒗

 χ represents particle at rest

 𝜓0 = χ0
 𝝍 = χ + χ0 𝒗

 𝛻0𝝍 = χ0  𝒗 = 𝑚𝝋 − 𝜵𝜓0 − 𝜵× 𝝍

 𝕰 ≡ 𝛻0𝝍 + 𝜵𝜓0

SmallSmall

Represents influence 
of distant particles
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Continuity equation
 Balance equation

 Total change within V
= flow into V + production inside V


𝑑

𝑑𝜏
 𝑉 𝜌0 𝑑𝑉 =  𝑆  𝒏𝜌0

𝒗

𝑐
𝑑𝑆 +  𝑉 𝑠0 𝑑𝑉

  𝑉 𝛻0𝜌0 𝑑𝑉 =  𝑉 𝛁, 𝝆 𝑑𝑉 +  𝑉 𝑠0 𝑑𝑉

 𝝆 = 𝜌0𝒗/𝑐

 𝜌 = 𝜌0 + 𝝆

 𝑠 = 𝛻𝜌

 𝑠0 = 2𝛻0𝜌0 − 𝒗 𝑞 , 𝛁𝜌0 − 𝛁, 𝒗 𝜌0
 𝒔 = 𝛻0𝒗 + 𝛁𝜌0+𝜌0𝛁 × 𝒗 − 𝒗 × 𝛁𝜌0

Gauss
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Inversion surfaces


𝑑

𝑑𝜏
 
𝑉
𝜌 𝑑𝑉 +  

𝑆
 𝒏𝜌 𝑑𝑆 =  

𝑉
𝑠 𝑑𝑉

  𝑉 𝛻 𝜌 𝑑𝑉 =  𝑉 𝑠 𝑑𝑉

 The criterion  
𝑆
 𝒏𝜌 𝑑𝑆=0 divides universe in 

compartments

Inversion surface
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Compartments
universe

Huge 
BH

Black holesBlack holesBlack holesBlack holes

Compartments

BH⇔densest packaging

Huge BH ⇔ s tart of new episode

Never ending story

Merge
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History of Cosmology
 Black hole represents natal state of compartment

 Black holes suck all mass from their compartment 

 A passivated huge black hole represents start of new 
episode of its compartment

 Driving force is enormous mass present outside 
compartment ⇒ expansion

 Whole universe is affine space

 Result is never ending story
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Gravitation
 The Palestra is a curved space

 𝒫𝑏𝑙𝑢𝑟𝑟𝑒𝑑 = ℘𝑠ℎ𝑎𝑟𝑝 ∘ 𝜓 𝑏𝑙𝑢𝑟

 𝑑𝑠 𝑥 = 𝑑𝑠𝜈 𝑥 𝑒𝜈 = 𝑑℘ = 
𝜇=0…3

𝜕℘

𝜕𝑥𝜇
𝑑𝑥𝜇 = 𝑞𝜇 𝑥 𝑑𝑥𝜇

 𝑞𝜇 is quaternion

 𝑐2 𝑑𝑡2= 𝑑𝑠 𝑑𝑠∗ = 𝑑𝑥0
2 + 𝑑𝑥1

2 +𝑑𝑥2
2 +𝑑𝑥3

2

 𝑑𝑥0
2 = 𝑑𝜏2 = 𝑐2 𝑑𝑡2− 𝑑𝑥1

2 −𝑑𝑥2
2 −𝑑𝑥3

2

 ∆𝑠𝑓𝑙𝑎𝑡= ∆𝑥0 + 𝒊 ∆𝑥1 + 𝒋 ∆𝑥2 + 𝒌 ∆𝑥3

 ∆𝑠℘= 𝑞0∆𝑥0 + 𝑞1 ∆𝑥1 + 𝑞2 ∆𝑥2 + 𝑞3 ∆𝑥3

Pythagoras

Minkowski

Flat space

Curved space

dr

c dτ

16 partial derivatives
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Metric
 𝑑℘ is a quaternionic metric

 It is a linear combination of 16 partial derivatives

 𝑑℘ = 
𝜇=0…3

𝜕℘

𝜕𝑥𝜇
𝑑𝑥𝜇 = 𝑞𝜇 𝑥 𝑑𝑥𝜇

= 

𝜇=0…3

 

𝜈=0,…3

𝑒𝜈
𝜕℘𝜈

𝜕𝑥𝜇
𝑑𝑥𝜇 = 

𝜇=0…3

 

𝜈=0,…3

𝑒𝜈𝑞𝜈
𝜇
𝑑𝑥𝜇

 Avoids the need for tensors
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The effect of modularization
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Modularization
 Modularization is a very powerful influencer.

