The Hilbert Book Model A simple model of fundamental physics

Fundament

- The Hilbert Book Model (HBM) is strictly based on traditional quantum logic.
-This foundation is lattice isomorphic with the set of closed subspaces of an infinite dimensional separable Hilbert space.

Correspondences

- ≈ 1930 Garret Birkhoff and John von Neumann discovered the lattice isomorphy:
- Infinite, but countable number of atoms / base vectors

Quantum logic	Hilbert space
Propositions: a, b	Vectors: $\|a\rangle,\|b\rangle$
atoms c, d	Base vectors: $\|c\rangle,\|d\rangle$
Relational complexity: $C_{\text {omplexity }}(a \cap b)$	Inner product: $\langle a \mid b\rangle$
Inclusion: ($a \cup b$)	Sum: $\|a\rangle+\|b\rangle$
For atoms c_{i} :	Subspace $\left\{\sum_{i} \alpha_{i}\left\|c_{i}\right\rangle\right\}_{\forall \alpha_{i}}$

Atoms \& base vectors

- Atom
- Contents not important
- Set is unordered
- Many sets possible
- Logic
- Lattice
- Only relations important

Atoms \& base vectors

- Atom
- Contents not important
- Set is unordered
- Many sets possible
- Base vector
- Set is unordered
- Many sets possible
- Can be eigenvector
- Eigenvalue
- Real
- Complex
- Quaternionic
- Logic
- Lattice
- Only relations important

Atoms \& base vectors

- Atom
- Contents not important
- Set is unordered
- Many sets possible
- Base vector
- Set is unordered
- Many sets possible
- Can be eigenvector
- Eigenvalue
- Real
- Complex
- Quaternionic
- Hilbert space
- Inner product
- Real
- Complex
- Quaternionic

Constantin Piron:
Inner product $\langle x \mid y\rangle$ must be real, complex or quaternionic
$\langle a \mid P a\rangle=\langle a \mid p a\rangle=\langle a \mid a\rangle p$
The eigenvalues are the same type of numbers as the inner products ${ }_{6}$

Implementing dynamics

The sub-models can only implement a static status quo

Representation

Quantum logic
Hilbert space

- Cannot represent dynamics
- Can only implement a static status quo

Solution:

An ordered sequence of sub-models
The model looks like a book where the sub-models are the pages.

The Hilbert book model

- Sequence \Leftrightarrow book \Leftrightarrow HBM
- Sub-models \Leftrightarrow sequence members \Leftrightarrow pages
- Sequence number \Leftrightarrow page number \Leftrightarrow progression parameter
- Correlation vehicle
- must establish sufficient coherence between pages
- Coherence must not be too stiff
- Requires identification of atoms / base vectors
- Implemented by:
- Enumeration operator
- Enumeration function

Sequence

Reference Hilbert space delivers via its enumeration operator the
"flat" Rational Quaternionic Enumerators
Gelfand triple of reference Hilbert space delivers via its enumeration operator the HBM has no Big Bang! reference continuum

Correlation vehicle

- Must install sufficient cohesion between the subsequent sub-models
- Coherence must not be too stiff, otherwise no dynamics occurs
- Must not introduce extra functionality or properties for the enumerated objects

Correlation vehicle

- Requires ID's for atoms
- ID generator
- Dedicated enumeration operator
- Eigenvalues \Rightarrow rational quaternions \Rightarrow enumerators
- Enumeration function
- Maps enumerators onto reference continuum

$$
\begin{array}{ll}
\text { RQE }= & \text { Rational } \\
& \text { Quaternionic } \\
& \text { Enumerator }
\end{array}
$$

Reference continuum

- Select a reference Hilbert space
- Criterion is densest packaging of enumerators*.
- Take its Gelfand triple (rigged "Hilbert space")
- Has over-countable number of dimensions/base vectors
- Has operators with continuum eigenspaces
- Select equivalent of enumeration operator in Hilbert space
- Use its eigenspace as reference continuum
(*Cyclic: Densest with respect to reference continuum)

