The Hilbert Book Model

A simple model of fundamental physics

http://www.e-physics.eu

<u>Logic</u>

Fundament

- The Hilbert Book Model (HBM) is strictly based on traditional quantum logic.
- This foundation is lattice isomorphic with the set of closed subspaces of an infinite dimensional separable Hilbert space.

Correspondences

 ≈1930 Garret Birkhoff and John von Neumann discovered the lattice isomorphy:

 Infinite, but countable number of atoms / base vectors

Quantum logic	Hilbert space
Propositions:	Vectors:
a, b	$ a\rangle$, $ b\rangle$
atoms	Base vectors:
c, d	$ c\rangle$, $ d\rangle$
Relational complexity:	Inner product:
$C_{omplexity}(a \cap b)$	$\langle a b\rangle$
Inclusion:	Sum:
$(a \cup b)$	$ a\rangle + b\rangle$
For atoms c_i :	Subspace
$\bigcup_{i} c_{i}$	$\left\{\sum_{i}\alpha_{i} c_{i}\rangle\right\}_{\forall\alpha_{i}}$

• Atom

- Contents not important
- Set is unordered
- Many sets possible

- Logic
 - Lattice
 - Only relations important

• Atom

- Contents not important
- Set is unordered
- Many sets possible

Base vector

- Set is unordered
- Many sets possible
- Can be *eigenvector*
 - Eigenvalue
 - Real
 - Complex
 - Quaternionic

• Logic

- Lattice
 - Only relations important

• Atom

- Contents not important
- Set is unordered
- Many sets possible
- Base vector
 - Set is unordered
 - Many sets possible
 - Can be eigenvector
 - Eigenvalue
 - Real
 - Complex
 - Quaternionic

- Hilbert space
 - Inner product
 - Real
 - Complex
 - Quaternionic

Constantin Piron:

Inner product $\langle x | y \rangle$ must be real, complex or quaternionic

 $\langle a|Pa\rangle = \langle a|pa\rangle = \langle a|a\rangle p$

The eigenvalues are the same type of numbers as the inner products ₆

Implementing dynamics

The sub-models can only implement *a static status quo*

Representation

Quantum logic

Hilbert space

Cannot represent dynamics
 Can only implement a *static status quo*

Solution:

An ordered sequence of sub-models

The model looks like a book where the sub-models are the pages.

The Hilbert book model

- Sequence \Leftrightarrow **book** \Leftrightarrow HBM
- Sub-models ⇔ sequence members ⇔ pages
- Sequence number ⇔page number ⇔ progression parameter

• Correlation vehicle

- must establish sufficient coherence between pages
- Coherence must not be too stiff
- Requires identification of atoms / base vectors
- Implemented by:
 - Enumeration operator
 - Enumeration function

Sequence

Reference Hilbert space delivers via its enumeration operator the "flat" Rational Quaternionic Enumerators

Gelfand triple of reference Hilbert space delivers via its enumeration operator the *reference continuum*

HBM has no Big Bang!

Correlation vehicle

- Must install *sufficient cohesion* between the subsequent sub-models
- Coherence must not be too stiff, otherwise no dynamics occurs
- Must not introduce extra functionality or properties for the enumerated objects

Correlation vehicle

- Requires ID's for atoms
- ID generator
 - Dedicated enumeration operator
 - Eigenvalues ⇒ rational quaternions ⇒ enumerators
 - Enumeration function
 - Maps enumerators onto *reference continuum*
 - RQE = Rational Quaternionic Enumerator

Reference continuum

- Select a reference Hilbert space
- Criterion is densest packaging of enumerators*.
- Take its Gelfand triple (rigged "Hilbert space")
 - Has over-countable number of dimensions/base vectors
 - Has operators with continuum eigenspaces
- Select equivalent of enumeration operator in Hilbert space
- Use its eigenspace as reference continuum

(*Cyclic: Densest with respect to reference continuum)

• Atom

- Contents not important
- Set is unordered
- Many sets possible
- Base vector
 - Set is unordered
 - Many sets possible
 - Can be eigenvector
 - Eigenvalue
 - Real
 - Complex
 - Quaternionic