 Together with the corresponding encapsulation it 
reduces the relational complexity of the ensemble of 
objects on which modularization works.

 The encapsulation keeps most relations internal to the 
module.

 When relations between modules are reduced to a few 
types , then the module becomes reusable.

 If modules can be configured from lower order 
modules, then efficiency grows exponentially.
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Modularization
 Elementary particles can be considered as the lowest 

level of modules. All composites are higher level 
modules.

 Modularization uses resources efficiently.

 When sufficient resources in the form of reusable 
modules are present, then modularization can reach 
enormous heights. 

 On earth it was capable to generate intelligent 
species.
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Complexity
 Potential complexity of a set of objects is a measure 

that is defined by the number of potential relations 
that exist between the members of that set. 

 If there are n elements in the set,
then there exist n·(n-1) potential relations.

 Actual complexity of a set of objects is a measure that 
is defined by the number of relevant relations that 
exist between the members of the set. 

 Relational complexity is the ratio of the number of 
actual relations divided by the number of potential 
relations.
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Relations
 Modules connect via interfaces. 

 Relations that act within modules are lost to the 
outside world of the module. 

 Interfaces are collections of relations that are used by 
interactions. 

 Physics is based on relations. Quantum logic is a set of 
axioms that restrict the relations that exist between 
quantum logical propositions. 
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Types of physical interfaces
 Interactions run via (relevant) relations. 

 Inbound interactions come from the past. 

 Outbound interactions go to the future. 

 Two-sided interactions are cyclic. 

 They take at least two progression steps. 

 They are either oscillations or rotations of the inter-
actor.

 Cyclic interactions bind the corresponding modules 
together. 
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Modular systems
 Modular (sub)systems consist of connected modules.

 They need not be modules. 

 They become modules when they are encapsulated 
and offer standard interfaces that makes the 
encapsulated system a reusable object.

 All composites are modular systems
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Binding in sub-systems
 Let 𝜓 represent the renormalized superposition of the 

involved distributions.

 𝛻𝜓 = 𝜙 = 𝑚 𝜑

  𝑉 𝜓
2 𝑑𝑉 = 𝑉 𝜑

2 𝑑𝑉 = 1

  𝑉 𝜙
2 𝑑𝑉 =𝑚2

 𝑚 is the total energy of the sub-system

 The binding factor is the total energy of the sub-
system minus the sum of the total energies of the 
separate constituents.
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Random versus intelligent design
 At lower levels of modularization nature designs 

modular structures in a stochastic way. 
 This renders the modularization process rather slow. 
 It takes a huge amount of progression steps in order to 

achieve a relatively complicated structure. 
 Still the complexity of that structure can be orders of 

magnitude less than the complexity of an equivalent 
monolith.

 As soon as more intelligent sub-systems arrive, then 
these systems can design and construct modular 
systems in a more intelligent way. 
 They use resources efficiently. 
 This speeds the modularization process in an enormous way.
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Dual space distributions
 A subset of the (quaternionic) distributions have the 

same shape in configuration space and in the linear 
canonical conjugated space.

 We call them dual space distributions

 These are functions that are invariant under Fourier 
transformation.

 The Qpatterns and the harmonic and spherical 
oscillations belong to this class.

 Fourier-invariant functions show iso-resolution, that 
is, ∆p= ∆q in the Heisenberg’s uncertainty relation.

21



Why has nature a preference?
 Nature seems to have a preference for this class of 

quaternionic distributions.

 A possible explanation is the two-step generation
process, where the first step is realized in 
configuration space and the second step is realized in 
canonical conjugated space.

