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Foreword

This is a omprehensive review of the published researh in osmology fousing

on the time period from the big bang to the last sattering of osmi mirowave

bakground radiation. This is a period of approximately 380,000 years. Theo-

retial, observational, and experimental researh with a bearing on osmology

will be overed. First, a time line of events from the big bang to last sattering of

CMB photons will be provided. Then, a review of theoretial researh related to

the big bang, osmi in�ation, and baryogenesis will be overed. Next, a review

of observational as well as experimental work on the osmi mirowave bak-

ground, big bang nuleosynthesis, and e�orts to diretly detet gravitational

waves. After that, a look at researh on the edge of aepted osmology suh as

loop quantum osmology, and the possible time variation of fundamental on-

stants. Last but not least this author will present a tiny, and novel theoretial

idea, a Lagrangian whih aptures all of the physis of the standard model of

osmology.

xi
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Part I

A timeline from the Big Bang

to the last sattering of

the Cosmi Mirowave

Bakground.

1
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The subjet of this thesis is a topial review of published researh literature

onerning the �rst 380,000 years of the the universes existene. This is a

olletion of researh whih deals with many varied types of physis. To make

some sense out of the whole menagerie I have written hapter one as a timeline

of events and plaed the various piees of researh in their temporal ontext.
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Chapter 1

The �rst few hundred

thousand

years of existene.

This hapter will simply be a timeline of events from the Big Bang to the

emission of the Cosmi Mirowave Bakground Radiation about 380,000 years

later. The researh that will be detailed later on in this thesis will be mentioned

in its temporal ontext in this hapter. Eah subjet being mentioned in order

of the period of time it onerns and not its importane or level of aeptane

by the osmologial ommunity.

The following diagram is a graphi representation of this timeline. In essene

every sentene of this hapter is about what is represented in this �gure. Every

stage of universal evolution shown on this �gure is disussed in this hapter,

and detailed in subsequent hapters.

As �gure 1.1 shows the universe started out very small and dense before time

t < 10−36 sec.. Then expanded rapidly, at the same time matter was reated

from energy. Then elements heavier than hydrogen were reated within the �rst

three minutes of the Big Bang. Then for a long long time, from three minutes

to three hundred and eighty thousand years, and the emission of the Cosmi

Mirowave Bakground, the universe was �lled with a fog of mostly protons,

eletrons, and photons. These events did not begin and end at the same exat

moment everywhere in the universe. Small �utuations at these times would

eventually evolve into the large sale strutures, and lusters of galaxies we see

today.

Details of the researh that informs this timeline will be given in subsequent

parts, hapters, and setions of this thesis.

5
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Figure 1.1: This is a rendering of what the Big Bang, and history of the universe

would have looked like up to the emission of the Cosmi Mirowave Bakground

radiation (CMB).

1.1 The Big Bang t < 10−36 sec.

The Big Bang ourred at some time t < 10−36 sec.. The lassial Big Bang

starts at time equals zero, in a singularity where known physis breaks down.

Then for a reason we do not know the universe began to expand and that

expansion is what we all the big bang. There is no agreement on what the Big

Bang was beyond saying that it was something that ourred at a point where

the universe was so small, dense, and energeti that lassial physis does not

apply. This is not an explosion in any physial sense. An explosion is a sudden

free expansion of hot gases. The Big Bang was the expansion of spae-time itself

from a singular point. The explosion metaphor is not physially orret in any

sense.

There are theories whih attempt to probe the time of the Big Bang itself.

They involve quantization of gravity and or the uni�ation of the fundamen-

tal fores of nature. These are not observationally supported at the moment.

However theoretial physiist �nd them interesting for their mathematial on-

sisteny even when and where lassial physis breaks down.
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1.2 Rapid universal expansion. 10−36 sec. ≤ t ≤
10−34 sec.

Diretly following the Big Bang from 10−36 sec. ≤ t ≤ 10−34 sec. the universe

expanded exponentially. The exat mehanism of this expansion is a matter

of intense theoretial, observational, and even experimental researh. Most of

this researh is done under the heading of �in�ation". in�ationary theory was

proposed to explain how the ontents of the universe ould be very uniform on

the osmi sale as observed in the osmi mirowave bakground radiation.

1.3 Creation of matter.10−35 sec ≤ t ≤ 1 sec

Happening at the same time as the last phases of the rapid universal expansion

the �rst matter was reated. As the expansion of the universe ame to an

end, the very �eld the aused its rapid expansion reheated the universe. In the

proess, the reation of matter and anti-matter was thrown in to just enough

thermal disequilibrium to reate more matter than anti-matter. This resulted

in a universe visibly �lled with matter.

This initial matter was in the form of eletrons, and quarks. The quarks

would very quikly ombine to form protons and neutrons. Atoms, however,

ould not yet persist, only ions of hydrogen and free eletrons. The theories and

the evidene that baks up these theories will be disussed in part two hapter

four of this thesis.

1.4 Creation of heavier nulei. 1sec ≤ t ≤ 3min

The period 1sec ≤ t ≤ 3min is when heavier nulei than that of simple hydrogen

were produed. The nuleus of hydrogen in its simplest form is just a proton.

The universe was at the right temperature and density during these minutes to

allow the fusion of hydrogen into heavier elements. During this period, heavy

isotopes of hydrogen were produed as well as helium, lithium, and beryllium.

The ratio's of these elements are one of the tightest onstraints on theories about

the early universe. The researh that informs our view of this period will be

disussed in part three hapter 6 of this thesis.

1.5 The �rst dark age and the last

sattering of the Cosmi Mirowave Bak-

ground

radiation. 3min ≤ t ≤ 380, 000 years

After the reation of the �rst heavy nulei the universe was too hot for stable

atoms to exist. It was in a sense a universe of plasma. Vast louds of ionized
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gas were all that would exist during this period. This is beause a photon

ould not travel far before ombining with a proton and eletron to from a true

hydrogen atom. At the same time the universe was so hot and dense that any

atom that did form would beome exited and lose all of its eletrons. Those

eletrons would be aptured, and photons emitted only to be reabsorbed almost

instantly. This was all that there was in the universe for hundreds of thousands

of years.

At a point about 7,000 years or so into this period the universes energy

density was no longer dominated by partiles moving at relativisti speeds. This

marked the transition from a universe dominated by radiation to one dominated

by matter. This hanged the mathematial law governing the expansion of the

universe with time from t
1

2
to t

2

3
.

About 380,000 years after the Big Bang the universe beame ool enough,

and of low enough density to allow the propagation of light. This �rst light

would be the only light until the �rst stars and galaxies formed. This �rst

light is what we now detet as the Cosmi Mirowave Bakground radiation.

Enoded in its hot spots, and warm spots, and polarization is information on

the density, temperature, and omposition of the entire universe.

Observations of the Cosmi Mirowave Bakground (CMB), along with mea-

surements of the mass of the universe, and other theoretial and observational

onsiderations have allowed osmologists to build up a model for the universe.

This model has a universe �lled with mostly dark energy (symbolized as Λ)
and old dark matter (CDM). Observations of the CMB bak up this model

primarily via its ability to �t data gathered on the angular power spetrum of

the CMB.

The ΛCDM model �ts the data we have very well. The details of this model

are still in question. For example, there are a number of spei� models for why

the universe expanded rapidly. There are a number of possible forms of old

dark matter. Observations whih will answer many questions, and reveal new

ones, are overed in hapter �ve of this thesis.

1.6 Organization of this thesis.

This thesis is organized into �ve parts. Eah part fouses on a broad type

of researh. Part one is a timeline meant to plae eah area of researh into

temporal ontext.

Part two fouses on the mathematial foundations of theoretial osmology

starting with a brief but thorough review of General Relativity and then in�a-

tionary osmology. This part �nishes with a review of Quantum Field Theory

and partile physis whih leads to a disussion of theories on the reation of

matter. This part desribes in detail the urrent standard model of osmology

known as the onordane or ΛCDM model (Λ dark energy, CDM Cold Dark

matter). This model �ts all the observations made to date very well, and has

great �exibility.

Part three onentrates on observational and experimental partile osmol-
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ogy. The work overed here fouses on observations of the Cosmi Mirowave

Bakground radiation. The CMB is a rih soure of data on the earliest evolu-

tion of the universe. In partiular, observations underway right now may reveal

a Cosmi Gravitational Bakground. A strong gravitational wave bakground is

predited by in�ationary osmology and the ΛCDM model. The �rst evidene

of a gravitational bakground may be found in the polarization of the CMB.

Next observations whih will improve our measurements of the ratios of light

elements reated after the Big Bang will be reviewed. Last, experimental work

at the Large Hadron Collider will be disussed in relation to its bearing on

osmology.

Part four fouses on theories and observations on the frontier of osmologial

researh. This researh fouses on various theories and observations whih are

ontroversial and less well tested than the standard models. These models

often seek to extend adjust, supersede and/or supplant the urrent standard

models. This part inludes Loop Quantum Cosmology, and M-theory whih

give mathematial insight into the nature of the Big Bang that the standard

models do not. This part also inludes observations whih suggest that ertain

quantities whih seem to be onstant in spae, have varied with time. An

alternative model for the universes rapid expansion will be disussed. Last but

not least a Lagrangian for the standard model of osmology proposed by this

author, and submitted for publiation to peer reviewed journals will be outlined.

Part �ve is an exeutive summary of the �rst four parts of the thesis.
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Part II

Researh related to and the

mathematial foundations

of the standard model of

theoretial osmology.

11
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This setion explains the urrent standard model of osmology known as

the onordane or ΛCDM model. This is a model where the universe is �lled

primarily with dark energy (Λ), and old dark matter (CDM). The deep reasons

why so many osmologist, and physiist prefer this model will be made lear by

examination of the fundamentals. Those fundamentals are General Relativity,

in�ation, and theoretial partile Physis.

Next Quantum Field Theory (QFT) and elementary partile physis will be

explained. Then the standard model of partile physis. Last but not least the

extension of the standard model whih inludes possible andidate dark matter

partiles will be disussed.

Es ist immer angenehm, über strenge Lösungen einfaher Form zu

verfügen. (It is always pleasant to have exat solutions in simple

form at your disposal.) So said Karl Shwarzshild in �On the Grav-

itational Field of a Mass Point aording to Einsteinâ��s Theory,�

1916.[5℄
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Chapter 2

The Friedman-Lemaître-

Robertson-Walker

metri.

The theory whih will onern us most is General Relativity by way

of a spei� solution to the Einstein �eld equations. This solution is

the one whih gave us the mathematial theory of the big bang. The

other important omponent of modern osmology is known as in�a-

tion. The rapid universal expansion, proposed by in�ation, addresses

ertain issues of the previously mentioned solution to Einstein's �eld

equations.

2.1 A brief introdution to Einsteins �eld

equations of General Relativity.

To understand theoretial osmology one must understand the Ein-

stein �eld equations of General-Relativity and one partiular solu-

tion to those equations, the Friedman-Lemaître-Robertson-Walker

metri. For now let it su�e to say that a solution to the Einstein

�eld equations is a metri and sine this thesis disusses no other

kind of metri that the onverse is also true in this partiular on-

text. To give a more detailed de�nition would require a number of

mathematial tools, and would distrat from the topi of this hap-

ter.

To keep this thesis unluttered with an abundane of mathemati-

al derivation an informal disussion of these points of mathematis

will be in the main body text. A more detailed and mathematial

15
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aount of General Relativity will be given in Appendix A, and a

good book to refer to on this topi is [6℄.

The Einstein �eld equations are in tensor form.

There are a few ways to de�ne a tensor. A simple and intuitive

de�nition is that a tensor of rank �n� is a quantity that has magnitude

and �n� diretions. Thus a tensor of rank one has a magnitude and

one diretion, a tensor of rank one is just a vetor. The de�nition a

ditionary of mathematis would give is �An abstrat objet having a

de�nitely spei�ed system of omponents in every oordinate system

under onsideration suh that, under transformation of oordinates,

the omponents of the objet undergo a transformation of a ertain

nature." Whih while mathematially orret is not very useful for

the purposes of this thesis.

A mathematial yet immediately appliable de�nition would be the

following:

A tensor of rank n in a m dimensional spae, over the �eld of real

numbers, is a funtion whih is linear in n variables withmn
omponents

whih, under transformation of oordinates, the omponents of the

objet undergo a transformation of a ertain nature and it maps n

vetors to the real numbers.

MµνV
µV ν → m (2.1)

, m ∈ R.

The most important example of a tensor for our purposes would

be the metri tensor gµν whih, by de�nition, is a solution to the

Einstein �eld equations, and maps vetors in spaetime to the real

numbers in suh a way that the output is a �distane� between the

vetors. Tensors will be de�ned over a �eld of real numbers never

omplex numbers unless expliitly stated otherwise.

There is also the Rii urvature tensor Rµνwhih measures how

urved the spae-time manifold (a vetor spae with the property

that it is loally homeomorphi to the �at Minkowski spae of Speial

Relativity) is. The Rii salar whih is a produt of the Rii tensor,

and the metri expresses this urvature in the form of a tensor of

rank zero known as the Rii salar.