- Hilbert space
 - Inner product
 - Real
 - Complex
 - Quaternionic
 - Enumerator operator
 - Eigenvalues
 - Rational quaternionic enumerators (RQE's)
 - Enumerates atoms

• Hilbert space

- Enumerator operator
 - Eigenvalues
 - Rational quaternionic enumerators (RQE's)

• Hilbert space

- Enumerator operator
 - Eigenvalues
 - Rational quaternionic enumerators (RQE's)

• Model

- ullet Enumeration function ${\mathcal P}$
 - Parameters
 - RQE's
 - Image
 - Qtargets

• Hilbert space

- Enumerator operator
 - Eigenvalues
 - Rational quaternionic enumerators (RQE's)

• Model

- Enumeration function
 - Parameters
 - RQE's
 - Image
 - Qtargets

• Function $\mathcal{P} = \wp \circ \psi$

- Blurred \mathcal{P}
- Sharp 🔊
- Blur ψ

• Hilbert space

- Enumerator operator
 - Eigenvalues
 - Rational quaternionic enumerators (RQE's)

• Model

- Enumeration function
 - Parameters
 - RQE's
 - Image
 - Qtargets

- Function $\mathcal{P} = \wp \circ \psi$
 - Blurred \mathcal{P}
 - Sharp 🔊
 - Blur ψ

- Function $\mathcal{P} = \wp \circ \psi$
 - Blurred \mathcal{P}
 - Sharp Ø
 - Blur ψ

- $\Rightarrow \text{Produces } \mathbf{QPAD} \quad \Rightarrow \mathbf{Qtarget}$
- \Rightarrow Produces *Qpatch*
- \Rightarrow Produces *Qpattern*

• QPAD

 Quaternionic Probability Amplitude Distribution

- Function $\mathcal{P} = \wp \circ \psi$
 - Blurred ${\mathcal P}$
 - Sharp Ø
 - Blur ψ

• QPAD

 Quaternionic Probability Amplitude Distribution

- $\Rightarrow \text{Produces } \mathbf{QPAD} \Rightarrow \mathbf{Qtarget}$ $\Rightarrow \text{Produces } \mathbf{Qpatch}$ $\Rightarrow \text{Produces } \mathbf{Qpattarm}$
- ⇒ Produces *Qpattern*

Blur

- Function $\mathcal{P} = \wp \circ \psi$
 - Blurred \mathcal{P}
 - Sharp Ø
 - Blur ψ

• QPAD

 Quaternionic Probability Amplitude Distribution $\Rightarrow \text{Produces } \textbf{QPAD} \Rightarrow \textbf{Qtarget}$ $\Rightarrow \text{Produces } \textbf{Qpatch}$ $\Rightarrow \text{Produces } \textbf{Qpattern}$

Curved

space

Blur

- Function $\mathcal{P} = \wp \circ \psi$
 - Blurred \mathcal{P}
 - Sharp Ø
 - Blur ψ

• QPAD

 Quaternionic Probability Amplitude Distribution $\begin{array}{c|c} \Rightarrow \text{Produces } \textbf{QPAD} \\ \Rightarrow \text{Produces } \textbf{Qpatch} \\ \Rightarrow \text{Produces } \textbf{Qpattern} \end{array}$

Curved

space

Blur

- Function $\mathcal{P} = \wp \circ \psi$
 - Blurred \mathcal{P}
 - Sharp Ø
 - Blur ψ

• QPAD

 Quaternionic Probability Amplitude Distribution $\begin{array}{c|c} \Rightarrow \text{Produces } \textbf{QPAD} \\ \Rightarrow \text{Produces } \textbf{Qpatch} \\ \Rightarrow \text{Produces } \textbf{Qpattern} \end{array}$

Curved

space

Generations per step

- Per progression step only ONE Qtarget is generated per Qpattern
- Generation of the whole Qpattern takes a large amount of progression steps
- When the Qpatch moves, then the pattern spreads out
- When an event (creation, annihilation) occurs, the enumeration generation changes its mode

Why blurred (1D)?