Atoms \& base vectors

- Atom
- Contents not important
- Set is unordered
- Many sets possible
- Base vector
- Set is unordered
- Many sets possible
- Can be eigenvector
- Eigenvalue
- Real
- Complex
- Quaternionic
- Hilbert space
- Inner product
- Real
- Complex
- Quaternionic
- Enumerator operator
- Eigenvalues
- Rational quaternionic enumerators (RQE's)
- Enumerates atoms

Enumeration

- Hilbert space
- Enumerator operator
- Eigenvalues
- Rational quaternionic enumerators (RQE's)

Enumeration

- Hilbert space
- Enumerator operator
- Eigenvalues
- Rational quaternionic enumerators (RQE's)
- Model
- Enumeration function \mathcal{P}
- Parameters
- RQE's
- Image
- Qtargets

Enumeration

- Hilbert space
- Enumerator operator
- Eigenvalues
- Rational quaternionic enumerators (RQE's)
- Model
- Enumeration function
- Parameters
- RQE's
- Image
- Qtargets
- Function $\mathcal{P}=\wp \circ \psi$
- Blurred \mathcal{P}
- Sharp \wp
- Blur ψ

Enumeration

- Hilbert space
- Enumerator operator
- Eigenvalues
- Rational quaternionic enumerators (RQE's)
- Model
- Enumeration function
- Parameters
- RQE's
- Image
- Qtargets

Enumeration function \mathcal{P}

- Function $\mathcal{P}=\wp \circ \psi$
- Blurred $\mathcal{P} \quad \Rightarrow$ Produces QPAD $\quad \Rightarrow$ Qtarget
- Sharp $8 \quad \Rightarrow$ Produces Qpatch
- Blur $\psi \quad \Rightarrow$ Produces Qpattern
- QPAD
- Quaternionic Probability Amplitude Distribution

Enumeration function \mathcal{P}

- Function $\mathcal{P}=\wp \circ \psi$
- Blurred $\mathcal{P} \quad \Rightarrow$ Produces QPAD $\quad \Rightarrow$ Qtarget
- Sharp $\wp \quad \Rightarrow$ Produces Qpatch
- Blur $\psi \quad \Rightarrow$ Produces Qpattern
- QPAD
- Quaternionic Probability Amplitude Distribution

Only exists at instance of detection

Enumeration function \mathcal{P}

- Function $\mathcal{P}=\wp \circ \psi$

Curved
space

- Blurred $\mathcal{P} \quad \Rightarrow$ Produces QPAD \Rightarrow Qtarget
- Sharp $\wp \quad \Rightarrow$ Produces Qpatch
- Blur ψ
\Rightarrow Produces Qpattern
- QPAD
- Quaternionic Probability Amplitude Distribution

Only exists at instance of detection

Enumeration function \mathcal{P}

- Function $\mathcal{P}=\wp \circ \psi$

Curved
space

- Sharp $\wp \quad \Rightarrow$ Produces Qpatch
- Blur ψ

Only exists at instance of detection

- Blurred $\mathcal{P} \quad \Rightarrow$ Produces QPAD \Rightarrow Qtarget
\Rightarrow Produces Qpattern
- Quaternionic Probability Amplitude Distribution
- QPAD

Enumeration function \mathcal{P}

- Function $\mathcal{P}=\wp \circ \psi$

Curved
space

- Blurred $\mathcal{P} \quad \Rightarrow$ Produces QPAD \Rightarrow Qtarget
- Sharp $\wp \quad \Rightarrow$ Produces Qpatch
- Blur ψ
- QPAD
- Quaternionic Probability Amplitude Distribution

\Rightarrow Produces Qpaltern

Only exists at instance of detection

Generations per step

- Per progression step only ONE Qtarget is generated per Qpattern
- Generation of the whole Qpattern takes a large amount of progression steps
- When the Qpatch moves, then the pattern spreads out
- When an event (creation, annihilation) occurs, the enumeration generation changes its mode

Why blurred (1D)?