The third important tensor in the Einstein �eld equations is the

stress energy tensor Tµν . This tensor represents the distribution of

mass-energy-momentum in the spaetime manifold. In osmology

another term is added whih represents the vauum energy or �dark

energy� Λ. This is known as the osmologial onstant. The vauum

energyΛ along with the old dark matter whih is thought to make

up most of the universes mass give their name to the onordane
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model of osmology, ΛCDM . This model provides a good �t with

all of the data gathered to date.

With the quantities that make up the Einstein �eld equations de-

sribed the equation(s) are.

Gµν = Rµν −
1

2
Rgµν = 8πTµν + Λgµν (2.2)

Gµν is known as the Einstein tensor. It is a tensor of rank two

in a four dimensional spae. It therefore has 16 omponents. So

the Einstein Field equation is really as many as 16 oupled partial

di�erential equations. All of the exat solutions to these equations

have been found by assuming one type of symmetry or the other.

2.2 Deriving the Friedman-Lemaître-Robertson-

Walker metri.

The solution to the Einstein �eld equations that will onern us

the most is due to Alexander Friedman, Georges Lemaître, Howard

Pery Robertson and Arthur Geo�reyWalker. Friedman and Lemaître

derived this metri from the Einstein �eld equations, Robertson and

Walker proved that this metri is the only one that �ts two assump-

tions about the nature of spae, isotropy and homogeneity. This

derivation will draw on the work of Robertson and Walker as found

in Caroll [6℄.

To derive this metri it will be assumed that the spae-time of the

universe has the following properties.

The spae manifold of the universe will be invariant under transla-

tions or homogeneous. In more mathematial terms this means that

the metri will be the same throughout the manifold. Given the

manifold M and two points p, q ∈ M there exist an isometry that

maps p into q.

The spae manifold of the universe will be invariant under rotations

or isotropi. In mathematial terms this means around some point p

on the manifold M there exist a spae that is tangent to the manifold

(Tp). For any two vetors V,W ∈ Tp there exist a isometry that will

map V into W.

Observations of the osmi mirowave bakground bak these as-

sumptions up. The homogeneity and isotropy of spae is neessary

for the isotropy of the CMB but not su�ient to explain it. The

isotropy of the CMB is a property of the ontents of the universe

not of the spae-time manifold of the universe itself.
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To visualize this onsider the surfae of a ideal three dimensional

sphere. Under any rotation the sphere looks the same. At any two

points the metri on the sphere will be the same. The surfae of the

sphere is homogeneous and isotropi.

The assumption of isotropy and homogeneity of spae-time is valid

on the osmologial length sale of lusters of lusters of galaxy's.

On the smaller sale of solar systems and planets these assumptions

do not hold. On this sale eah objet distorts the spae-time in suh

a way that the metri is not the same. For example ompare gravity

on Earths surfae and in Earth orbit. The di�erene in gravity is due

to the di�erene in the metri at those two points thus the metri

annot be the same throughout the spae near Earth. It is in fat

subjet to a very di�erent metri from FLRW.

With the assumptions of a homogeneous and isotropi spae the

metri an almost be written down without solving an equation.

ds2 = −dt2 +R2(t)dΩ2
(2.3)

The funtion R(t)sales the spae part of the metri with time and

hene is known as the sale fator and arries the dimension of

length. The spatial part of the metri an be written in a general

form as follows.

dΩ2 = ωijdw
idwj (2.4)

The oordinates wi are to be hosen in suh a way that any ross

terms in the metri anel out. These are known as omoving oor-

dinates. ωij is a metri tensor for the three dimensional spae part of

the manifold. In a spae the the isotropy and homogeneity that has

been assumed the Rii tensor on the spatial part of this manifold

will be[6℄.

Rij =
R

3
ωij (2.5)

To get a more spei� form for this metri, we an guess that it will

have spherial symmetry. Spherial symmetry is maximal symmetry

as well. To see this, again, onsider a perfet three dimensional

sphere. Rotate the sphere and no matter the perspetive it looks

the same, translate from one point to the other it still looks the

same. It is a homogeneous and isotropi manifold. For suh a spae

the most general form for the spae part of the metri is

dΩ2 = e2β(r̄)dr̄2 + r̄2dθ2 + sin2(θ)r̄2dφ2 (2.6)
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Where r̄ is a radial oordinate with no units sine length is enoded

in the sale fator up to this point. The next step is to solve e for β.
This would be done by �nding the omponents of the Rii tensor,

and setting them equal to the metri. Then solving the resulting

system of equations for beta. This has all been done before and the

answer is[6℄.

β = −1

2
ln(1− kr̄2) (2.7)

Now substitute beta into the equation for the metri.

dΩ2 = e−ln(1−kr̄
2)dr̄2 + r̄2dθ2 + sin2(θ)r̄2dφ2 (2.8)

dΩ2 =
dr̄2

1− kr̄2
+ r̄2dθ2 + sin2(θ)r̄2dφ2 (2.9)

k in the above is normalized to take on the values k ∈ {−1, 0,+1} .
These values relate to a open, �at, and losed universe respetively.

The FLRW metri looks like this.

ds2 = −dt2 +R2(t)

(

dr̄2

1− kr̄2
+ r̄2dθ2 + sin2(θ)r̄2dφ2

)

(2.10)

Following the lead of Sean Caroll's book let us make the sale fator

dimensionless and the radial oordinate dimensionful with the unit

of length. This will be done by dividing R by a onstant fundamental

length. The only length that �ts is the Plank length ℓP =
√

~G
c3 ≈

1.616252(81)× 10−35
. This length enters and is de�ned in terms of

fundamental onstants and as suh should not vary. This partiular

length also plays a role in theories of quantum gravity in whih it

de�nes a smallest possible physial length.

a(t) =
R(t)

ℓP
(2.11)

ℓP r̄ = r (2.12)

With these substitutions the Friedman-Lemaître-Robertson-Walker

metri is in the following form....

ds2 = −dt2 + a2(t)

(

dr2

1− kr2
+ r2dθ2 + sin2(θ)r2dφ2

)

(2.13)
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In terms of its metri tensor the FLRW solution is [6℄.

gµν =









−1 0 0 0

0 a(t)2

1−kr2 0 0

0 0 a(t)2r2 0
0 0 0 a(t)2r2 sin2 θ









(2.14)

a(t) is found by solving the Friedman equations, whih while non-

linear have simple and physially informative solutions. What solu-

tion is valid depends on weather the universe is �lled with mostly

radiation, matter or as it urrently is dark energy. More details are

given in setion 2.3.

2.3 Friedman's equations and their solu-

tions.

To solve Friedman's equations we will start with the Friedman-

Lemaître-Robertson-Walker metri (FLRW)[6℄.

ds2 = −dt2 + a(t)
2

(

dr2

1− kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

)

(2.15)

We want to solve for the sale fator a(t).

Given the FLRW metri, a positive osmologial onstant, and that

the stress energy tensor is equal to zero (a vauum state) solve for

the sale fator a(t).

The sale fator in the FLRW metri is a funtion of time whih

ontrols how spae will expand (or ontrat) with time. It is the

evolution of this sale fator whih gives us the urrent expansion

of the universe, as well as its past expansion. The objet of this

problem is not to �nd a metri, we have that. The objet is not to

solve for the stress energy tensor, sine we have hosen that to be

zero. In its plae is a positive osmologial onstant Λ. The solution
to be derived will be valid for the universe as it exist now dominated

by the dark energy Λ.

These are the Einstein Field equations to be solved for a(t).

Gµν + gµνΛ = Rµν −Rgµν + gµνΛ = 0 (2.16)

This simpli�es to an equation involving the Rii tensor, the Rii

salar, and Lambda.
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⇒ Rµν + (Λ−R)gµν = 0 (2.17)

The next step is to �nd the Rii tensor and Rii salar for the

FLRW metri. These are well known for this metri and are given

in[6, p.333℄. The Rii tensor for the FLRW metri is.

Rµν =









−3 äa 0 0 0

0 aä+2ȧ2+2k
1−kr2 0 0

0 0 r2(aä+ 2ȧ2 + 2k) 0
0 0 0 r2sin2θ(aä+ 2ȧ2 + 2k)









(2.18)

The Rii salar for the FLRW metri is.

R = 6

[

ä

a
+

(

ȧ

a

)2

+
k

a2

]

(2.19)

With these the Einstein �eld equations an be written expliitly. For

ompatness substitute... A = aä+2ȧ2+2k. The resulting Einstein
�eld equations represented with matries are.









−3 äa 0 0 0
0 A

1−kr2 0 0

0 0 r2A 0
0 0 0 r2sin2θA









+
(

Λ− 6
[

ä
a +

(

ȧ
a

)2
+ k

a2

])









−1 0 0 0

0 a2

1−kr2 0 0

0 0 a2r2 0
0 0 0 a2r2sin2θ









= 0

At this point the spae like omponents are learly ommon to all

terms and an be simply aneled out. To do so multiply by the

following matrix.









1 0 0 0
0 1− kr2 0 0
0 0 r−2 0
0 0 0 r−2sin−2θ









(2.20)

The simpli�ation that results is dramati. This problem started out

with as many as 16 oupled, and non-linear di�erential equations.

With the assumptions and simpli�ations that have been made, we

are left with only two independent equations.
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−3 äa 0 0 0
0 A 0 0
0 0 A 0
0 0 0 A









+

(

Λ− 6

[

ä

a
+

(

ȧ

a

)2

+
k

a2

])









−1 0 0 0
0 a2 0 0
0 0 a2 0
0 0 0 a2









= 0

(2.21)

The two independent equations are.

{

−3 äa − Λ + 6 äa + 6
(

ȧ
a

)2
+ 6 k

a2 = 0
aä+ 2ȧ2 + 2k + Λa2 − 6äa2 − 6ȧ2 − 6k = 0

}

(2.22)

To further simplify the problem add one equation to the other, whih

results in a number of anellations. The result leaves one equation

in terms of the sale fator and its time derivatives, and a single

onstant k. k depends on the geometry of the universe. k = 1, 0,−1
gives results appropriate for a losed universe, a �at universe, or a

hyperboloidal open universe respetively. In addition as shown in

table 2.1 there are the possibilities of a matter dominated, radiation

dominated, and Λ dominated universe. Right now we observe a

nearly �at universe in a Λ dominated phase of its evolution.

Every observation we have points to us living in a very �at universe.

For suh a universe k = 0 Setting k = 0 Whih leads to the following

simpli�ation.

− aä+ ȧ2 + k = 0 (2.23)

− aä+ ȧ2 = 0 (2.24)

Equation 2.24 an be solved by the the elementary tehnique of

letting a = MeNt. Then taking derivatives to get ȧ = MNeNt,
and ä =MN2eNt where M and N are onstants. Now to hek this

andidate solution satis�es the equation.

−M2N2e2Nt +M2N2e2Nt = 0 (2.25)

As it turns out this solution will satisfy the equation for any on-

stants M and N. With that the onstants an be set equal to whatever

values make physial sense. Commonly M is set equal to one in this

ase, and N equal to the Hubble onstant. H0 = 100h(km/sec/Mpc)
where h ≃ 0.7 [6℄. The result is the solution for a positive osmo-

logial onstant.

a(t) = eH0t
(2.26)
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Table 2.1: Solutions to the Friedman Equations

ω ρ(a) a(t) a(τ) τi

Matter Dominated 0 a−3 t
2

3 τ2 0

Radiation Dominated

1
3 a−4 t

1

2 τ 0

Λ Dominated -1 1 eH0t −τ−1 −∞

This is physially valid beause it aligns with all of our observations

of a expanding and aelerating universe. The expansion is driven

by the positivity of the osmologial onstant ausing a negative

pressure thus expanding the universe. The table 2.1 is similar to

one in [1℄.

Lurking inside the above derivation are two fundamental equations

of modern osmology. These are the Friedman equations. [6℄

(

ȧ

a

)2

=
8πG

3
ρ− k

a2
(2.27)

ä

a
= −4πG

3
(ρ+ 3p) (2.28)

The Hubble parameter also appears.

ȧ

a
= H (2.29)

With these equations in hand the density parameter an be de�ned.

[6℄

Ω =
8πG

3H2
ρ =

ρ

ρcrit
(2.30)

With these de�nitions, the Friedman equation an be written in

terms of these various parameters in a very simple looking form. [6℄

Ω− 1 =
k

H2a2
(2.31)

For k=0 Ω = 1 Whih is very lose to the observed value of 0.7

meaning the universe is nearly perfetly �at. The density of the

universe is very lose to the ritial density[7, 6℄. The other two

options are open universe if k < 0, and a losed universe if k > 0.
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2.4 Suesses of Friedman-Lemaître-Robertson-

Walker osmology.

FLRW theory has to its redit good agreement with many obser-

vations. It predits orretly that every galaxy would be observed

to move away from ours. It predits that the universe was at a �-

nite time in the past in a hot, dense state, whih is in aord with

the existene of the osmi mirowave bakground. The CMB is a

reli of that past hot dense era. FLRW theory predits the growth

of the universe through the past radiation and matter dominated

era's, as well as in the urrent dark energy dominated era. These

suesses are of great importane to modern osmology and form the

basis of all aepted theoretial osmology. FLRW theory is the big

bang theory and thanks to it we have a sienti� answer for what

happened in the beginning of time.