- Real Hilbert space model \Rightarrow No problem
 - Progression separated
 - Use rational numbers
 - Cohesion not too stiff (otherwise no dynamics!)
 - Keep sufficient interspacing
 - Lowest rational
 - May introduce scaling as function of progression
 - Fixed progression steps

Why blurred (1+1D) ?

- Complex Hilbert space model \Rightarrow No problem
 - Progression at real axis
 - Use rational complex numbers
 - Cohesion not too stiff (otherwise no dynamics!)
 - Keep sufficient interspacing
 - Lowest rational at both axes (separately)
 - May introduce scaling as function of progression
 - No scaling at progression axis

Why blurred (1+3D)?

- Quaternionic Hilbert space model ⇒ Blur required
 - Progression at real axis
 - Use rational quaternions
 - Cohesion not too stiff (otherwise no dynamics!)
 - Keep sufficient interspacing
 - Lowest rational at all axes (same for imaginary axes)
 - May introduce scaling as function of progression
 - No scaling at progression axis
- Blur installed by enumeration generator

Why blurred (1+3D)?

- Enumerated objects (atoms) are not ordered
 - No origin
 - Affine space

 Enumeration must not introduce extra properties
 No preferred directions

Solution (no preferred directions)

- Random enumerator generation at lowest scales
- Let Poisson process produce smallest scale enumerator
 - Follow this Poisson process with a binomial process
 - This is installed by a 3D spread function
 - This generates a 3d "Gaussian" distribution The distribution represents an isotropic potential of the form $\frac{Erf(r)}{r}$ (form of gravitation field)
 - This quickly reduces to 1/r (form of gravitational potential)
 - The result is a **Qpattern**

Convolution

- Blurred function $\mathcal{P} = \wp \circ \psi$
 - Sharp ℘ maps **RQE**'s ⇒ **Qpatches**
 - Blur ψ maps **RQE**'s \Rightarrow *Qtargets*
 - Function $\mathcal P$
 - Produces **QPAD**'s
- Blur ψ
 - Produces *Qpatterns*
 - Produces gravitation (1/r)
- Sharp 🔗
 - Describes space curvature
 - ✤ Delivers metric d ℘

$\mathcal{P} = \wp \circ \psi$ $\{RQE\} \Longrightarrow \mathcal{P} \Longrightarrow QPAD$ $\{RQE\} \Longrightarrow \mathcal{P} \Longrightarrow \{Qtarget\}$ $\{RQE\} \Longrightarrow \& \Longrightarrow \{Qpatch\}$ $\{RQE\} \Longrightarrow \psi \Longrightarrow Qpattern$ $Palestra = ({Qpatch})$

Palestra

- Curved space
- Represents universe

Embedded in reference continuum

({*Qpatch*})

Collection of Qpatches

Mapping

Quantum fluid dynamics

Quantum physics

- Continuity equation $abla \psi = \phi$
- Dirac equation $\nabla_0[\psi] + \nabla \alpha[\psi]$

о ψ

• In quaternion format $\nabla \psi = m\psi *$

Quaternionic physics

How to use **Quaternionic Distributions** and **Quaternionic Probability Amplitude Distributions**

The HBM is a quaternionic model

- The HBM concerns quaternionic physics rather than complex physics.
- The peculiarities of the quaternionic Hilbert model are supposed to bubble down to the complex Hilbert space model and to the real Hilbert space model
- The complex Hilbert space model is considered as an abstraction of the quaternionic Hilbert space model
 - This can only be done properly in the right circumstances

Continuous

Quaternionic Distributions

• Quaternions

$$a = a_0 + \mathbf{a}$$

$$c = ab = a_0b_0 - \langle \mathbf{a}, \mathbf{b} \rangle + a_0\mathbf{b} + b_0\mathbf{a} + \mathbf{a} \times \mathbf{b}$$

- Quaternionic distributions
 - Differential equation

 $\phi = \nabla \psi = m \, \varphi$

$$\nabla f = \nabla_0 f_0 - \langle \nabla, f \rangle + \nabla_0 f + \nabla b_0 + \nabla \times h$$