- Real Hilbert space model \Rightarrow No problem
- Progression separated
- Use rational numbers
- Cohesion not too stiff (otherwise no dynamics!)
- Keep sufficient interspacing
- Lowest rational
- May introduce scaling as function of progression
- Fixed progression steps

Why blurred (1+1D) ?

- Complex Hilbert space model \Rightarrow No problem
- Progression at real axis
- Use rational complex numbers
- Cohesion not too stiff (otherwise no dynamics!)
- Keep sufficient interspacing
- Lowest rational at both axes (separately)
- May introduce scaling as function of progression
- No scaling at progression axis

Why blurred (1+3D)?

- Quaternionic Hilbert space model \Rightarrow Blur required
- Progression at real axis
- Use rational quaternions
- Cohesion not too stiff (otherwise no dynamics!)
- Keep sufficient interspacing
- Lowest rational at all axes (same for imaginary axes)
- May introduce scaling as function of progression
- No scaling at progression axis
- Blur installed by enumeration generator

Why blurred (1+3D)?
\bullet Enumerated objects (atoms) are not ordered

- No origin
- Affine space
- Enumeration must not introduce extra properties
- No preferred directions

Solution (no preferred directions)

- Random enumerator generation at lowest scales
- Let Poisson process produce smallest scale enumerator
- Follow this Poisson process with a binomial process
- This is installed by a 3D spread function
- This generates a 3d "Gaussian" distribution

The distribution represents an isotropic potential of the form

$$
\frac{\operatorname{Erf}(r)}{r} \text { (form of gravitation field) }
$$

- This quickly reduces to $1 / r$ (form of gravitational potential)
- The result is a Qpattern

Enumerator function \mathcal{P}

Convolution

- Blurred function $\mathcal{P}=\wp \cdot \psi$
- Sharp \wp maps RQE's \Rightarrow Qpatches
- Blur ψ
maps RQE's \Rightarrow Qtargets
- Function \mathcal{P}
- Produces QPAD's
- Blur ψ
- Produces Qpatterns
* Produces gravitation (1/r)
- Sharp §
\& Describes space curvature
* Delivers metric $d \wp$

Enumerator function \mathcal{P}

$$
\begin{gathered}
\mathcal{P}=\wp \circ \psi \\
\{R Q E\} \Longrightarrow \mathcal{P} \Longrightarrow Q P A D \\
\{R Q E\} \Longrightarrow \mathcal{P} \Longrightarrow\{\text { Qtarget }\} \\
\{R Q E\} \Longrightarrow \wp \Longrightarrow\{\text { Qpatch }\} \\
\{R Q E\} \Longrightarrow \psi \Longrightarrow \text { Qpattern } \\
\text { Palestra }=(\{\text { Qpatch }\})
\end{gathered}
$$

Palestra

- Curved space

Embedded in reference continuum

- Represents universe

(\{Qpatch\})

Collection of
Qpatches

Mapping

$\mathcal{P}=\wp \circ \psi$

- Continuity equation

$$
\nabla \psi=\phi
$$

- Dirac equation $\nabla_{0}[\psi]+\nabla \boldsymbol{\alpha}[\psi]$
- In quaternion format

$$
\nabla \psi=m \psi *
$$

Quaternionic physics

How to use
Quaternionic Distributions
and

Quaternionic Probability Amplitude Distributions

The HBM is a quaternionic model

- The HBM concerns quaternionic physics rather than complex physics.
- The peculiarities of the quaternionic Hilbert model are supposed to bubble down to the complex Hilbert space model and to the real Hilbert space model
- The complex Hilbert space model is considered as an abstraction of the quaternionic Hilbert space model
- This can only be done properly in the right circumstances

Continuous

Quaternionic Distributions

- Quaternions

$$
\begin{aligned}
& a=a_{0}+\boldsymbol{a} \\
& \mathrm{c}=a b=a_{0} b_{0}-\langle\boldsymbol{a}, \boldsymbol{b}\rangle+ \\
& \quad a_{0} \boldsymbol{b}+b_{0} \boldsymbol{a}+\boldsymbol{a} \times \boldsymbol{b}
\end{aligned}
$$