The pure General Relativity whih will be disussed in the body

of this thesis is omplete. Appendix A is a brief review of General

Relativity in whih enough of the basi theory is desribed to un-

derstand this thesis for anyone who wants/needs to be reminded.

A text book whih has many more details on General Relativity is

�An Introdution to General Relativity Spaetime and Geometry"

by Sean M. Carroll [6℄.

2.5 Problems posed by the Cosmi Mi-

rowave Bakground given

the Friedman-Lemaître-Robertson-Walker met-

ri.

The Cosmi Mirowave Bakground (CMB) is very smooth and even

in temperature (at 2.725 kelvin). The universe is �lled with mass-

energy at a density about 70 perent of the ritial density whih

would make it �at.[6℄

These very spei� values are observed in widely separated regions of

the sky. This is so even though widely separated regions are outside

eah others past event horizons and ould not ommuniate at the

speed of light. These widely separated regions should not have been

able to beome so uniform if they were outside eah others horizons.

These are the isotropy, �atness and horizon problems presented by

our observations of the osmi mirowave bakground.

All of these problems are related (see �gure2.1) . The isotropy and

�atness problems are both manifestations of the observed large sale
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Flatness

Problem.Problem

Horizon

Problem

Isotropy

Figure 2.1: All of these problems are related and an be thought of as one

problem of large sale unexplained, within standard big bang theory, uniformity.

uniformity of the universe. (Bear in mind this isotropy is related to

but not the same as the isotropy of spaetime desribed previously.

This deals with the ontents of the universe.) In a sense those two

are the same problem, viewed from two di�erent perspetives. They

both suggest the horizon problem, beause widely separated regions

of the universe were not ausally onneted in standard big bang

theory. The fat that in standard big bang theory widely separated

regions are not ausally onneted makes the observed isotropy of

the CMB and �atness of spaetime problemati.

2.5.1 The isotropy of the osmi mirowave bak-

ground.

The most areful measurements of the late 70's and early 80's had

found little or no di�erene in the temperature of the osmi mi-

rowave bakground (CMB) from one point in the sky to the other

(T = 2.725K). The problem is that widely separated regions of the

observable universe would not have been able to ommuniate with

eah other even at the speed of light. If these regions ould not

ommuniate then the CMB should vary wildly in temperature.

This isotropy is not assumed or expeted by the Friedman-Lemaître-

Robertson-Walker metri. This is the isotropy of the ontents of the

universe at the time of last sattering 380,000 years after the big

bang. There is no reason to assume that the ontents of the universe

needed to start out with a smooth distribution. This is in ontrast
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to the isotropy of the spaetime on the osmologial sale whih is

assumed by the FLRW metri.

The most natural assumption is to assume nothing about the dis-

tribution of the ontents of the universe after the big bang. How

would suh a haoti and easily perturbed, or alternatively, a truly

random initial state, evolve into the very smooth state we observe in

the form of the CMB, when widely separated regions ould not even

ommuniate at light speed? Those are the problems presented by

the isotropy of the CMB.

2.5.2 The apparent �atness of the universe.

The �atness problem an also be thought of in the same terms as

the isotropy problem. The urvature of the whole of the universe

an be thought of as a sort of gravitational bakground. The FLRW

metri only gives a �at spae-time for a spei� and ritial density.

It just so happens that on the osmologial sale the universe is very

nearly that density.

This �atness is an average over the whole universe, loally around

massive bodies the spaetime is urved. However on the large sale

of hundreds of parses the spaetime of the universe is �at. The

urvature of the universe was determined by measuring the density of

the universe. This density was seen to be nearly equal to the ritial

density of the universe for whih the Friedman�Robertson�Walker-

Lemaître (FRWL) metri gives a �at spae-time.

It bears mentioning that the ritial density's value, as it is now

given, is dependent on the existene of dark matter. Searhes for

dark matter suh as the Cryogeni Dark Matter Searh (CDMS)

have so far yielded little. They have found two possible detetions

whih have a 23 perent hane of being bakground noise[8℄. By

the standards of partile physis this is not enough to say that a

new partile has been deteted. In partile physis a signal needs

to be lean and have no noise out to six standard deviations. In

spite of the lak of a diret detetion osmologists generally believe

that dark matter of some kind exist. It has been used to explain

the �atness of the universe, and the shape of galaxy's and lusters of

galaxy's without introduing a theory of gravity more omplex than

General Relativity.

2.5.3 The horizon problem.

Both of the above ontain within them and suggest the horizon prob-

lem. To see this problem physially onsider Speial Relativity. We

are sure that at all times light was the fastest thing in the universe.
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Figure 2.2: The Horizon Problem. The points on the seond irle would be

points on the �surfae of last sattering� of the Cosmi Mirowave Bakground

radiation. Points on that surfae would not have been in ontat with eah

other. Yet the CMB is of basially the same temperature, the universe of of

the same urvature et. This homogeneity presents a problem. The horizon

problem to be spei�.

This de�nes a one in spaetime outside of whih a partiular event

annot e�et the future, or be e�eted by the past. Latter events

an only depend on events within the past light one of those events.

The past light one is mathed by a similar one whih leads into the

future. In General Relativity these beome �event horizon's�. Muh

like the boundaries between a blak hole, and the universe. Light

has not yet reahed us from outside these horizons. Figure 2.2 found

in [9℄ and used with permission illustrates this niely.

The points on the seond irle in �gure 2.2 would be points on the

�surfae of last sattering� of the Cosmi Mirowave Bakground ra-

diation. That surfae exist beause just before the CMB was emitted

the universe was �lled with an optially thik, opaque, loud of ion-

ized gas in whih photons were always being sattered. Their last

sattering is the last time those photons interated with that ion-

ized gas. Widely separated points on that surfae would not have

been in ontat with eah other. In spite of the impossibility of that

ontat in standard big bang theory the CMB is of basially the

same temperature, the universe of of the same urvature et. This

homogeneity presents a problem the horizon problem to be spei�.

This diagram uses onformal time. In onformal time the FLRW

metri redues to the following.[1℄

ds2 = a2(τ)[−dτ2 + dx2] (2.32)

This is just a Minkowski metri multiplied by a onformal fator

whih depends on onformal time. For this reason diagrams like
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�gures 2.2 and 2.3 and 2.4 an be drawn, and intuition about these

problems an be drawn from said diagrams. Figures 2.4 and 2.3 are

onformal diagrams for FLRW whih also demonstrate the horizon

problem. Notie that eah point on the surfae of last sattering in

eah diagram has its own past light one. Given this no two points

right next to eah other would be of a similar temperature let alone

points that are on opposite sides of the universe.

τ

x

Now

The surfae

of last satering.

Reombination

The big bang Partile

Horizon

Figure 2.3: On this onformal diagram one an see the problem with the stan-

dard big bang. No two points on the surfae of reombination share the same

past light one. Yet they are of remarkably uniform CMB temperature. This is

so in spite of those points not sharing any of their past. [1℄

On the onformal diagram in �gure 2.3 one an see the problem

with the standard big bang. Notie how the period before the line

representing reombination, the last sattering of the CMB photons

is separated into many regions whih ould not share the same past

light one. Thus ausing a problem for the standard big bang given

of the observed uniformity of the CMB, and �atness of the universe.

Regions whih do not share the same past ould not have the same

temperature to the degree seen in the CMB.[1℄
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2.5.4 In summary the problem is uniformity of

the Cosmi Mirowave Bakground.

The three problems an really be thought of as aspets of just one,

uniformity. As shown learly by �gures 2.2 and 2.3 this means we

have a multitude of ausally disonneted regions whih are never the

less of a nearly uniform density, and temperature at last sattering

of the CMB. This requires an explanation.

The hot and old spots in the CMB are related to the presene

or absene of matter. Therefore the isotropy of the CMB implies

a overall isotropy of the distribution of matter and energy in the

universe. This relates the isotropy problem diretly to the �atness

problem. The fat that the CMB is so even in temperature implies

that all parts of the universe were ausally onneted early on. This

relates the isotropy of the CMB diretly to the Horizon problem.

They are all interonneted in a sense they are all parts of the same

problem.

Their appeared to have been two alternatives to solve this problem.

One was that the initial onditions of the big bang were �nely tuned

to result in the universe we observe. The seond was a dynamial

proess that would take a variety of initial onditions and result in

the uniformity we observe. The �rst alternative leads to the question

why should the initial onditions have been so �nely tuned? The

answer for that question is not very lear. A dynamial proess is

philosophially more appealing. The dynamial proess that most

osmologists believe is responsible for ensuring the uniformity of the

universe is known as in�ation.

2.6 In�ation proposed as the explanation.

In modern in�ationary theory a salar (φ(x)), or vetor (Aµ(x))
�eld of unknown origin is introdued. This �eld rolls �slowly" down

a potential hill, and in doing so drives an exponential expansion of

the universe. The universe expands by 60 e-folds in the period from

10−36
to 10−34

seonds after the big bang. In doing so the problems

of the standard in�ation-less big bang are solved. [1, 10℄

In 1979 the onept of in�ation was �rst enuniated by Alan Guth,

then published in 1981[11℄. Guth's onept of in�ation was based in

part on theories found in partile physis. His partiular model did

not �t the observed isotropy of the CMB [1℄. Simpler models of in�a-

tion than that of Guth were soon proposed almost simultaneously by

by Andrei Linde, Paul Steinhardt, and Andreas Albreht.[12℄ These

models are known as slow roll in�ation. These models solved ertain

problems that the early models of Guth and others had[1℄.
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The simple single salar �eld model illustrates all the important fea-

tures of in�ation. Figure 2.4 sums up what happened very niely.

It is inspired by a �gure in [13℄. This is a omparison of the FLRW

evolution of the sale fator with in�ation theory. The solid line is

the in�ationary urve. As you an see the sale fator, whih is part

of the FLRW metri, in in�ationary theory grows exponentially in

a period of about 10−35
seonds. The two dashed lines show the

evolution of the sale fator that one would expet without in�a-

tion, whih orrespond to the radiation dominated solution to the

Friedman equations.

t

a fator

asmi

aICi

10−35

a(t)

of 1030

Figure 2.4: A omparison of the FLRW evolution of the sale fator with in�a-

tion theory. The solid line is the in�ationary urve.

2.6.1 How in�ation Solves the problems.

In�ation solves the horizon problem and thus the isotropy and �at-

ness problems by giving the whole universe, as it existed 380,000

years after the big bang, the same past light one. This allows the

universe to attain the degree of thermal equilibrium observed in the

CMB, as well as reahing the ritial density. This in�ationary pe-

riod lasted to about 10−35
seonds after the big bang.

Figure 2.5 is a onformal diagram whih shows how in�ation modi�es

the FLRW metri. The big bang appears at negative in�nity, and
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Reombination

Reheating.

τ

x−∞

0

Now

The CMB

Figure 2.5: This onformal diagram shows how in�ation modi�es the FLRW

metri. The big bang appears at negative in�nity, and reheating is at zero.

Instead of eah point on the surfae of last sattering having a di�erent past

light one, the whole surfae has the same past. With all points sharing the

same past light one equilibrium on the sale observed in the CMB is no longer

a problem.[1℄
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reheating is at zero[1℄. All points on the surfae of last sattering

share the same past light one. This allows the CMB to be of a nearly

uniform temperature. This also allows the universe to assume the

ritial density and �atten out. All of the problems are related to

and intertwined with eah other. By solving the horizon problem

in�ation solves the isotropy and �atness problems.

Indeed any theory that has the last �gure as its onformal diagram

will solve the mysterious uniformity problems of the big bang. Just

so long as it gives the entire surfae of last sattering of the CMB the

same past light one thus allowing the equilibrium and osmologial

uniformities already disussed to appear. If the onformal diagram is

di�erent from the above it annot solve these problems beause the

past light one of the surfae of last sattering will not be uni�ed. It

is for this reason that more than one alternative theory of in�ation

an be proposed to meet the various physial onstraints imposed by

other observations. Observations suh as the power spetrum of the

CMB being almost perfetly Gaussian, as far as ould be determined

from WMAP data. [14℄

Modifying the FLRW metri spae with in�ation solves the horizon

�atness and isotropy problems beause it gives the entire surfae of

last sattering the same past light one as shown by the onformal

diagram �gure 2.5.

2.7 Models of in�ation: single salar �eld

�Slow-Roll� in�ation.

Single salar �eld �Slow-Roll� in�ation is perhaps the simplest model

of in�ation. This type of in�ation, is alled slow-Roll due to the

dynamis being mathematially similar to a partile slowly rolling

down hill in a lassial potential. [1℄ Figure 2.6 illustrates a slow roll

potential. When the potential energy V (φ) dominates aeleration

ours. In�ation stops when the kineti and potential energy are of

omparable magnitude. During reheating the energy of the salar

�eld is onverted into radiation.