Differential Coupling <u>Continuity</u>

equation

Two

equations

 $\begin{cases} g_0 = \nabla_0 f_0 - \langle \nabla, f \rangle \\ \mathbf{g} = \nabla_0 f + \nabla b_0 + \nabla \times \mathbf{b} \end{cases}$

Three kinds

g =

Field equations

- $\phi = \nabla \psi$
 - $\phi_0 = \nabla_0 \psi_0 \langle \nabla, \psi \rangle$ • $\phi = \nabla_0 \psi_0 + \nabla_0 \psi_0$
 - $\boldsymbol{\phi} = \nabla_0 \psi + \nabla \psi_0 + \nabla \times \psi$

Spin of a field: $\Sigma_{field} = \int_{V} \mathfrak{E} \times \psi \, dV$

- $\mathfrak{E} \equiv \nabla_0 \boldsymbol{\psi} + \boldsymbol{\nabla} \psi_0$
- $\mathfrak{B} \equiv \nabla \times \psi$
- $\boldsymbol{\phi} = \mathfrak{E} + \mathfrak{B}$
- $E \equiv |\phi| = \sqrt{\phi_0 \phi_0 + \langle \phi, \phi \rangle}$ = $\sqrt{\phi_0 \phi_0 + \langle \mathfrak{E}, \mathfrak{E} \rangle + \langle \mathfrak{B}, \mathfrak{B} \rangle + 2 \langle \mathfrak{E}, \mathfrak{B} \rangle}$ Is zero ?

QPAD's

Quaternionic distribution

Scalar potential Vector potential

Quaternionic Probability Amplitude Distribution

$$\boldsymbol{\psi} = \boldsymbol{\psi}_0 + \boldsymbol{\psi} = \rho_0 + \rho_0 \boldsymbol{\eta}$$

Density distribution

Current density distribution

QPAD's

- A QPAD represents a Hilbert vector and vice versa
- A QPAD represents a linear proposition and vice versa
- QPAD's have inner product

•
$$\langle a | b \rangle = \int_{V} a b dV$$

Parseval holds

•
$$\langle a|b\rangle = \langle \mathcal{F}a|\mathcal{F}b\rangle = \langle \tilde{a}|\tilde{b}\rangle = \int_{\widetilde{V}} \tilde{a} \ \tilde{b} \ d\tilde{V}$$

• QPAD's have a norm

•
$$|a| = \sqrt{\langle a | a \rangle}$$

Coupling equation Differential $\phi = \nabla \psi = m \varphi$ $\psi_0 = \varphi_0$ $|oldsymbol{\psi}| = |oldsymbol{arphi}|$ Integral $\int_{V} |\psi|^{2} dV = \int_{V} |\varphi|^{2} dV = 1$ $\int |\phi|^2 \, dV = m^2$

 ψ and φ are normalized

m = total energy = rest mass + kinetic energy

Flat space

Coupling in Fourier space

 $\begin{aligned} \nabla \psi &= \phi = m \, \varphi \\ \mathcal{M} \tilde{\psi} &= \tilde{\phi} = m \, \tilde{\varphi} \\ \langle \tilde{\psi} | \mathcal{M} \tilde{\psi} \rangle &= m \, \langle \tilde{\psi} | \tilde{\varphi} \rangle \end{aligned}$

$$\begin{aligned} \mathcal{M} &= \mathcal{M}_{0} + \mathbf{M} \\ \mathcal{M}_{0} \tilde{\psi}_{0} - \langle \mathbf{M}, \tilde{\psi} \rangle &= m \, \tilde{\varphi}_{0} \\ \mathcal{M}_{0} \psi + \mathbf{M} \tilde{\psi}_{0} + \mathbf{M} \times \tilde{\psi} &= m \, \tilde{\varphi} \end{aligned}$$

$$\int_{\widetilde{V}} \widetilde{\phi}^2 \, d\widetilde{V} = \int_{\widetilde{V}} \left(\widetilde{\mathcal{M}\psi} \right)^2 \, d\widetilde{V} = m^2$$

In general $|\tilde{\psi}\rangle$ is not an eigenfunction of operator \mathcal{M} . That is only true when $|\tilde{\psi}\rangle$

and $|\tilde{\varphi}\rangle$ are equal. For elementary particles they are equal apart from their difference in discrete symmetry.