 The whole pattern is generated two-step by two-step.

 The only way to keep coherence between a distribution
and its Fourier transform that are both generated step 
by step is to generate them in pairs.
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Conclusion
 Fundament

 Quantum logic

 Book model

 Correlation vehicle

 Main features
 Fundamentally countable  ⇛ Quanta

 Embedded in continuum   ⇛ Fields

 Fundamentally stochastic ⇛ Quantum Physics
 Palestra is curved

 Quaternionic metric
} ⇛ Quaternionic “GR”
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Conclusion
 Contemporary physics works (QED, QCD)

 But cannot explain fundamental features

 Origin of dynamics

 Space  curvature

 Inertia

 Existence of Quantum Physics
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End
Physics made its greatest misstep in the 

thirties when it turned away from the 
fundamental work of Garret Birkhoff and 
John von Neumann. 

This deviation did not prohibit pragmatic 
use of the new methodology. 

However, it did prevent deep understanding 
of that technology because the 
methodology is ill founded.
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Logics

& 

Higgs mechanism



Lattices, 
classical logic and 

quantum logic
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Logic – Lattice structure
 A lattice is a set of elements 𝑎, 𝑏, 𝑐, …that is closed for 

the connections ∩ and ∪. These connections obey:



 The set is partially ordered. With each pair of elements 
𝑎, 𝑏 belongs an element 𝑐, such that 𝑎 ⊂ 𝑐 and 𝑏 ⊂ 𝑐. 

 The set is a ∩ half lattice if with each pair of elements 
𝑎, 𝑏 an element 𝑐 exists, such that 𝑐 = 𝑎 ∩ 𝑏. 

 The set is a ∪ half lattice if with each pair of elements 
𝑎, 𝑏 an element 𝑐 exists, such that 𝑐 = 𝑎 ∪ 𝑏. 

 The set is a lattice if it is both a ∩ half lattice and a ∪ half 
lattice.
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Partially ordered set
 The following relations hold in a lattice: 

𝑎 ∩ 𝑏 = 𝑏 ∩ 𝑎
(𝑎 ∩ 𝑏) ∩ 𝑐
= 𝑎 ∩ (𝑏 ∩ 𝑐)
𝑎 ∩ (𝑎 ∪ 𝑏) = 𝑎
𝑎 ∪ 𝑏 = 𝑏 ∪ 𝑎
(𝑎 ∪ 𝑏) ∪ 𝑐
= 𝑎 ∪ (𝑏 ∪ 𝑐)
𝑎 ∪ (𝑎 ∩ 𝑏) = 𝑎

• has a partial order inclusion ⊂:
a ⊂ b ⇔ a ⊂ b = a

• A complementary lattice 
contains two elements 𝑛 and 𝑒
with each element a an 
complementary element a’ 
𝑎 ∩ 𝑎’ = 𝑛 𝑎 ∩ 𝑛 = 𝑛
𝑎 ∩ 𝑒 = 𝑎 𝑎 ∪ 𝑎’ = 𝑒
𝑎 ∪ 𝑒 = 𝑒 𝑎 ∪ 𝑛 = 𝑎
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Orthocomplemented lattice
 Contains with each element 𝑎 an element 𝑎” such that:

𝑎 ∪ 𝑎” = 𝑒
𝑎 ∩ 𝑎” = 𝑛
(𝑎”)” = 𝑎
𝑎 ⊂ 𝑏 ⟺ 𝑏” ⊂ 𝑎”

Distributive lattice
𝑎 ∩ (𝑏 ∪ 𝑐)
= (𝑎 ∩ 𝑏) ∪ ( 𝑎 ∩ 𝑐)
𝑎 ∪ (𝑏 ∩ 𝑐)
= (𝑎 ∪ 𝑏) ∩ (𝑎 ∪ 𝑐)

Modular lattice
(𝑎 ∩ 𝑏) ∪ (𝑎 ∩ 𝑐) = 𝑎 ∩ (𝑏 ∪ (𝑎 ∩ 𝑐))

Classical logic is an orthocomplemented  modular lattice
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Weak modular lattice
There exists an element 𝑑 such that