S =

∫

d4x
√−g

[

1

2
R+

1

2
gµν∂µφ∂νφ− V (φ)

]

(2.33)

Notie that this is just the Einstein Hilbert ation plus terms ap-

propriate for a generalized salar �eld. The term

1
2

√−gR is the

standard Einstein-Hilbert term. The term

1
2

√−ggµν∂µφ∂νφ is the

kineti energy of the salar �eld. V (φ) is as always the potential

energy of the salar �eld φ. With this quantity in hand one an
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Figure 2.6: A Slow Roll Potential. This is an example of a slow roll in�ation

potential. When the potential energy V (φ) dominates the potential energy

aeleration ours. In�ation stops when the kineti and potential energy are

of omparable magnitude. During reheating the energy of the salar �eld is

onverted into radiation. This �gure is taken from [1℄

.

derive the Stress-Energy tensor and �nd the Hubble parameter as is

done in [1℄. Using those quantities one an then write down the rate

of aeleration of the sale fator, whih gives in�ation its name.

ä

a
= −1

6
(ρφ + 3pφ) = H2(1− ε) (2.34)

ǫ is termed the slow roll parameter, and an be written in terms of

the evolution of the Hubble parameter.[1℄

ε = − Ḣ

H2
= −d lnH

dN
(2.35)

This is not enough. The seond time derivative of the salar �eld

needs to be small enough to sustain in�ation for a long enough time

to ensure the �atness and isotropy of the universe an set in. For

this reason a seond slow roll parameter is introdued. η expressed

in terms of the potential this parameter is.

ηv(φ) ≡M2
pl

1

V

∂2V

∂φ2
(2.36)

The �rst slow roll parameter an be similarly stated in terms of the

potential of the salar �eld.
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ǫv(φ) ≡
M2

pl

2

(

1

V

∂V

∂φ

)2

(2.37)

The Plank massMpl has been introdued by Bauman �to make the

parameters manifestly dimensionless�. The fat is any mass would

have done this. Why not the mass of a Proton, or the mass of the

planet Earth, or any other random mass? The answer is onneted

to the problem of quantum gravity. The Plank mass would seem

to be a fundamental quantity in suh theories along with the Plank

length and Plank area. In all suh theories the Plank sale is

important. Let us not forget that in�ation ours when the universe

is very young, small and dense. Gravity will be strong in that very

early period, hene quantum gravitational e�ets will play a bit role.

In the slow roll regime the Hubble parameter H is approximately

onstant and

φ̇ ≈ − 1

3H

∂V

∂φ
(2.38)

The time evolution of the sale fator a(t) is then the same as that

of a universe dominated by a osmologial onstant.

a(t) = eHt (2.39)

In�ation then ends when the slow roll onditions are violated. For

the isotropy and �atness of the universe to set in would require at

least 60 e folds of in�ation. Various potentials have been tried and

all work to varying degrees. At �rst many assumed that the Higgs

potential ould have played a role. After all the Higgs �eld, if it is

as real as the standard model needs it to be, should have played a

big role in the physis of the early universe, and is a salar �eld.

The Higgs �eld does not work the best of all [1℄. A popular slow roll

potential aording to Bauman is the Coleman-Weinberg potential

equation 2.40 whih was originally derived for a proposed SU(5)

grand uni�ation quantum �eld theory [1℄. (Symmetry groups and

quantum �eld theory are overed in hapter four and appendix B.)

V (φ) = V0

[

(

φ

µ

)4(

ln

(

φ

µ

)

− 1

4

)

+
1

4

]

(2.40)

Single salar �eld slow roll in�ation is just one example of an in�a-

tionary theory. There are others whih have various ombinations

of salar or even vetor �elds.
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2.7.1 Double salar �eld slow roll in�ation.

As the name implies, double salar �eld slow roll in�ation is a version

of in�ation whih involves two salar �elds. The di�erene between

this theory and single salar are in the ation of this theory. A simple

model would have an ation of the form.

S =

∫

d4x
√−g

[

1

2
R+

1

2
gµν∂µφ∂νφ+

1

2
gµν∂µψ ∂νψ − V (φ)− U(ψ)

]

(2.41)

In his review, Bauman says that this theory looses its preditive

power due to having more free parameters. [1℄

2.7.2 Chaoti in�ation.

Chaoti in�ation model is also one of the simpler ones. The form

of the ation is the same as for single �eld in�ation however the

potential is spei�ally of the form of equation 2.42 [1, 15℄.

V (φ) = λpφ
p

(2.42)

Einstein summation is not indiated here. �p� is an exponent on the

φ and simply a subsript on the λ.

This is a very non linear equation. Suh non linear equations often

lead to haos. This model would depend sensitively on initial ondi-

tions. In other words this model still has one of the problems of the

big bang theory. This haoti model.

In the single or dual �eld slow roll models the �nely tuned initial

onditions, are the shape of the potential and the slow roll param-

eters. Even in this model with one parameter λp, the subsequent

evolution of the system would follow a rather unpreditable path.

Even a slight di�erene in this initial ondition would lead to a dif-

ferent �nal state. Unless, in this model all trajetories settle on a

attrator whih has the harateristis of the �nal state we observe.

One other possibility found in the literature is that every possible

�nal state of in�ation that ould happen does happen. The result

would be a fratal struture of universes separated by false vauums.

This is still an improvement over standard big bang theory without

in�ation, as that theory has dozens of free parameters, this only has

one.
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2.8 Vetor in�ation

Models of in�ation that depend on salar �elds are very appealing.

Salar �elds are as simple as they ome. Salar �elds have no pre-

ferred diretion. Salar �elds have a problem, they have never been

observed in any partile physis experiment. This is a huge problem

with in�ationary theories that depend on salar �elds. Let a alone

the problem of deteting the in�ation �eld itself.

For that one reason alone an in�ationary model based on a vetor

�eld is desirable. There have been notable attempts at suh a model.

[16, 17℄ The ation in the model of Golovnev et al [16℄ is equation

2.43

S =

∫

dx4
√−g

(

− R

16π
− 1

4
FµνF

µν +
1

2

(

m2 +
R

6

)

AµA
µ

)

(2.43)

The units in use are Plank units with ~ = c = G = 1. Notie that
like the Einstein-Hilbert ation it ontains the Rii salar. It also

ontains a �eld tensor Fµν and �eld vetor potential Aµ. Where Fµν
is an antisymmetri tensor �eld similar to the eletromagneti �eld

tensor. Notie that this �eld has a mass assoiated so it an ouple

into gravity.

While this vetor model is muh more omplex than the salar mod-

els, it has the big advantage of relying on a type of �eld, a vetor �eld,

we know does exist in nature. It is also possible for vetor in�ation

to explain the tiny degree of anisotropy in the CMB. If we assume

that the �elds were randomly oriented as in�ation progressed, that

randomness in the �eld would have resulted in the great degree of

isotropy, as the vetors would on average anel eah other. As in-

�ation progressed on smaller sales the vetors would not anel and

ombined with initial quantum �utuations ould explain the slight

anisotropies in the CMB.

The main reason this theory is not as popular as theories whih

rely on salar �elds is due to the great inrease in mathematial

omplexity, for limited bene�t to osmology. There are simply easier

ways to model what we see.

2.9 Summary

In hapters two and three what has been presented are the theo-

ries behind big bang and in�ationary osmology. In�ationary os-

mology was motivated by the problems of the Friedman-Lemaître-

Robertson-Walker (FLRW) metri. Those problems are rooted in



2.9. SUMMARY 37

uniformities, the nearly uniform temperature of the Cosmi Mi-

rowave Bakground (CMB), and the �atness of spaetime. These

uniformities were problems beause the FLRW metri by itself does

not give the whole CMB one single past light one this is known as

the horizon problem.

The in�ation �eld's e�et is to ause the universe to grow expo-

nentially for a tiny fration of a seond about 10−36 sec. ≤ t ≤
10−34 sec.. this growth alters the FLRW metri in suh a way that

the entire CMB shares the same past light one. In the proess

solving the horizon problem, and other problems.

There are a number of spei� models for in�ation. The simplest

model involves a single salar �eld oupled indiretly to gravity

whih drives in�ation. One of the more ompliated models involves

a vetor �eld oupled diretly to the urvature of spaetime in its

Lagrangian. All of these models �t within the overall ΛCDM model.
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Chapter 3

Quantum Field Theory

and Partile Physis

for Cosmology.

The visible matter in the universe is overwhelmingly omposed of

matter and little to no antimatter. This simple observational fat

presents a huge problem for osmologist sine the standard model

of partile physis predits a universe made of equal parts matter

and anti matter. This hapter will address researh on this problem

whih is at the heart of the origin of all visible matter in the universe.

The origin of the visible matter is known as baryogenesis, meaning

the reation of baryons, partiles whih are made up of three quarks

suh as protons and neutrons. The reation of other partiles made

of two quarks alled mesons, and leptons whih are not made of

quarks would have ourred at the same time an under the same

onditions as baryogenesis via related proesses.

In the literature this issue is often simply referred to as the prob-

lem of baryon asymmetry. Theories whih try to solve the problem

inlude terms whih break the various symmetries of the standard

model of partile physis. A brief review of these theories has been

provided in this thesis in setion B. For more in depth overage

please see [18℄[19℄.

3.1 Elements of Theoretial Partile Physis

Symmetries are built into eah and every quantum �eld theory, and a

theorem due to Emmy Noether plays a huge role. Noether's theorem

39
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states that � Every ontinuous symmetry group of the ation has an

assoiated onserved urrent�. In her words...

If the integral I is invariant with respet to a Gρ, then ρ linearly

independent ombinations of the Lagrange expressions beome diver-

genes � and from this, onversely, invariane of I with respet to

a Gρ will follow. The theorem holds good even in the limiting ase

of in�nitely many parameters[20℄.

In the way we physiist now think of this the integral in the theorem

is identi�ed as the ation S. The linearly independent ombinations

of the Lagrange expressions are ontinuity equations. It is notable

that the symmetry group Gρ being ontinuous means that any Lie

group, and its assoiated Lie algebra, will be of importane.

The three Lie groups, and their assoiated Lie algebras that are most

important to partile physis ombine to form the symmetry group

of the standard model of partile physis are U(1)×SU(2)×SU(3).
These groups are as follows.

• U(1) is a group of one by one matries whih are unitary. In

short it is the omplex salars of magnitude 1.

• SU(2) is the group of 2 by 2 unitary matries with determinant

one. The assoiated Lie algebra of this one, as with the one

below, is just that of omplex matries under a ommutator.

• SU(3) is the group of 3 by 3 unitary matries with determinant

one. This group has the property of being Non-Abelian, and

as suh it was used to model the strong fore in the theory of

Quantum Chromodynamis.

3.2 The Standard Model of Partile Physis.

The standard model of partile physis is often presented as �gure

3.1. Figure 3.1 shows all the known partile �elds that have been

disovered. Every kind of matter we know exist is omprised of

these partile �elds. In the olumn on the right are the partile

�elds assoiated with eletromagnetism γ the photon, the Strong

fore g the gluon, and the Weak fore W and Z bosons. The other

three olumns are the partile �elds for the Up, Strange, Down,

Charmed, Top, and Bottom quarks. The quarks interat with eah

other via the strong fore. The bottom row is for the leptons and

their assoiated neutrinos whih interat via the weak fore, and

eletromagnetism.

In a nutshell, the above is the standard model of partile physis.

This is a huge oversimpli�ation. The next setion is going to explain

the real theory behind the model.
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Figure 3.1: The Standard Model of Partile Physis.



42 CHAPTER 3. QFT AND PARTICLE PHYSICS.

3.2.1 The Mathematial Details of the Standard

Model.

The standard model of partile physis is made up of three basi

parts whih have been uni�ed into one innoent looking Lagrangian.

The parts are Quantum Eletro Dynamis, Eletroweak theory, and

Quantum Chromodynamis. These parts of the standard model deal

with the eletromagneti interation, the eletroweak interation,

and the strong atomi interation respetively. Quantum eletro-

dynamis is the simplest part of the model and so will be detailed

here.

Quantum Eletro Dynamis (QED) is the simplest of the quan-

tum �eld Theories whih desribes a atual fore, eletromagnetism.

QED is the QFT whih governs muh of the world we see. When a

ray of light bounes o� a mirror, that's QED at work. Of ourse that

an be well understood without it, never the less the miro physis of

that simple event is QED. On the quantum level a mirror is a plane

of atoms, whih absorb then re-emit light. The same basi physial

theory an explain something as unusual as eletron-positron sat-

tering, or pair prodution of an eletron and positron. The following

is the Lagrangian for QED.

L = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν − ıeγµψ̄Aµψ (3.1)

Note that the Dµ in the above is just a gage ovariant derivative,

not unlike that found in General Relativity. For QED it is given by.

Dµ = ∂µ + ieAµ. Notie that this omplex theory is made largely

of the same basi parts that appeared in lassial eletro dynamis.

The ones whih are not found in lassial eletro dynamis are, Dira

spinors ψ and ψ̄, and the gamma matries γµ. The gamma matries

are known as pseudo-vetors. Written out they are matries, but

they behave under Lorentz transformation as vetors.

The de�ning property of the Dira gamma matries is how they

behave under an anti ommutator in the following way.