Two

- Quaternionic distributions

Three

- Differential equation

$$
\begin{aligned}
& \mathbf{g}=\nabla f=\nabla_{0} f_{0}-\langle\boldsymbol{\nabla}, \boldsymbol{f}\rangle+ \\
& \nabla_{0} \boldsymbol{f}+\boldsymbol{\nabla} b_{0}+\boldsymbol{\nabla} \times \boldsymbol{b}
\end{aligned}\left\{\begin{array}{l}
g_{0}=\nabla_{0} f_{0}-\langle\nabla, \boldsymbol{f}\rangle \\
\mathbf{g}=\nabla_{0} \boldsymbol{f}+\nabla b_{0}+\nabla \times \boldsymbol{b}
\end{array}\right.
$$

$$
\phi=\nabla \psi=m \varphi
$$

Differential
 Coupling
 equation
 Continuity

Field equations

- $\phi=\nabla \psi$
- $\phi_{0}=\nabla_{0} \psi_{0}-\langle\nabla, \psi\rangle$
- $\boldsymbol{\phi}=\nabla_{0} \psi+\nabla \psi_{0}+\nabla \times \psi$

Spin of a field:

$$
\Sigma_{\text {field }}=\int_{V} \mathbb{E} \times \boldsymbol{\psi} d V
$$

- $\mathfrak{E} \equiv \nabla_{0} \boldsymbol{\psi}+\nabla \psi_{0}$
- $\boldsymbol{B} \equiv \boldsymbol{\nabla} \times \boldsymbol{\psi}$
- $\phi=\mathfrak{E}+\mathfrak{B}$
- $E \equiv|\phi|=\sqrt{\phi_{0} \phi_{0}+\langle\phi, \phi\rangle}$

$$
=\sqrt{\phi_{0} \phi_{0}+\langle\mathfrak{C}, \mathfrak{E}\rangle+\langle\mathfrak{B}, \mathfrak{B}\rangle+2\langle\mathfrak{C}, \mathfrak{B}\rangle}
$$

QPAD's

- Quaternionic distribution
- $f=f_{0}+\boldsymbol{f}$
Scalar
potential
Vector potential
- Quaternionic Probability Amplitude Distribution
- $\psi=\psi_{0}+\boldsymbol{\psi}=\rho_{0}+\rho_{0} \boldsymbol{v}$

Density distribution

Current density distribution

QPAD's

- A QPAD represents a Hilbert vector and vice versa
- A QPAD represents a linear proposition and vice versa
- QPAD's have inner product
- $\langle a \mid b\rangle=\int_{V} a b d V$
- Parseval holds
$\bullet\langle a \mid b\rangle=\langle\mathcal{F} a \mid \mathcal{F} b\rangle=\langle\tilde{a} \mid \tilde{b}\rangle=\int_{\tilde{V}} \tilde{a} \tilde{b} d \tilde{V}$
- QPAD's have a norm
$|a|=\sqrt{\langle a \mid a\rangle}$

Coupling equation

- Differential

$$
\begin{aligned}
& \phi=\nabla \psi=m \varphi \\
& \psi_{0}=\varphi_{0}
\end{aligned}
$$

ψ and φ
are normalized

$$
|\psi|=|\varphi|
$$

- Integral
$m=$ total energy

$$
\begin{aligned}
& \int_{V}|\psi|^{2} d V=\int_{V}|\varphi|^{2} d V=1 \\
& \int_{V}|\varphi|^{2} d V=m^{2}
\end{aligned}
$$