𝑎 ⊂ 𝑐 ⇔ 𝑎 ∪ 𝑏 ∩ 𝑐
= 𝑎 ∪ (𝑏 ∩ 𝑐) ∪ (𝑑 ∩ 𝑐)

where 𝑑 obeys:

(𝑎 ∪ 𝑏) ∩ 𝑑 = 𝑑

𝑎 ∩ 𝑑 = 𝑛 𝑏 ∩ 𝑑 = 𝑛

[(𝑎 ⊂ 𝑔) and (𝑏 ⊂ 𝑔) ⇔ 𝑑 ⊂ 𝑔
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Atoms
 In an atomic lattice

∃
𝑝 𝜖 𝐿

∀
𝑥 𝜖 𝐿

{𝑥 ⊂ 𝑝 ⇒ 𝑥 = 𝑛}

∀
𝑎 𝜖 𝐿

∀
𝑥 𝜖 𝐿

{(𝑎 < 𝑥 < 𝑎 ∩ 𝑝)

⇒ (𝑥 = 𝑎 𝑜𝑟 𝑥 = 𝑎 ∩ 𝑝)}

𝑝 is an atom
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Logics
Classical logic has the structure of an 

orthocomplemented distributive 
modular and atomic lattice.

Quantum logic has the structure of an 
orthocomplented weakly modular and 
atomic lattice. 

Also called orthomodular lattice.
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Hilbert space

The set of closed subspaces of an 
infinite dimensional separable 

Hilbert space forms an 
orthomodular lattice

Is lattice isomorphic to quantum 
logic
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Hilbert logic
 Add linear propositions

 Linear combinations of atomic propositions

 Add relational coupling measure

 Equivalent to inner product of Hilbert space

 Close subsets with respect to realational coupling
measure

 Propositions ⇔ subspaces

 Linear propositions ⇔ Hilbert vectors
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Superposition principle

Linear combinations of linear
propositions are again linear

propositions that belong to the same
Hilbert logic system
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Isomorphism
Lattice isomorhic

Propositions ⇔ closed subspaces

Topological isomorphic

Linear atoms ⇔ Hilbert base 
vectors
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The HBM has its own solution

http://www.youtube.com/watch?v=JqNg819PiZY
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Higgs mechanism
Energy V(ψ)

Goldstone boson 
at bottom

Higgs boson 
at wall

ψ

𝜓 𝜌, 𝜃 = 𝜌(𝑓) 𝑒𝑖𝜃

𝜕𝜇𝜓 = 𝜕𝜇𝜌 + 𝑖𝜌𝜕𝜇𝜃 𝑒𝑖𝜃

ℒ = 𝜕𝜇𝜓𝜕𝜇𝜓
∗

ℒ = 𝜕𝜇𝜌
2
+ 𝑖𝜕𝜇𝜃 [𝜌𝜕𝜇𝜌

∗ − 𝜌∗𝜕𝜇𝜌] + 𝜌2 𝜕𝜇𝜃
2

Thus, 𝑒𝑖𝜃 is no symmetry!

Complex number based 
QP

Lagrangian

Wave function
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Higgs mechanism⇔HBM

Two 
fields

Mexican hat
fields graph

Particle oscillates 
between fields at 
lowest energy
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Qpattern 
pair

𝛻𝜓𝑥 = 𝑚 𝜓𝑦

Coupling equation



Gauge transformation
Covariant derivative

𝐷𝜇𝜓 = 𝜕𝜇𝜓 − 𝑖 𝐴𝜇𝜓

= (𝜕𝜇𝜃 + 𝐴𝜇)𝑖𝜌𝑒
𝑖𝜃

The new Lagrangian is

ℒ = 𝐷𝜇𝜓𝐷𝜇𝜓
∗ = 𝑓2(𝜕𝜇𝜃 + 𝐴𝜇)

2 = 𝑓2𝐴𝜇
′ 2

𝜃 is replaced by a new field 𝐴𝜇
′

The factor 𝑓 represents mass

𝐴𝜇
′ = 𝜕𝜇𝜃 + 𝐴𝜇
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