{γµ, γν} = γµγν + γνγµ = 2ηµνI (3.2)

The Dira spinors are de�ned as being solutions to the Dira Equa-

tion. The preise form of the Dira Spinor to use di�ers for partiles

and anti partiles et. More details an be found in. [19℄

The eletroweak fore, the marriage of eletromagnetism and the

weak fore has the symmetry U(1) × SU(2). Quantum Chromody-

namis whih holds hadrons, partiles omposed of quarks, together

has the preise symmetry of SU(3). SU(3) is a non-abelian �eld
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theory, a �eld theory built up from a non-ommutative symmetry

group. The whole standard model has the symmetry of the Cartesian

(diret) produt of those three groups and is non-abelian. This was

built from the bottom up from a huge number of partile physis

experiments to that mathematial symmetry. With the following

de�nitions in plae the Lagrangian for the Standard model of parti-

le physis. It is the sum of the Lagrangian densities for the strong

fore and the eletroweak fore.

LSM = ıψ̄kγµD
µψk−

1

4
F jµνFjµν−

1

4
BµνBµν+ıq̄jγ

µDµq
j−1

2
tr (GµνG

µν)

(3.3)

Where the G's are the Gluon �elds. This Lagrangian is the real

standard model of partile physis.

3.3 Baryogenesis in the standard model.

Baryogenesis is a word for the generation of matter from the �elds

of the standard model. A mystery of baryogenesis is that matter is

reated in the standard model by pair prodution. Pair prodution

reates partiles and anti partiles in equal numbers. This symme-

try between partiles and anti partiles arises from the symmetry

groups disussed previously. Preserving overall symmetry ensures

pair prodution. However the universe we see appears to be om-

posed ompletely of normal matter.

Theories whih seek to explain this observed asymmetry of matter

and anti matter do so by introduing terms whih break the sym-

metry of the standard model at high enough energies. This is often

done by introduing new partiles and �elds.

3.3.1 Sakharov's onditions for baryogenesis

The onditions under whih this ould our were �rst enuniated

by Andrei Sakharov in 1967. Sakharov's onditions are [18℄.

• Violation of baryon number B.

• Violation of Charge and Parity CP symmetry.

• A (loal) loss of thermal equilibrium.

The short reasons for all of these are that violation of onservation of

baryon number or, B violation is needed due to the fat that we begin

with B=0 and end with B=(all the baryons that will ever exist in the

form of normal matter). The baryon number of a partile is +1 and
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of an anti partile is -1. Clearly if there was a perfet symmetry then

all the matter would have been eliminated by all the anti matter.

B violation, an be found within the on�nes of the unmodi�ed

standard model. This is so beause of the details of the vauum

states of SU(2) gage theory. There exist N possible vaua. These

are states of the quantum �eld whih ontain various numbers of

partiles. The �elds an be exited by thermal energy and were

during the period of reheating after in�ation. These vaua are known

as sphalerons. Eah time the vauum goes through a sphaleron

transition the B symmetry is broken. When this happens nine quarks

and three leptons will be produed. All of this would driven by the

heat provided by the reheating after in�ation in the standard model

of osmology. [18℄

Charge and Parity symmetry need to be violated, otherwise the ob-

served asymmetry between matter and anti matter would not be

observed. Conjugation of the harges and parity symmetry would

have guaranteed a universe omposed of equal numbers of partiles

and anti-partiles. Simple observation shows this is not the ase,

therefore this symmetry must have been broken. However the stan-

dard model needs to be modi�ed in order to ontain a strong soure

of CP violation. The simplest modi�ation is known as the min-

imally super symmetri standard model (MSSM). To go into this

in any detail would be beyond the sope of this thesis. However it

bears mentioning that while this model provides strong enough CP

symmetry breaking to produe the matter we see it omes at the ost

of more partiles we haven't observed. Eah partile in the SM has

a super symmetri partner in the MSSM. None of these hypotheti-

al partiles have been observed. On the other hand some of those

partiles may be the dark matter whih is predited on osmologial

grounds. For this and other reasons physiist are very hopeful that

super symmetry will be observed in future partile physis experi-

ments. [18℄

Lastly there has to be a loal loss of thermal equilibrium in order

for these reations to go anywhere. The point is made by Sakharov

that in thermal equilibrium that annihilations of partiles and par-

tile reations will be just as likely. One proposed mehanism for

this is known as eletroweak phase transition. To understand and

visualize this treat the ontents of the early universe before baryo-

genesis (quantum �elds) as if they were �uids obeying the laws of

thermodynamis. The reheating of the universe after in�ation would

energize this ��uid" to a ertain temperature and it begins to �boil".

This �boiling" is referred to in the literature as bubble nuleation.

These �bubbles" are regions of spae where the energy of the �elds

are slightly lower. Near the walls of these �bubbles" there is a in-

terfae between the bubble and the rest of the ��uid". Aross the
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interfae there is a di�erene in the rates of reation of partiles by

the sphaleron proesses. This lak of thermal equilibrium would al-

low baryogenesis to our and result in the observed baryon number

asymmetry.[18℄

3.4 Summary

To understand the reation of matter from �elds of energy requires

quantum �eld theory. One way quantum �eld theories are built by

deduing the underlying symmetries of nature from experimental

data. These symmetries are represented mathematially by symme-

try groups. Aording to Noether's theorem these symmetries in the

ation of the �eld model onserved urrents of harges. The prob-

lem is that a universe in whih there are no partiles would only be

able to produe partiles, and anti partiles, in equal numbers unless

those very symmetries were broken.

Breaking these symmetries, along with a lak of thermal equilib-

rium allows the prodution of partiles by the quantum �elds of the

standard model. As it turns out there exist mehanisms within the

standard model whih will allow the breaking of the symmetry that

auses onservation of baryon number. With the addition of su-

per symmetry the onservation of harge and parity an be irum-

vented. The leading way this is done leads to the theory of super

symmetry whih ontains partiles that ould be the dark matter

that is predited on osmologial grounds.



46 CHAPTER 3. QFT AND PARTICLE PHYSICS.



Part III

On observational and

experimental partile

osmology.
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This part deals with observational and experimental partile osmol-

ogy. The �rst area whih will be overed is researh on the Cosmi

Mirowave Bakground Radiation (CMB). This area is extremely

important sine very areful measurements of the CMB ould in-

form diverse area's of physis and osmology.

The seond main area of fous, for this part, is the synthesis of

elements heavier than hydrogen in the �rst minutes after the big

bang. The steady improvement of observations in this area will

inform theories of osmology by setting a tolerane that any new

models must meet.
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Chapter 4

Researh on the Cosmi

Mirowave Bakground

Radiation and the

Cosmi Gravitational

Bakground.

The Cosmi Mirowave Bakground Radiation (CMB) is the earliest

diretly observable phenomena we an detet. About 380,000 years

after the big bang the universe �nally expanded and ooled to the

point where neutral atoms ould persist. This event is known as re-

ombination or last sattering. The last light to satter o� these �rst

true atoms was also the �rst light to propagate in to a transparent

optially thin universe. The CMB is that �rst light.

The surfae de�ned by the last interation of the CMB photons with

the primordial gas loud is alled the surfae of last sattering. The

CMB photon light was initially gamma radiation (λ ≈ 0.9753µm).

That light has been Doppler shifted down to the mirowave end of

the spetrum (to λ ≈ 1.063mm). Sine the universe was imagined to

have began with a hot dense state, not unlike a star, it was expeted

that the radiation from the resulting hot gas would have a blak body

spetrum. This is preisely what was observed. Today the CMB

appears as a blak body with a very nearly uniform temperature of

2.725 K.

Small deviations from this temperature, on the order of miro Kelvin,

have been measured by spae based experiments suh as the Cos-

51
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mi Bakground Explorer (COBE), and the Wilkinson Mirowave

Anisotropy Probe (WMAP). These are the data that have produed

the now famous all sky maps of the CMB. These small deviations

from the uniformity of the CMB enode within them data about

the universe as it existed before last sattering. These small devia-

tions, warm spots and old spots orrespond to lusters of lusters

of galaxy's, and great voids in the universe at latter dates.

The importane of CMB physis annot be overstated. Human-

ity has performed partile physis experiments at the energies and

densities that existed at earlier times than the CMB, but not the

overall onditions. As suh it is ruial that we glean as muh infor-

mation from it as possible. The CMB is our best evidene for the big

bang, and in�ation. The CMB may even provide evidene of gravi-

tational waves whih would on�rm one more predition of General

Relativity, and depending on the form of those waves ould on�rm

in�ation. Several large experiments are underway and searhing for

this Cosmi Gravitational Bakground.

4.1 Historial Bakground

In the 40's and 50's a number of astrophysiists made a physial

predition based on the big bang. They predited that the whole

sky should be �lled with a reli radiation as if the sky was �lled with

a blak body. This radiation would be the red shifted light and in-

frared emission of the big bang. The �rst to ompute a temperature

for the ambient radiation in spae was George Gamow who om-

puted a temperature of 50 k[21℄. Gamow did not state that there

would be a universal and pervasive blak body spetrum bakground.

Robert Dikie of Prineton on the other hand did predit just suh a

blak body spetrum[22℄. For that reason it an be said Dikie was

the �rst to predit a Cosmi Mirowave Bakground. Dikie made

a range of preditions from 50K to 6K for the temperature of this

radiation. [22℄

Then in the 1960's tehnology aught up to theory. Two Amerian

teams of physiist would end up working on the problem of deteting

the reli radiation. One led by Robert Dikie of Prineton did so on

purpose, and wanted to detet the radiation. The other team of Arno

Penzias, and Robert Wilson did not want to detet the radiation.

Penzias and Wilson had wanted to detet radio waves bouned of

early eo balloon satellites, whih simply re�eted a radio beam

aimed at them. To do this they had to eliminate as muh bak-

ground noise as possible. Their reeiver was known as the Horn

(as seen in �gure 4.1). When Penzias and Wilson did their work
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at Bell labs their antenna was the utting edge of Mirowave teh-

nology. They swithed on their reeiver and found that from all

diretions they heard a mirowave hiss. They eliminated all pos-

sible soures of noise, from nesting birds to the heat of their own

equipment[23℄. Then they ontated Dikie. In this way the Cosmi

Mirowave Bakground radiation was found. A major predition of

big bang theory was on�rmed. By 1978 when Penzias and Wilson

were awarded the Nobel Prize for their disovery the big bang, not

yet with in�ation it ame latter, was the standard model of osmol-

ogy.

The next step was the measurement of the CMB by the Cosmi (mi-

rowave) Bakground Explorer ollaboration (COBE). What they

sought was a preise measurement of the spetrum of the CMB.

Penzias and Wilson had shown that the CMB emanated from all

diretions, was very homogeneous et. COBE was designed to go a

step further and tell us if the spetrum was truly a blak body and

detet any anisotropy[24℄. The COBE probe had a angular resolu-

tion of 7 degrees and was able to detet temperature �utuations

of +/- 100 miro Kelvin[3℄. Anisotropy is exatly what was found

by COBE produing the image in �gure4.3. This image shows the

hot and old regions of the sky in a relatively low angular resolution

ompared to latter data. For this work George F. Smoot and John

C. Mather were awarded the Nobel Prize in physis in 2006. The i-

tation read �for their disovery of the blakbody form and anisotropy

of the osmi mirowave bakground radiation".[25℄

In the last number of years high quality data was gathered on it by

the Wilkinson Mirowave Anisotropy Probe (WMAP). This is what

produed the famous all sky maps we have all beome austomed

to. (One suh image has been used in the �rst �gure in this thesis.)

However WMAP's data left a few things to be desired. For example

it did not show us the greatest possible detail given how tehnol-

ogy has advaned sine WMAP was �rst launhed. That is where

the next generation probe launhed by the European Spae Ageny

omes in.

The Plank explorer is the probe whih will on�rm the observa-

tions of WMAP and go a number of steps farther. Consider that for

the WMAP at 30 Ghz the angular resolution is 40 arminutes and

for Plank the angular resolution at that frequeny is 33 arminutes.

(The Plank probe and WMAP over di�erent frequenies in general

30 Ghz is a frequeny ommon to both and therefore most ompa-

rable.) It will measure the anisotropy of the CMB to muh greater

detail, and angular resolution than WMAP. Plank will measure the

polarization modes of the CMB as well. Plank will also look for

non Gaussianity in the power spetrum (a plot of CMB temperature

variane on the sky VS frequeny as in �gure 4.4) of the CMB, whih
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Figure 4.1: The Horn, used by Penzias and Wilson.In the 1960's when Penzias

and Wilson did their work at Bell labs this was the utting edge of Mirowave

tehnology.

To put these suessive measurements of the CMB in perspetive take a look

at a simmulated image of the mirowave sky as seen by the horn (�gure 4.2).

Aording to the WMAP siene team this shows how the mirowave sky would

have appeared to The Horn had it been able to san the whole sky [2℄. A

basially featureless blak body radiating at 2.725 K. This is the data that

was available until the Cosmi Bakground Explorer (COBE) experiment. The

CMB appears ompletely uniform and featurless with the level of tehnology

available to Penzias and Wilson.
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Figure 4.2: The Mirowave Sky as seen by the horn. Aording to the WMAP

siene team this shows how the mirowave sky would have appeared to The

Horn had it been able to san the whole sky. A basially featureless blak

body radiating at 2.725 K. This is the data that was available until the COBE

experiment. [2℄

Figure 4.3: �The all-sky image produed by the COBE Satellite. It is a low

resolution image of the sky (7 degree resolution), but obvious old and hot

regions are apparent in the image. The large red band is the mirowave emissions

from our own galaxy. This image shows a temperature range of Â± 100 miro

Kelvin. It was proessed through the same data pipe as the �rst year WMAP

data. The largest version of the image has a sale added. Courtesy of the

NASA, WMAP Siene Team"[3℄.
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if found would indiate new physis. With this data our theories of

the early universe will be put to the test.