Dirac equation

Flat space

$$\nabla_0[\psi] + \nabla \alpha[\psi] = m\beta[\psi]$$

- Spinor $[\psi]$
- Dirac matrices α , β
 - $\nabla_0 \psi_R + \nabla \psi_R = m \psi_L$
 - $\nabla_0 \psi_L \nabla \psi_L = m \psi_R$
- In quaternion format
 - $\nabla \psi = m \psi^*$
 - $abla^*\psi^*=m\psi$

$$\psi_R = \psi_L^* = \psi_0 + \boldsymbol{\psi}$$

Elementary particles

- Coupling equation
 - $\nabla \psi^x = m \, \psi^y$
 - $(\nabla \psi^x)^* = m \ (\psi^y)^*$
- Coupling occurs between pairs
 - $\{\psi^x,\psi^y\}$
- Colors
 - N, R, G, B, \overline{R} , \overline{G} , \overline{B} , W
- Right and left handedness
 - **R**,L

Discrete symmetries

Spin

- HYPOTHESIS : Spin relates to the fact whether the coupled Qpattern is the reference Qpattern.
- Each generation has its own reference Qpattern.
- Fermions couple to the reference Qpattern.
- Fermions have half integer spin.
- Bosons have integer spin.
- The spin of a composite equals the sum of the spins of its components.

Electric charge

- HYPOTHESIS : Electric charge depends on the difference and direction of the base vectors for the Qpattern pair.
- Each sign difference stands for one third of a full electric charge.
- Further it depends on the fact whether the handedness differs.
- If the handedness differs then the sign of the count is changed as well.

Color charge

- HYPOTHESIS : Color charge is related to the direction of the anisotropy of the considered Qpattern with respect to the reference Qpattern.
- The anisotropy lays in the discrete symmetry of the imaginary part.
- The color charge of the reference Qpattern is white.
- The corresponding anti-color is black.
- The color charge of the coupled pair is determined by the colors of its members.
- All composite particles are black or white.
- The neutral colors black and white correspond to isotropic Qpatterns.
- Currently, color charge cannot be measured.
- In the Standard Model the existence of color charge is derived via the Pauli principle.

Total energy

- Mass is related to the number of involved Qpatches.
- It is directly related to the square root of the volume integral of the square of the local field energy *E*.
- Any internal kinetic energy is included in *E*.
- The same mass rule holds for composite particles.
- The fields of the composite particles are dynamic superpositions of the fields of their components.

Leptons

Pair	s-type	e-charge	c-charge	Handed	SM Name
				ness	
$\{\psi^{(7)},\psi^{(0)}\}$	fermion	-1	Ν	LR	electron
$\{\psi^{(0)},\psi^{(7)}\}$	Anti- fermion	+1	W	RL	positron

Quarks

Pair	s-type	e-charge	c-charge	Handedness	SM Name
$\{\psi^{(1)},\psi^{(0)}\}$	fermion	-1/3	R	LR	down-quark
$\{\psi^{(6)},\psi^{(7)}\}$	Anti-fermion	+1/3	R	RL	Anti-down-quark
$\{\psi^{(2)},\psi^{(0)}\}$	fermion	-1/3	G	LR	down-quark
$\{\psi^{(5)},\psi^{(7)}\}$	Anti-fermion	+1/3	G	RL	Anti-down-quark
$\{\psi^{(3)},\psi^{(0)}\}$	fermion	-1/3	В	LR	down-quark
$\{\psi^{(4)},\psi^{(7)}\}$	Anti-fermion	+1/3	B	RL	Anti-down-quark
$\{\psi^{(4)},\psi^{(0)}\}$	fermion	+2/3	B	RR	up-quark
$\{\psi^{(\widehat{3})},\psi^{(\widehat{7})}\}$	Anti-fermion	-2/3	В	LL	Anti-up-quark
$\{\psi^{(5)},\psi^{(0)}\}$	fermion	+2/3	G	RR	up-quark
$\{\psi^{(2)},\psi^{(7)}\}$	Anti-fermion	-2/3	G	LL	Anti-up-quark
$\{\psi^{(0)},\psi^{(0)}\}$	fermion	+2/3	R	RR	up-quark
$\{\psi^{(1)},\psi^{(7)}\}$	Anti-fermion	-2/3	R	LL	Anti-up-quark