$=$ rest mass + kinetic energy

Flat space

Coupling in Fourier space

$$
\begin{aligned}
& \nabla \psi=\phi=m \varphi \\
& \mathcal{M} \tilde{\psi}=\tilde{\phi}=m \tilde{\varphi} \\
& \langle\tilde{\psi} \mid \mathcal{M} \tilde{\psi}\rangle=m\langle\tilde{\psi} \mid \tilde{\varphi}\rangle \\
& \mathcal{M}=\mathcal{M}_{0}+\boldsymbol{M} \\
& \mathcal{M}_{0} \tilde{\psi}_{0}-\langle\boldsymbol{M}, \widetilde{\psi}\rangle=m \tilde{\varphi}_{0} \\
& \mathcal{M}_{0} \boldsymbol{\psi}+\boldsymbol{M} \tilde{\psi}_{0}+\boldsymbol{M} \times \widetilde{\boldsymbol{\psi}}=m \widetilde{\boldsymbol{\varphi}} \\
& \int_{\widetilde{V}} \widetilde{\phi}^{2} d \widetilde{V}=\int_{\widetilde{V}}(\overline{\mathcal{N} \psi})^{2} d \widetilde{V}=m^{2}
\end{aligned}
$$

eigenfunction of operator \mathcal{M}.
That is only true when $|\widetilde{\psi}\rangle$ and $|\widetilde{\varphi}\rangle$ are equal.
For elementary particles they are equal
apart from their difference in discrete symmetry.

Dirac equation

$$
\nabla_{0}[\psi]+\nabla \boldsymbol{\alpha}[\psi]=m \beta[\psi]
$$

- Spinor $[\psi]$
- Dirac matrices $\boldsymbol{\alpha}, \beta$
- $\nabla_{0} \psi_{R}+\nabla \psi_{R}=m \psi_{L}$
- $\nabla_{0} \psi_{L}-\nabla \psi_{L}=m \psi_{R}$
- In quaternion format

$$
\begin{aligned}
& -\nabla \psi=m \psi^{*} \\
& -\nabla^{*} \psi^{*}=m \psi
\end{aligned}
$$

$$
\psi_{R}=\psi_{L}^{*}=\psi_{0}+\boldsymbol{\psi}
$$

Qpattern

Elementary particles

- Coupling equation
- $\nabla \psi^{x}=m \psi^{y}$
- $\left(\nabla \psi^{x}\right)^{*}=m\left(\psi^{y}\right)^{*}$
- Coupling occurs between pairs
- $\left\{\psi^{x}, \psi^{y}\right\}$
- Colors
- N, R, G, B, $\overline{\mathrm{R}}, \overline{\mathrm{G}}, \overline{\mathrm{B}}, \mathrm{W}$
- Right and left handedness
- R,L

Sign flavors
$\# \boldsymbol{\psi}^{(0)} N \mathbf{R}$ H $\boldsymbol{\psi}^{(1)} R \mathbf{L}$ $\square \boldsymbol{\psi}^{(2)} G \mathbf{L}$
$\because \boldsymbol{\psi}^{(3)} B \mathbf{L}$
$\because \boldsymbol{\psi}^{(4)} \bar{B} \mathbf{R}$
$\square \boldsymbol{\psi}^{(5)} \bar{G} \mathbf{R}$ $\# \boldsymbol{\psi}^{(6)} \bar{R} \mathbf{R}$ $\# \boldsymbol{\psi}^{(7)} \bar{N} \mathrm{~L}$

Discrete symmetries

Spin

- HYPOTHESIS : Spin relates to the fact whether the coupled Qpattern is the reference Qpattern.
- Each generation has its own reference Qpattern.
- Fermions couple to the reference Qpattern.
- Fermions have half integer spin.
- Bosons have integer spin.
- The spin of a composite equals the sum of the spins of its components.

Electric charge

- HYPOTHESIS : Electric charge depends on the difference and direction of the base vectors for the Qpattern pair.
- Each sign difference stands for one third of a full electric charge.
- Further it depends on the fact whether the handedness differs.
- If the handedness differs then the sign of the count is changed as well.