4.2 Theoretial motivations

Figure 4.4 shows the power spetrum(a plot of CMB temperature

variane on the sky VS frequeny) of the CMB as measured by

WMAP, with a best �t line provided by the standard ΛCDM model

of osmology. (Part two of this thesis presented the essential om-

ponents of the ΛCDM model.) The Plank ollaboration hopes to

improve on this by measuring slight non-Gaussianity whih would

indiate new physis and that a more ompliated model of in�ation

than single �eld slow roll is alled for.[4℄

Better observations of the CMB than we have ever had before will

allow osmologist to throw out ertain models of in�ation and deter-

mine whih one is orret. The up oming and on going observations

may also detet evidene of gravitational waves via a partiular mode

of polarization in the CMB. The Plank mission may even take re-

sults so and �ne that they eliminate the simplest model of in�ation,

single salar �eld slow-roll. These are the hief sienti� goals of the

Plank mission, and a number of other planned ground and balloon

borne missions.

These are models of in�ation in whih the �eld (s) φ are multiplied

by eah other in the Lagrangian. Suh terms imply a strong "self

interation" of the in�ation �eld with itself in suh a theory. The

behavior of suh �elds is strongly non-linear as ompared to theories

suh as single �eld slow roll in�ation. [15, 1℄

The reason that single �eld slow roll in�ation predits a gaussian

power spetrum (a plot of CMB temperature variane on the sky VS

frequeny) is beause of the solutions to the equations of motion of

that partiular �eld whih are gaussian funtions. Suh a Gaussian

spetrum is approximately what WMAP observed (�gure 4.4), but

the Plank probe would be able to detet small deviations predited

by theories of haoti, or vetor �eld in�ation among others.[26℄

4.2.1 Gravity waves and the B-Mode polarization

of the CMB.

The motions of large elestial bodies, and violent osmi events are

thought to produe gravitational waves due to the nature of Ein-

stein's General theory of Relativity. It is possible to linearize General

Relativity, deompose it into a part whih behaves like an eletri

�eld, and a part whih behaves like a magneti �eld. This linearizion
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Figure 4.4: The power spetrum of the CMB as measured by WMAP. This �g-

ure shows the power spetrum of the CMB as measured by WMAP, with a best

�t line provided by the standard ΛCDM model of osmology. The Plank ol-

laboration hopes to improve on this by measuring slight non-Gaussianity whih

would indiate new physis, and that a more ompliated model of in�ation

than single �eld slow roll is alled for. Courtesy of the WMAP siene team [4℄.
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of General Relativity leads to a wave equation. This proedure is

only valid in the weak �eld limit, so no where near a blak hole for

example. It is from suh mathematis that gravitational waves are

predited. What these waves are is ripples in spae-time. As these

ripples travel the geodesis will be distorted. It is this distortion of

the �shortest distanes from point A to point B" whih the following

projets depend on.

In�ation just like every other major elestial event is thought to have

a gravitational wave signature. It an be thought of as a gravita-

tional analogue of the CMB. In�ation, indeed the di�erent models

of in�ation, would have distint gravitational bakgrounds.

The Plank explorer has the primary objetive of observing the

osmi mirowave bakground in greater detail than the WMAP

projet. A big goal of Plank is to measure what is known as the

B mode polarization of the CMB. By doing so it would be able to

indiretly detet gravitational waves.[26℄

The polarization of the CMB is aused by Thompson sattering of

the primordial radiation by eletrons during the very last phase of

the matter-radiation oupled era. These polarizations, known as E

mode and B mode are linearly proportional to the Stokes Parameters

Q and U. It is these stokes parameters whih an be observed, and

from them the polarizations alulated. [27℄

The best measured multipole moment so far is the vetor E mode.

The B mode is a tensor mode whih if it is present and of a ertain

magnitude an onstitute a indiret detetion of gravitational waves

[26℄. This is important for the future of gravitational wave astron-

omy whih right now is still speulative (but based on everything

we know it should be possible.) Detetion of this B mode polariza-

tion and gravitational waves would lend more support to General

Relativity, and in�ationary osmology.

4.3 The Plank Mission.

The European Spae Agenies Plank mission is a deep spae probe

whih will orbit the sun earth Lagrange point L2, faing away from

the Earth and failitate a more detailed study of the CMB than was

possible during the WMAP mission. The Plank probe has better

sensors, and better eletronis than WMAP. Both tehnologies have

improved sine WMAP was launhed. Figure 4.5 shows a ompar-

ison of early Plank data to omparable WMAP data. The two

images in �gure 4.5 show the plane of our galaxy and its emission in

the foreground.
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Table 4.1: Plank Instruments and Capabilities

LFI HFI

Detetor Tehnology

Center Frequeny (GHz)

Angular Resolution (armin)

∆T/T per pixel (Stokes I)
∆T/T per pixel (StokesQ&U)

HEMT arrays

30 44 70

33 24 14

2.0 2.7 4.7

2.8 3.9 6.7

Bolometer arrays

100 143 217 353 545 857

10 7.1 5.0 5.0 5.0 5.0

2.5 2.2 4.8 14.7 147 6700

4.0 4.2 9.8 29.8 - -

4.3.1 Objetives

As disussed above, the polarization of the CMB is one aspet of the

CMB of whih Plank will make a detailed study. The two spei�

polarizations that will be examined are the E- Mode and B-Mode

polarizations. With the WMAP only the E-Mode polarization ould

be read. The B-mode polarization happens to be the type whih we

think would be indued by gravitational waves. This is so beause

gravity is a tensor �eld, and the B-mode would only be indued by

suh a �eld. If the B-mode polarization exist, and has the orret

signature that would provide justi�ation for further gravity wave

observations.

The Plank mission will also be able to observe the CMB in greater

detail than the WMAP mission did. Spei�ally it will be able to

detet and haraterize the non-gaussianity of the CMB power spe-

trum. This data ould rule out the simpler models of in�ation.

[26, 10, 28℄

The Plank mission also has the objetive of trying to observe new

and unexpeted physis. Physis whih ould either lend support to

or rule out ertain speulative, and/or non standard models.[26, 28℄

Last but not least the Plank probe will to loate and map galaxy

lusters via its observations of the CMB. Current theory and obser-

vations indiate that warm spots in the CMB orrespond to galaxy

lusters. The Plank mission will be able to make detailed enough

observations to allow us to map the loation of lusters so far away,

that the only light we see whih indiates their existene is in the

form of the CMB. [26, 28℄

4.3.2 Instruments

Table 4.1 whih is similar to one in [26℄ summarizes the instruments

and apabilities of the Plank probe.

The Low Frequeny Instrument(s) (LFI) onsist of arrays of high

eletron mobility transistors (HEMT arrays). The High Frequeny
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Instrument onsist of Bolometers ooled to a temperature of 0.1K.

Both of these instruments are integrated into the foal plane of

Plank's 1.5 m mirowave telesope. [28℄

These instruments will be able to �x the value of various osmologial

parameters to within 1% of their atual values [26℄. In partiular

the Plank mission will be able to redue the unertainty in the

baryon abundane parameter by more than one half [29℄. From the

WMAP value of about 0.145 to 0.063[29℄. While the unertainty in

the number of equivalent neutrino's will be redued by a fator of

1/3 over the WMAP data[29℄.

4.3.3 Early Plank Data

On July 5th 2010 the Plank ollaboration released their �rst all

sky map. A side by side omparison with WMAP is �gure 4.5.

The bottom image is the latest Plank data before the foreground is

removed.

The Plank data shows muh more detail than WMAP data and

should produe great new insights.

The Plank data has not yet had the foreground soures removed

to reveal only the CMB. The bakground is somewhat visible in the

high latitudes of the image, so says the Plank team. Their are still

point soures visible in those regions too. The Plank team is now

working on areful analysis of the foreground [30℄. This analysis uses

the multiple frequeny bands in whih Plank an detet mirowaves

to disriminate between the foreground and the bakground. Then

the foreground an be digitally removed. Work on removing the

bakground is urrently underway and is being performed using the

Franklin superomputer at the National Energy Researh Sienti�

Computing Center in Berkeley, Calif. This omputer enter will

handle the most omputationally intensive task for the Plank team

world wide[31℄.

4.4 Ground Based Observations

Conurrently and omplementary to Plank are a variety of ompet-

ing ground and balloon based experiments whih will all attempt to

detet any primordial B-Mode Polarization of the CMB. This paper

will fous on projets whih are sheduled to begin in 2010 or latter.

Table 2.2 is derived from a similar one in [26℄. Looking at the table,

note that the angular resolutions ould potentially be as good as

that of Plank. Thanks to Plank, and the following ground based
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PLANCK all sky survey.

WMAP Q-Band map

.

Figure 4.5: The top image is the WMAP data for seven years of olletion before

the foreground is removed. The bottom image is the Plank data for one year

without the bakground having been removed. Note the superior detail of the

Plank image. Images ourtesy of the WMAP siene team, and the Plank

siene team respetively.
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Table 4.2: Ground based observations planned for the near future. With om-

parison to Plank.

Angular resolution Frequeny Goal Starting

Experiment (armin) (GHz) (r) Year

Ground Based

ABS [32℄ 30 145 0.1 2010

BRAIN [33℄ ∼ 60 90, 150, 220 0.01 2010

Kek Array 60 - 30 100, 150, 220 0.01 2010

Balloon Borne

PAPPA [34℄ 30 90, 210, 300 0.01 2010

PIPER ∼ 15 200, 270, 350, 600 0.007 2013

SPIDER [27℄ 58 - 21 100, 145, 225, 275 0.01 2010

Satellite

Plank 33 - 5 30 - 353 0.05

observations, in the oming deade the osmologial ommunity is

going to have plenty of high de�nition data to digest.

The Ataama B-Mode searh (ABS) is an experiment whih will be

situated in the Ataama desert of Chile[32℄. It will be onstruted in

the US inside a standard shipping ontainer, then shipped to Chile.

The detetor itself is omposed of ryogenily ooled transition edge

sensor bolometers and is very ompat at only one meter tall[32℄.

Atmospheri interferene will be �ltered out with the aid of a half

wave plate very near the aperture and before the beam forming

optis. For far more details please see [35℄.

The B-mode RAdiation INterferometer (BRAIN) experiment is very

similar to the ABS and Plank in that it too uses a bolometri in-

strument. This projet is di�erent in that the detetors are ross

linked to form an interferometer. The BRAIN ollaboration intends

to install their instrument in Antartia at the Conordia researh

station operated by Frane and Italy (at a 3233 meter altitude). The

instrument is in the proess of being fully installed now and should

be ompleted by 2011 [? ℄. More details are available in [33℄.

The balloon based Primordial Anisotropy Polarization Path�nder

Array (PAPPA) is a balloon based experiment whih will employ a

innovative array of polarimeters on a hip. It will have the apability

of simultaneously measuring the stokes parameters I , Q and U and

hene the polarization of the CMB. [34℄

SPIDER employs ryogenially ooled bolometers just like those

above. It will be �own from Alie Springs Australia. It's stated

siene goal is to measure the B-mode polarization of the CMB. [27℄
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4.5 E�orts to diretly detet gravitational

waves.

Laser Interferometer Gravitational (Wave) Observatory (LIGO) is

a ground based observatory whih is atively searhing for gravita-

tional waves. It uses three widely plaed, massive laser interferome-

ters in an attempt to detet gravitational waves.

The laser beams are split, then travel along the arms of this massive

interferometer for a few miles. A passing gravitational wave would

ause one beam to travel a di�erent distane than the other. It

would distort the metri di�erently in one diretion than the other.

When the light is reombined, and the interferene pattern arefully

measured , then a di�erene in phase an be interpreted as the e�ets

of a gravitational wave.

One detetor by itself would not be a very sensitive instrument. For

that reason LIGO is omposed of three massive laser interferometers.

Two of whih are loated in Hanford, Washington, USA, and one in

Livingston, Louisiana, USA. This number of interferometers is the

minimum needed for the proper error heking, or oinidene in

the data. The data is then analyzed for oinident events. These

oinident events are then taken as being the possible signals. The

more detetors the better one an distinguish the atual signal from

the noise. Reent work done by the LIGO ollaboration has been

in ooperation with the European Virgo and Geo projets, whih

are also based on laser interferometry and so similar to LIGO as to

be nearly idential. This ollaboration allows a greater degree of

oinidene, whih turn allows more sensitivity to the true signals,

and less noise.

One searh looked at ompat binary systems with stars of masses

between 2 and 35 solar masses[36℄. Suh systems have been observed

to loose energy as the stars orbit eah other. This energy would

presumably be radiated away in the form of gravitational waves.

However this searh did not detet any waves. A more reent searh

tried to detet gravitational wave burst from violent osmologial

events[37℄. Events suh as supernovae. Theoretially these events

should produe a gravitational waves, none were deteted[37℄.