Reverse quarks

Pair	s-type	e-charge	c-charge	Handedness	SM Name
$\{\psi^{(0)},\psi^{(1)}\}$	fermion	+1/3	R	RL	down-r-quark
$\{\psi^{(7)},\psi^{(6)}\}$	Anti-fermion	-1/3	R	LR	Anti-down-r-quark
{\psi_{\psi_0}, \psi_2}	fermion	+1/3	G	RL	down-r-quark
{\u0,\u03c6\$}	Anti-fermion	-1/3	G	LR	Anti-down-r-quark
$\{\psi^{(0)},\psi^{(3)}\}$	fermion	+1/3	В	RL	down-r-quark
$\{\psi^{(7)},\psi^{(4)}\}$	Anti-fermion	-1/3	B	LR	Anti-down-r_quark
$\{\psi^{(0)},\psi^{(4)}\}$	fermion	-2/3	B	RR	up-r-quark
$\{\psi^{(7)},\psi^{(3)}\}$	Anti-fermion	+2/3	В	LL	Anti-up-r-quark
{\psi_{\sty}{\psi_{\psi_{\psi_{\psi_{\sty}{\set \beta}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }} } } }	fermion	-2/3	G	RR	up-r-quark
$\{\psi^{(7)},\psi^{(2)}\}$	Anti-fermion	+2/3	G	LL	Anti-up-r-quark
$\{\psi^{(0)},\psi^{(0)}\}$	fermion	-2/3	R	RR	up-r-quark
$\{\psi^{(7)},\psi^{(1)}\}$	Anti-fermion	+2/3	R	LL	Anti-up-r-quark 50

W-particles

$\{\psi^{(6)},\psi^{(1)}\}$	boson	-1	RR	RL	W_
$\{\psi^{(1)},\psi^{(6)}\}$	Anti-boson	+1	RR	LR	W_+
$\{\psi^{(6)},\psi^{(2)}\}$	boson	-1	RG	RL	<i>W_</i>
$\{\psi^{(2)},\psi^{(6)}\}$	Anti-boson	+1	GR	LR	W_{+}
$\{\psi^{(6)},\psi^{(3)}\}$	boson	-1	RB	RL	<i>W_</i>
$\{\psi^{(3)},\psi^{(6)}\}$	Anti-boson	+1	BR	LR	W_+
$\{\psi^{(5)},\psi^{(1)}\}$	boson	-1	GG	RL	<i>W</i> _
$\{\psi^{(1)},\psi^{(5)}\}$	Anti-boson	+1	GG	LR	W ₊
$\{\psi^{(5)},\psi^{(2)}\}$	boson	-1	GG	RL	<i>W</i> _
$\{\psi^{(2)},\psi^{(5)}\}$	Anti-boson	+1	GG	LR	<i>W</i> +
$\{\psi^{(5)},\psi^{(3)}\}$	boson	-1	GB	RL	<i>W</i> _
$\{\psi^{(3)},\psi^{(5)}\}$	Anti-boson	+1	BG	LR	<i>W</i> ₊
$\{\psi^{(4)},\psi^{(1)}\}$	boson	-1	BR	RL	<i>W</i> _
$\{\psi^{(1)},\psi^{(4)}\}$	Anti-boson	+1	RB	LR	<i>W</i> +
$\{\psi^{(4)},\psi^{(2)}\}$	boson	-1	BG	RL	<i>W</i> _
$\{\psi^{(2)},\psi^{(4)}\}$	Anti-boson	+1	GB	LR	W_+
$\{\psi^{(4)},\psi^{(3)}\}$	boson	-1	BB	RL	<i>W</i> _
$\{\psi^{(3)},\psi^{(4)}\}$	Anti-boson	+1	BB	LR	<i>W</i> +