Color charge

- HYPOTHESIS : Color charge is related to the direction of the anisotropy of the considered Qpattern with respect to the reference Qpattern.
- The anisotropy lays in the discrete symmetry of the imaginary part.
- The color charge of the reference Qpattern is white.
- The corresponding anti-color is black.
- The color charge of the coupled pair is determined by the colors of its members.
- All composite particles are black or white.
- The neutral colors black and white correspond to isotropic Qpatterns.
- Currently, color charge cannot be measured.
- In the Standard Model the existence of color charge is derived via the Pauli principle.

Total energy

- Mass is related to the number of involved Qpatches.
- It is directly related to the square root of the volume integral of the square of the local field energy E.
- Any internal kinetic energy is included in E.
- The same mass rule holds for composite particles.
- The fields of the composite particles are dynamic superpositions of the fields of their components.

Leptons

Pair	s-type	e-charge	c-charge	Handed ness	SM Name
$\left\{\psi^{(7)}, \psi^{0}\right\}$	fermion	-1	N	LR	electron
$\left\{\psi^{(0)}, \psi^{7}\right\}$	Anti- fermion	+1	W	RL	positron

Quarks

Pair	s-type	e-charge	c-charge	Handedness	SM Name
$\left\{\psi^{(1)}, \psi^{(0)}\right\}$	fermion	-1/3	R	LR	down-quark
$\left\{\psi^{(6)}, \psi^{(7)}\right\}$	Anti-fermion	+1/3	$\overline{\mathrm{R}}$	RL	Anti-down-quark
$\left\{\psi^{(2)}, \psi^{(0)}\right\}$	fermion	$-1 / 3$	G	LR	down-quark
$\left\{\psi^{(5)}, \psi^{(7)}\right\}$	Anti-fermion	+1/3	$\overline{\mathrm{G}}$	RL	Anti-down-quark
$\left\{\psi^{(3)}, \psi^{(0)}\right\}$	fermion	-1/3	B	LR	down-quark
$\left\{\psi^{(4)}, \psi^{(7)}\right\}$	Anti-fermion	+1/3	$\overline{\mathrm{B}}$	RL	Anti-down-quark
$\left\{\psi^{(4)}, \psi^{(0)}\right\}$	fermion	+2/3	$\overline{\mathrm{B}}$	RR	up-quark
$\left\{\psi^{(3)}, \psi^{(7)}\right\}$	Anti-fermion	$-2 / 3$	B	LL	Anti-up-quark
$\left\{\psi^{(5)}, \psi^{(0)}\right\}$	fermion	+2/3	$\overline{\mathrm{G}}$	RR	up-quark
$\left\{\psi^{(2)}, \psi^{(7)}\right\}$	Anti-fermion	-2/3	G	LL	Anti-up-quark
$\left\{\psi^{6}, \psi^{(0)}\right\}$	fermion	+2/3	$\overline{\mathrm{R}}$	RR	up-quark
$\left\{\psi^{(1)}, \psi^{(7)}\right\}$	Anti-fermion	-2/3	R	LL	Anti-up-quark

Reverse quarks

Pair	s-type	e-charge	c-charge	Handedness	SM Name
$\left\{\psi^{(0)}, \psi^{(1)}\right\}$	fermion	+1/3	R	RL	down-r-quark
$\left\{\psi^{(7)}, \psi^{(6)}\right\}$	Anti-fermion	$-1 / 3$	$\overline{\mathrm{R}}$	LR	Anti-down-r-quark
$\left\{\psi^{(0)}, \psi^{(2)}\right\}$	fermion	+1/3	G	RL	down-r-quark
$\left\{\psi^{(7)}, \psi^{5}\right\}$	Anti-fermion	-1/3	$\overline{\mathrm{G}}$	LR	Anti-down-r-quark
$\left\{\psi^{(0)}, \psi^{(3)}\right\}$	fermion	+1/3	B	RL	down-r-quark
$\left\{\psi^{(7)}, \psi^{(4)}\right\}$	Anti-fermion	-1/3	$\overline{\mathrm{B}}$	LR	Anti-down-r_quark
$\left\{\psi^{(0)}, \psi^{(4)}\right\}$	fermion	-2/3	$\overline{\mathrm{B}}$	RR	up-r-quark
$\left\{\psi^{(7)}, \psi^{(3)}\right\}$	Anti-fermion	+2/3	B	LL	Anti-up-r-quark
$\left\{\psi^{(0)}, \psi^{(5)}\right\}$	fermion	$-2 / 3$	$\overline{\mathrm{G}}$	RR	up-r-quark
$\left\{\psi^{(7)}, \psi^{(2)}\right\}$	Anti-fermion	+2/3	G	LL	Anti-up-r-quark
$\left\{\psi^{(0)}, \psi^{(6)}\right\}$	fermion	-2/3	$\overline{\mathrm{R}}$	RR	up-r-quark
$\left\{\psi^{(7)}, \psi^{(1)}\right\}$	Anti-fermion	+2/3	R	LL	Anti-up-r-quark $\begin{gathered}50\end{gathered}$