The great di�ulty in working with LIGO, Virgo and Geo, is the

noise indued by ground vibrations. This is an inherent problem

with ground based observation of gravitational waves. The next

step is the Laser Interferometer Spae Antenna (LISA) mission, a

joint NASA ESA mission. This will be three satellites in a orbit

distant from the Earth or any other bodies. These satellites will

form a laser interferometer by �ying in formation. The noise level

will be far lower in this environment.
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The ulmination of this work on diret gravitational wave detetion

will be a spae based gravitational wave observatory known as the

Big Bang Observer (BBO). BBO is billed as allowing the diret

imaging of events that are father bak in time than the Cosmi

Mirowave Bakground radiation (CMB). It is the BBO whih will

answer the question of whih in�ationary model is orret by way

of its gravitational eho, a sort of gravitational bakground signal.

BBO will not only detet these waves but will allow humanity to

image the osmi gravitational bakground. Doing so will answer

deep questions about the universes earliest evolution almost bak to

the big bang itself.

4.6 Summary

The subjet of this hapter was researh on the Cosmi Mirowave

Bakground (CMB) and the Cosmi Gravitational Bakground (CGB).

Researh being done on the CMB will inform researh being done

on the CGB. The primary researh projets underway in these two

area's are the European Spae Ageny's Plank explorer satellite,

and the Laser Interferometer Gravitational (Wave) Observatory (LIGO).

The Plank satellite orbiting the Sun- Earth Lagrange point L2 has

imaged the whole sky. One the foreground soures are removed a

sharper piture of the CMB than has ever been seen before should be

obtained. Among the goals of Plank are the detetion of a B-mode

polarization of the CMB whih ould indiate gravitational waves

ating when the CMB was emitted. Another goal is to detet non

Gaussian in the power spetrum of the CMB. Small non-guassianity

in the �t is one predition of more ompliated theories of in�ation

suh as vetor in�ation and haoti in�ation.

The LIGO ollaboration's work on gravitational wave detetion,

along with their olleagues e�orts, will lay the groundwork for future

diret detetion of gravitational waves. Deteting suh waves would

on�rm a major predition of General Relativity and open a new

window on the universe. Future projets based on this tehnology

suh as the Big Bang Observer will reveal information on the earliest

evolution of the universe.



Chapter 5

Atomi and Partile

Cosmology.

This hapter will fous on observations and experimentation in par-

tile physis whih have a bearing on osmology and vie versa.

Spei�ally observations of the ratios of the light elements, and work

being done at the Large Hadron Collider (LHC). Careful measure-

ment of the relative abundanes of light elements whih resulted

from the primordial nuelosynthesis following the big bang would be

of interest to partile theorist. Any grand uni�ed theory would have

to be able to predit these ratios. Experimental work done at the

LHC will also have a bearing on osmology as more is learned about

the fundamental onstituents of the universe.

5.1 Big Bang Nuelosynthesis

Nulear fusion is any nulear reation in whih two lighter nulei

ombine to form a heavier nulei. It is by that proess that elements

heavier than hydrogen were formed in the early universe. The rea-

tions that will onern us involve hydrogen fusing to form helium,

lithium and beryllium. Heavier elements were not produed. This

is beause unlike the ore of a star whih is ompressed for millions

or billions of years the period of nuelosynthesis after the big bang

only lasted a matter of minutes. It takes great pressure and thermal

energy to ause fusion. The interation ross setions for fusion of

heavier elements are smaller. As the universe expanded it ooled

and this ooling made fusion into heavier elements less likely and so

they were not formed in astrophysially interesting amounts. This

proess is known as Big Bang Nuelosynthesis (BBN)
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The timing of this period of nuelosynthesis is one of the tightest

onstraints on the possible theories of osmology. From many ex-

periments we know nulear physis very well. What an be alu-

lated are pressures temperatures and times will produe the relative

abundanes we have observed. The �rst attempt at this was done

by Ralph Alpher, Hanse Bethe, and George Gammow in 1949. [38℄

All of the omplexity of these proesses an be redued to one pa-

rameter, the ratio of baryons to photons. The ratio of any two pri-

mordial abundanes should equal the ratio of baryons to photons. If

a osmologial model predits a di�erent ratio then it an be ruled

out. Depending on the studies these ratios are known to within 10

to 0.1 perent. [39℄

These ratios of light elements, in partiular the primordial Deu-

terium/Hydrogen (D/H) are well known from observations of distant

quasars, and other low metalliity soures[39, 29℄. These galaxy's

existed at a time where the �rst generations of stars had not had

a hane to modify the ratio's by their fusion, and are referred to

as having low metalliity[39℄. The ratio's of D/H at those loations

and times are onsistent with the D/H measured in the interstellar

medium (ISM) via absorption of light of the wavelength orrespond-

ing to the �rst transition in the Lyman series (Lyman α) absorption
(D/H ≈ 3.4× 10−5

)[39℄. There are many tehnial reasons for this,

whih are the provine of observational astrophysiist, something I

am not. These details are provided in [39, 29℄.

5.1.1 Improving observations of the relative abun-

danes of light elements.

Observations of the of ratios of light elements due to Big Bang

Nuelosynthesis (BBN) ould onstrain how muh gravity ould vary

from its general relativisti desription (as required by some speies

of string theory among other theories) [40℄. Variation in ertain

fundamental onstants an also be onstrained by observations of

BBN (whih is again required by some types of string theory among

other theories) [40℄. �Report by the ESA-ESO Working Group on

Fundamental Cosmology� identi�ed as key questions [41℄ .

Is standard osmology based on the orret physial prin-

iples? Are features suh as dark energy artifats of a

di�erent law of gravity, perhaps assoiated with extra di-

mensions? Could fundamental onstants atually vary?

[41℄

BBN observations an answer some of these questions[40℄. Only er-

tain alternatives will be ompatible with the onstraints imposed
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Table 5.1: Near Future Telesopes in Comparison to Kek and VLT

Telesope Main Mirror Diameter Key Instruments ompletion

Kek[45℄ Two , 10 meter

High Res Ehelle Spe.

Kek-Kek Interferometer

Near Infrared Camera

VLT[46℄ Four, 8.2 meter

Nasmyth Adaptive Optis System

UV and Visual Ehelle Spet.

X-shooter

Giant Magellan[43℄ 24.5 meters

Near-IR multi-objet spe.

GMT Wide-Field Optial Spe.

2018

TMT[44℄ 30 meters

Near-IR ehelle spe. (NIRES)

High-Res. Optial Spe. (HROS)

InfraRed Multislit Spe. (IRMS)

2018

E-ELT[42℄ 42 meters Nine stations for �xed instruments 2018

by improved observations. The ESA-ESO report also laims that

a larger telesope a �European Extremely Large Telesope� E-ELT

would be neessary to make observations aurate enough to yield

suh onstraints [41℄. This telesope is due to being operations in

2018 [42℄. To put its apabilities in perspetive, it is planned to

have a 42 meter in diameter main mirror for 1300 square meters

of olleting area[42℄. The Kek telesopes in Hawaii have 10 meter

diameter main mirrors. The E-ELT is only the largest of planned fu-

ture ELT's. The others being the 21 meter diameter Giant Magellan

telesope[43℄, and The 30 Meter Telesope (TMT)[44℄.

In short there is still muh to be learned from good old fashioned

diret observation of the universe.

5.2 Large Hadron Collider

The Large Hadron Collider (LHC) is where both nulear and partile

physis, that ould have ourred during both baryogenesis, and

nuelosynthesis will be studied in detail. The onditions whih will

be reated for a split seond in eah ollision event will mimi the

environment at that time (save for the strength of gravity). It is

these fats whih allow the often repeated laim that the LHC will

�rereate the big bang�.

The main siene objetives of the LHC an be stated brie�y as de-

tetion of the Higgs Boson, testing of the standard model, revelation

of physis beyond the standard model, and experimentation in high

energy nulear physis.

Foremost among the siene objetives of the LHC is detetion of
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the Higgs boson. The Higgs �eld was proposed in the theory whih

united eletromagnetism, and the weak atomi fore. Through inter-

ation with the Higgs �eld partiles gain their masses. If the Higgs

(salar) boson is not deteted then we all will have to think again

about our standard model of partile physis, and the origin of mass.

The LHC will also look for ertain physis beyond the standard

model. Spei�ally sientist working on it will look for what is alled

large extra dimensions, and super symmetri partiles. Large extra

dimensions stems from M-Theory. String/M theory needs more than

four dimensions, the extra dimensions are thought to be ompated

into a length no longer than the Plank length. Large extra dimen-

sions would be evidene in support of very speulative theories suh

as M theory.

In the proess of testing the standard model ( based on U(1) ×
SU(2) × SU(3) gage symmetry) other theories will also be tested.

There is no shortage of proposals and ounter proposals for grand

uni�ation. Aside from super symmetri theories suh as M-theory,

SU(5) grand uni�ation theory theory still has supporters in the

form of SU(5) × U(1) theory[47℄. These grand uni�ation shemes

ontain andidate in�ation �elds. So if one of them is supported

with the detetion of a partile an �in�ation" at the LHC, then their

partiular andidate in�ation �eld(s)/mehanism would beome the

preferred hoie in osmology.

Last but not least the LHC will perform experiments in nulear

physis by ollisions of lead nulei with eah other. In doing so

states of matter whih would have existed during baryogenesis, and

nuelosynthesis ould exist for a split seond. The LHC will be per-

forming ontrolled experiments in nulear physis at energies whih

humanity has never reahed before [48℄.

5.3 Summary

Preise theoretial preditions of the relative abundanes of light

elements in the early universe depends on the underlying models

of partile physis in subtle ways. At high energies interations

that have low probability an take plae whih don't happen out-

side of partile aelerators at this time. Observations of big bang

nuelosynthesis will have a bearing on theoretial partile physis

by �xing the ratios of light elements. This will eliminate various

alternatives to the standard model from onsideration and support

others. Conversely work done at the worlds aelerator laboratories

ould e�et the �eld of astrophysis and osmology through the pro-

dution of a Higgs or even an in�aton. A in�aton is a partile of the

quantized in�ation �eld. Detetion of a ertain kind or number of
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distint in�aton �elds would ditate whih model of in�ation ould

be orret .

A detetion of the Higgs boson would give a boost to salar in-

�ation theory as so far no fundamental salar �elds have been de-

teted. Very serious sientist still question the details of the standard

ΛCDM model of osmology while reognizing its good agreement

with observations. The details are still being explored and there is

muh work to be done in osmology. In partiular details of in�a-

tion, the nature of dark energy and dark matter. The researh just

desribed will go a long way to solving these problems.
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Part IV

Theories and

observations of the

frontier of osmology.
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In this setion theories and observations at the frontier of osmology

will be reviewed. These theories have been proposed to �ll in gaps

in the standard models, or explain ontroversial observations that

the standard models don't.

The standard theory of gravity, General Relativity, is a lassial

theory. However the universe is fundamentally Quantum Field The-

oretial / Quantum Mehanial in nature. This is a short oming of

the theory of General Relativity whih keeps it from being regarded

as the truly fundamental theory of gravity. A number of quantiza-

tion's of General Relativity have been proposed. The one whih will

be hilited in this thesis is Loop Quantum Gravity and the osmology

that takes it into aount.

The standard model of osmology addresses all the well reeived

observations that have been made adequately. However, one obser-

vation of a time variane in the �ne struture onstant annot be

explained easily by that model. For this reason a model in whih

the speed of light varies in the earliest moments has been proposed.

Some of these ideas will prove to be wrong, some will prove to be

right, and some will be modi�ed by new observations that they per-

haps partially �t. That said a omplete eduation in osmology

annot be had without knowing of these theories.
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Quantum Cosmology

Quantum Cosmology is the appliation of quantum mehanial ideas

to problems in osmology. In partiular the appliation of models of

quantum gravity to osmology in partiular the big bang and the in-

stants just after it. The goal of these osmologies is the resolution of

the singularity found in standard lassial osmology. These theories

lak experimental or observational support however they are math-

ematially quite rigorous. Here will be presented a brief overview

of this �eld and some of its more ative branhes. Those are Loop

Quantum Cosmology and M-Theory osmology.

Loop Quantum Cosmology is the osmology that results when a the-

ory of quantum gravity known as Loop Quantum Gravity is applied

to the earliest phase of the universes evolution. The main fous of

this hapter is the osmology and not the details of the mathematial

physis. For this reason, the deep details of Loop Quantum Gravity

are not important. This hapter will introdue the basis of Loop

Quantum Gravity. Then this hapter will disuss the osmologial

impliations of Loop Quantum Gravity.

M theory osmology is the result of the appliation of M theory to

the problems of osmology. It's major laim is that the universe

we live in is simply a four dimensional subspae, within a higher

dimensional bulk (of 11 dimensions). Furthermore this universe is

only one in a landsape of 10500 possible universes. One theory

holds that the big bang was simply a ollision between two parallel

subspaes.

75



76 CHAPTER 6. QUANTUM COSMOLOGY

6.1 Loop Quantum Gravity

Loop Quantum Gravity is an approah to quantum gravity whih

does not require any more than the four dimensions of spae-time in

whih we really live. Unlike string/M theory it does not try to be a

uni�ed �eld theory or predit partile masses or anything else. This

is a theory of gravity and nothing else. However like any theory of

quantum gravity it will have muh to say about the earliest moments

of existene [49℄.