Z-particles

Pair	s-type	e-charge	c-charge	Handedness	SM Name
$\{\psi^{(2)},\psi^{(1)}\}$	boson	0	GR	LL	Z
$\{\psi^{(5)},\psi^{(6)}\}$	Anti-boson	0	GR	RR	Z
$\{\psi^{(3)},\psi^{(1)}\}$	boson	0	BR	LL	Z
$\{\psi^{(4)},\psi^{(6)}\}$	Anti-boson	0	RB	RR	Z
$\{\psi^{(3)},\psi^{(2)}\}$	boson	0	BR	LL	Z
$\{\psi^{(4)},\psi^{(5)}\}$	Anti-boson	0	RB	RR	Z
$\{\psi^{(1)},\psi^{(2)}\}$	boson	0	RG	LL	Z
$\{\psi^{(6)},\psi^{(5)}\}$	Anti-boson	0	RG	RR	Z
$\{\psi^{(1)},\psi^{(3)}\}$	boson	0	RB	LL	Z
$\{\psi^{(6)},\psi^{(4)}\}$	Anti-boson	Ο	RB	RR	Z
$\{\psi^{(2)},\psi^{(3)}\}$	boson	0	RB	LL	Z
$\{\psi^{(5)},\psi^{(4)}\}$	Anti-boson	0	RB	RR	Z 52

Neutrinos

type	s-type	e-charge	c-charge	Handedness	SM Name
$\{\psi^{(1)},\psi^{(2)}\}$	fermion	Ο	NN	RR	neutrino
$\{\psi^{\textcircled{0}},\psi^{\textcircled{0}}\}$	Anti-fermion	0	WW	LL	neutrino
_{{ψ} ⁶ ,ψ ⁶ }	boson?	Ο	RR	RR	neutrino
$\{\psi^{(1)},\psi^{(1)}\}$	Anti- boson?	Ο	RR	LL	neutrino
$\{\psi^{(5)},\psi^{(5)}\}$	boson?	0	GG	RR	neutrino
$\{\psi^{(2)},\psi^{(2)}\}$	Anti- boson?	0	GG	LL	neutrino
$\{\psi^{(\underline{4})},\psi^{(\underline{4})}\}$	boson?	0	BB	RR	neutrino
$\{\psi^{(3)},\psi^{(3)}\}$	Anti- boson?	0	BB	LL	neutrino 53

Photons & gluons

type	s-type	e-charge	c-charge	Handedness	SM Name
{\psi \begin{pmatrix} \pmatrix \\ \psi \end{pmatrix} \\ \pmatrix \\ \\notrix \\ \notrix \\ \notrix \\ \pmatrix \\ \notrix \\ \notr	boson	Ο	Ν	R	photon
{ \u0 }	boson	0	W	L	photon
{ \$ \$\$\$\$\$\$\$\$\$\$\$\$\$	boson	Ο	R	R	gluon
{ ((() }	boson	Ο	R	L	gluon
{\$\psi^5}}	boson	O	G	R	gluon
{ \u03c6\u03c6 }	boson	0	G	L	gluon
$\{\psi^{(4)}\}$	boson	0	B	R	gluon
{ $\psi^{(3)}}$ }	boson	Ο	В	L	<mark>gluon</mark> 54

Photons & gluons

Photons and gluons are better interpreted as Qpatterns in the canonical conjugated space

Generation modes

- Qpatterns can be generated
 - in configuration space
 - in canonical conjugated space
- Quantum state functions of particles are generated in configuration space
- Photons and gluons are generated in the canonical conjugated space
- The coupled field is not generated
 - It is constituted from the tails of quantum state functions of distant particles

Quanta

The noise of low dose imaging

Low dose X-ray imaging Film of cold cathode emission