W-particles

$\left\{\psi^{6}, \psi^{(1)}\right\}$	boson	-1	$\overline{\mathrm{R} R}$	RL	W_{-}
$\left\{\psi^{(1)}, \psi^{(6)}\right\}$	Anti-boson	+1	RR	LR	W_{+}
$\left\{\psi^{(6)}, \psi^{(2)}\right\}$	boson	${ }^{-1}$	$\overline{\mathrm{R}} \mathrm{G}$	RL	W_{-}
$\left\{\psi^{(2)}, \psi^{(6)}\right\}$	Anti-boson	+1	G \bar{R}	LR	W_{+}
$\left\{\psi^{(6)}, \psi^{(3)}\right\}$	boson	-1	$\overline{\mathrm{R} B}$	RL	W_{-}
$\left\{\psi^{(3)}, \psi^{(6)}\right\}$	Anti-boson	+1	B $\overline{\mathrm{R}}$	LR	W_{+}
$\left\{\psi^{(5)}, \psi^{(1)}\right\}$	boson	-1	$\overline{\mathrm{G} G}$	RL	W_{-}
$\left\{\psi^{(1)}, \psi^{(5)}\right\}$	Anti-boson	+1	G $\overline{\mathrm{G}}$	LR	W_{+}
$\left\{\psi^{(5)}, \psi^{(2)}\right\}$	boson	-1	$\overline{\mathrm{G} G}$	RL	W_{-}
$\left\{\psi^{(2)}, \psi^{(5)}\right\}$	Anti-boson	+1	G $\overline{\mathrm{G}}$	LR	W_{+}
$\left\{\psi^{(5)}, \psi^{(3)}\right\}$	boson	-1	$\overline{\mathrm{G}} \mathrm{B}$	RL	W_{-}
$\left\{\psi^{(3)}, \psi^{(5)}\right\}$	Anti-boson	+1	B $\overline{\mathrm{G}}$	LR	W_{+}
$\left\{\psi^{(4)}, \psi^{(1)}\right\}$	boson	-1	$\overline{\mathrm{B}} \mathrm{R}$	RL	W_{-}
$\left\{\psi^{(1)}, \psi^{(4)}\right\}$	Anti-boson	+1	$\mathrm{R} \overline{\mathrm{B}}$	LR	W_{+}
$\left\{\psi^{(4)}, \psi^{(2)}\right\}$	boson	-1	$\overline{\mathrm{B}} \mathrm{G}$	RL	W_{-}
$\left\{\psi^{(2)}, \psi^{4}\right\}$	Anti-boson	+1	G \bar{B}	LR	W_{+}
$\left\{\psi^{(4)}, \psi^{(3)}\right\}$	boson	-1	$\overline{\mathrm{B}} \mathrm{B}$	RL	W_{-}
$\left\{\psi^{3}, \psi^{4}\right\}$	Anti-boson	+1	B $\overline{\mathrm{B}}$	LR	W_{+}

Z-particles

Pair	s-type	e-charge	c-charge	Handedness	SM Name
$\left\{\psi^{(2)}, \psi^{(1)}\right\}$	boson	0	GR	LL	Z
$\left\{\psi^{5}, \psi^{(6)}\right\}$	Anti-boson	0	$\overline{\mathrm{GR}}$	RR	Z
$\left\{\psi^{(3)}, \psi^{(1)}\right\}$	boson	o	BR	LL	Z
$\left\{\psi^{(4)}, \psi^{(6)}\right\}$	Anti-boson	0	$\overline{\mathrm{R}} \overline{\mathrm{B}}$	RR	Z
$\left\{\psi^{(3)}, \psi^{(2)}\right\}$	boson	0	BR	LL	Z
$\left\{\psi^{(4)}, \psi^{(5)}\right\}$	Anti-boson	o	$\overline{\mathrm{R} \bar{B}}$	RR	Z
$\left\{\psi^{(1)}, \psi^{(2)}\right\}$	boson	0	RG	LL	Z
$\left\{\psi^{6}, \psi^{5}\right\}$	Anti-boson	0	$\overline{\mathrm{R} G}$	RR	Z
$\left\{\psi^{(1)}, \psi^{(3)}\right\}$	boson	0	RB	LL	Z
$\left\{\psi^{(6)}, \psi^{(4)}\right\}$	Anti-boson	0	$\overline{\mathrm{R} \bar{B}}$	RR	Z
$\left\{\psi^{(2)}, \psi^{(3)}\right\}$	boson	0	RB	LL	Z
$\left\{\psi^{5}, \psi^{(4)}\right\}$	Anti-boson	0	$\overline{\mathrm{R} \bar{B}}$	RR	Z

Neutrinos

type	s-type	e-charge	c-charge	Handedness	SM Name
$\left\{\psi^{(7)}, \psi^{(7)}\right\}$	fermion	o	NN	RR	neutrino
$\left\{\psi^{(0)}, \psi^{(0)}\right\}$	Anti-fermion	o	wW	LL	neutrino
$\left\{\psi^{(6)}, \psi^{(6)}\right\}$	boson?	o	$\overline{\mathrm{R}}$	RR	neutrino
$\left\{\psi^{(1)}, \psi^{(1)}\right\}$	Anti- boson?	o	RR	LL	neutrino
$\left\{\psi^{(5)}, \psi^{(5)}\right\}$	boson?	o	$\overline{\mathrm{GG}}$	RR	neutrino
$\left\{\psi^{(2)}, \psi^{(2)}\right\}$	Anti- boson?	o	GG	LL	neutrino
$\left\{\psi^{(4)}, \psi^{(4)}\right\}$	boson?	o	$\overline{\text { BB }}$	RR	neutrino
$\left\{\psi^{(3)}, \psi^{(3)}\right\}$	Anti- boson?	o	BB	LL	neutrino 5

Photons \& gluons

type	s-type	e-charge	c-charge	Handedness	SM Name
$\left\{\psi^{(7)}\right\}$	boson	O	N	R	photon
$\left\{\psi^{(0)}\right\}$	boson	o	W	L	photon
$\left\{\psi^{6}\right\}$	boson	0	$\overline{\mathrm{R}}$	R	gluon
$\left\{\psi^{(1)}\right\}$	boson	o	R	L	gluon
$\left\{\psi^{5}\right\}$	boson	0	$\overline{\mathrm{G}}$	R	gluon
$\left\{\psi^{(2)}\right\}$	boson	o	G	L	gluon
$\left\{\psi^{4}\right\}$	boson	0	$\overline{\mathrm{B}}$	R	gluon
$\left\{\psi^{(3)}\right\}$	boson	O	B	L	gluon 54

Photons \& gluons

Photons and gluons are better interpreted as Qpatterns in the canonical conjugated space

Generation modes

- Qpatterns can be generated
- in configuration space
- in canonical conjugated space
- Quantum state functions of particles are generated in configuration space
- Photons and gluons are generated in the canonical conjugated space
- The coupled field is not generated
- It is constituted from the tails of quantum state functions of distant particles

Quanta

The noise of low dose imaging

Low dose X-ray imaging

Film of cold cathode emission