The key idea of LQG is to not try to de�ne any sort of �xed stati

bakground metri. Instead the theory is to be de�ned on a abstrat

di�erentiable manifold. No metri is to be spei�ed but it is to be

solved for from a onstraint equation. The �Loop� in Loop Quan-

tum Gravity is the tehnique for de�ning a gage invariant operator in

quantum �eld theory alled a Wilson Loop. The loop being a losed

path on the manifold around whih a parallel transport would take

plae. Of ourse this formulation is di�eomorphism ovariant [49℄.

This method of quantization was onduive to quantizing the re-

formulation of lassial General Relativity due to Abhay Ashtekar.

These new variables are de�ned by the following. Using the Viel-

bien formalism desribed in Appendix A. Fix a three dimensional

manifold M with the SU(2) onnetion Aai (x) and vetor density

Eai (x) whih transform in the vetor representation of SU(2). That

is they have SU(2) gage symmetry. The indies's i,j,... are for inter-

nal SU(2), and a,b,... are spatial. The onnetion and vetor �elds

are equal to...

Aia ≡ Γia + γkia (6.1)

ggab ≡ 8πGEai E
b
i (6.2)

In the above g is the determinant of the metri gab for a spei� on-
stant time and γ is a real number the Barbero-Immirzi parameter.

An alternative and onvenient form for those equations is in terms

of the Pauli matries.

Ea = −ıEai σi (6.3)

and

Aia = − ı

2
Aiaσi (6.4)

.
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For most this is muh easier to visualize and work with. Note that

these obey the ommutator relationship:

[

Eia, A
b
j

]

≃ ı~δbaδ
i
j (6.5)

The Lie algebra of this theory follows logially from this ommutator

and it is in fat just a representation of the SU(2) gage symmetry

group.

The dynamis of this theory are determined from a number of on-

straint equations (or in one proposal just one �master onstraint�)

[50, 49℄. Of ourse, one of them involves the Hamiltonian, not the

Lagrangian, whih is very di�erent from quantum �eld theory in

�at spae-time in whih the Lagrangian is used [49℄. This di�erene

stems from the hoie of using a di�erentiable abstrat manifold

instead of a metri spae. The equation that is used is a varia-

tion on the Wheeler Dewitt equation. To proeed father we need

to understand the onept of a spin network. A spin network is a

mathematial and graphial representation of a set of states with

eah link having a spin value. Stated plainly in LQG these spin

networks represent spae-time.

Let |s〉 be a �spin network� state, Eǫǫ
′

E has the ation of reating

new verties's. Not unlike the raising and lowering operators in

standard quantum mehanis. The Hamiltonian in this theory is

then

Ĥ |s〉 = Aǫǫ′E
ǫǫ′ |s〉 = 1

2
Aaǫǫ′σaE

ǫǫ′

b σb |s〉 (6.6)

This is known as the Hamiltonian onstraint and it de�nes all of the

energy dynamis of Loop quantum gravity and fully spei�es the

dynamis of the theory.

The prime result from Loop Quantum gravity for osmology is the

quantization of area. Area is an operator in the Hilbert spae of

LQG. There are eigenvalues and eigenstates of area. Due to the

Heisenberg unertainty priniple there is a smallest physial area.

Up to a linear parameter the Barbero-Immirzi parameter,this mini-

mal area is the same order of magnitude as the redued Plank area.

The same goes for length and volume as well. The prime result of

Loop Quantum Gravity is a derivation of the fundamental disrete-

ness of spae-time from �rst priniples.[49℄

6.1.1 Appliation of LQG to Cosmology, Loop

Quantum Cosmology.

Loop Quantum Cosmology (LQC) is the appliation of Loop Quan-

tum Gravity to the universe as a whole. It makes de�nite preditions
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about the nature of the big bang itself. It also predits the same evo-

lution of the universe a short time after the big bang as standard

big bang theory.[51, 52, 50℄

In Loop Quantum Gravity the universe was never pressed into a

singular point. The singularity is resolved beause spae-time is

disrete on the order of the redued Plank length-time. Further-

more the universe would have expanded in inrements of the Plank

length-time, area, and volume eigenvalues. So at the very beginning

the expansion of the universe was not a smooth expansion by any

means. Weather the universe was still disrete enough to e�et the

proess of in�ation when it started is an open question. It is likely

that this theory will supply small order orretions to the Friedman

equations whih would e�et in�ation on the large sale.

In this way LQG will have a diret astronomially observable e�ets

on in�ation. Thus, even this theory whih seems so strange, onnets

to mainstream astronomial observations.



Chapter 7

Researh on possible time

variation

in fundamental onstants.

In�ation is the standard and aepted theory for solving the hori-

zon, �atness, and isotropy problems of the standard big bang theory.

Varying Speed of light osmology is an alternative theory to in�a-

tion proposed to solve the same problems as in�ation by many of

the theorist who developed spei� models of in�ation, to take into

aount a time varying �ne struture onstant α. This hapter will
disuss the objetions to VSL osmology then how the proponents

of this variant model rebut those objetions. Then details of one of

the more simple and promising variants of VSL theory.

In this model from 10−36 sec. ≤ t ≤ 10−34 sec. The speed of light

was 60 orders of magnitude higher than it is now then dropped

exponentially to very very nearly the same value it has today. The

only evidene of any hange in α being a possible di�erene in the

�ne splitting of spetral lines in distant dust louds illuminated by

quasars.

The proposal of a time varying speed of light (VSL) is due in large

part to the ontroversial observation of a varying α. In�ation is

a very good explanation for the problems it was meant to solve,

however it does not speak to something like a varying �ne struture

onstant at all. VSL was proposed to address this very possibility.

There are atually a number of theories whih inlude a varying

speed of light (VSL) under ertain irumstanes [9℄. Not all of

those theories are expliitly osmologial in nature. For example

the standard model of partile physis allows for the propogation

79



80 CHAPTER 7. TIME VARIATION OF CONSTANTS.

of virtual partiles at speeds faster than  for very brief periods.

Without the inlusion of these virtual partiles the theory would

not work as well as it does.

7.1 Variation of the �ne struture on-

stant.

A reent and ontroversial observation by John Webb et. al. of a

small variation of the value of the �ne struture onstant from its

urrent value is what motivates these ideas [53, 54℄. This observation

was taken by observing the �ne splitting in the absorption lines of

louds of gas and dust illuminated in the visible by quasars in the

bakground. This question has been onsidered very important by

the European Spae Ageny and European Southern Observatory

(ESO) [41℄ .

In spetrosopy what one does is use a devie whih spreads out

light into its spetrum. The most familiar example of this would be

a prism. Then one observes the bright lines of emission, or the dark

lines of absorption by the light soure. These lines our at har-

ateristi wavelengths for every element. Fine splitting of spetral

lines is due to the angular momentum of eletrons in the atoms. It

is this �ne splitting whih gives the �ne struture onstant its name.

The method sounds simple. The splitting between a doublet of spe-

tral lines is proportional to α2
. If this splitting is di�erent for the

same wavelength of light, then it signi�es a variation in alpha. The

problem is the value of alpha depends on three fundamental on-

stants whih aording to established physis either annot, should

not, or do not vary at all.

α =
e2

~c 4πε0
=

e2cµ0

2h
= 7.2973525376×10−3±6.8×10−10

(7.1)

Written with the dimensionful quantities that make up this dimen-

sionless onstant In CGS units.

α =
e2

~c
(7.2)

For alpha to vary one of those �onstants� must vary. Variation in

eletri harge (e) has been investigated in a osmologial ontext

[55, 56, 57, 53, 54℄. Furthermore, allowing oupling onstants suh

as the eletri harge to vary with momentum is a standard feature

of quantum �eld theory.
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Sine those publiations by Webb, studies by Chand and Srianand

laimed to �nd that alpha does not vary and were ritial of Webb

et al [58, 59℄. Murphy and Webb replied by laiming that Chand

and Srianand made fundamental systemati errors in their analysis

of their data.[60℄ Webb et. al. then go after Chand and Srianand's

own study of the �ne struture onstant. So on and so on, bak and

forth.

From a totally di�erent diretion MaGibbon onduted a theoreti-

al study of a varying �ne struture onstant on the thermodynamis

of blak holes [55℄. She found that a varying eletri harge, hene

varying �ne struture onstant as reported by Webb, would not vi-

olate the generalized seond law of thermodynamis as applied to

blak holes [55℄. The only objetion raised to MaGibbon's paper

were raised by Flaumbaum, who worked with Webb [56℄. Flaum-

baum laimed that MaGibbon missed a term in her omputation

[56℄. An ausation to whih MaGibbon has replied and shown to

not be true [57℄. MaGibbon also mentions in her reply that Flaum-

baum has proposed physis beyond the standard model to explain

the variation in e, whih MaGibbon's paper shows is not neessary

[57℄.

Unlike the observational data I an make some omments about

MaGibbon's approah based on my own study of this matter for my

self published book [61℄. This is a very straight forward argument.

It would not surprise me that varying the �ne struture onstant

would not e�et the thermodynamis of blak holes in the regime

MaGibbon studied. Consider the aepted standard formula for

the Entropy of a blak hole as found in numerous soures.

SBH =
kA

4ℓ2P
(7.3)

Where ℓP =
√

G~/c3 is the Plank length.

MaGibbon studied a varying eletri harge not a varying speed of

light. The eletri harge is not a obvious fator in this equation

so intuitively I would not expet it to e�et S of a blak hole. If

however the speed of light were higher in the early universe, it would

have lead to a di�erent Plank length, and a di�erent value for the

entropy of a blak hole. This fat would have physial impliation if

the universe, as some speulate, reated numerous primordial blak

holes.
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7.2 Proposal of a varying speed of light as

a solution to this problem.

In light of this ontroversy, and the problem posed by a varying �ne

struture onstant, one of the objetives of the planned �extremely

large telesopes� whih are disussed in this thesis is to study this

phenomena and on�rm or refute its authentiity [42, 43, 44℄. Vary-

ing speed of light osmology (VSL) was inspired in part by this

observation. VSL replaes lassi In�ation with a varying speed of

light during the In�ationary period.

7.2.1 Objetions to varying speed of light osmol-

ogy.

VSL osmology is not a widely aepted theory by any means. For

all the observations that the osmologial ommunity has on�dene

in its just not needed. Further there are a number of ommon and

elementary objetions to the notion that the speed of light ould

vary.

Ellis in a omment on varying speed of light osmology raises many

of these elementary issues [62℄. He omments that the variane of a

fundamental onstant of nature is only of physial importane, if that

fundamental onstant is dimensionless. This is beause fundamental

onstants that are dimensionful an be set to any numerial value

by a hoie of units. Given that fat, how an varying the speed of

light solve the horizon problem, or any of the the problems?

Along these same basi lines Ellis argues that varying the speed

of light amounts to a hange of oordinates in the metri. Suh a

oordinate hange ould not be physially signi�ant and would not

solve the horizon problem.

Ellis objets to VSL on the grounds that varying the speed of light,

would break Lorentz invariane and ausality. Ellis goes on to argue

that a break in Lorentz invariane would lead to a break in Maxwell's

equations, as well as the Einstein �eld equations.

The same exat issues were all also raised and refuted by Albreht

and Magueijo in their �rst papers on VSL theory. They were also

addressed by Magueijo and Mo�at in a response to Ellis.[63, 64℄

Albreht and Magueijo point out, orretly, that the same obje-

tions that are made for varying the speed of light an be made

about any theory whih would propose variation in any dimensionful

�onstant�[64℄ (or more orretly parameter.) For that reason only

dimensionless ratio's of parameters are fundamental to physis. The
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Hubble parameter is suh a quantity yet in standard osmology it is

allowed to vary with time as part of in�ationary osmology. [64℄

Ellis's objetions whih are based on �eld theory and Lorentz in-

variane are addressed by the fat that Lorentz invariane is not a

global symmetry. The Maxwell equations only relate to the Lorentz

transformations at the loal level, not the global level.[64℄ The rea-

son that the Einstein �eld equations need not be altered to deal with

a varying speed of light, is beause Einstein did not assume global

Lorentz invariane when he formulated them. He assumed...

For in�nitely small four-dimensional regions the theory of relativity

in the restrited sense is appropriate, if the oordinates are suitably

hosen.[65, p. 118℄

Whih in a nutshell is what it means for a symmetry like Lorentz

symmetry to be loal. Lorentz symmetry really only applies from

point to point, at eah point, yet at the same time, not over a larger

region. If Lorentz symmetry was global then General Relativity

ould not be orret. Lorentz symmetry implies a truly �at spae-

time metri every where. While on the osmologial sale the metri,

FLRW, is very nearly �at, it is not perfetly �at. The metri near

planets stars and blak holes is not �at at all. Objetions about on-

formal diagrams ignore the fat that metris suh as FRLW have to

be transformed from their Lorentz breaking versions to their onfor-

mal versions in order to draw a onformal diagram with nie straight

lines.

In short their are no purely theoretial reasons to objet to VSL

osmology.

Observations are another matter. The toleranes on what ould

have happened in the in�ationary/VSL epoh are still very tight

due to measurements of relative abundanes of light elements, and

observations of the CMB's power spetrum and anisotropy. However

like in�ation there exist more than one theory of VSL osmology so

it has the same wiggle room as in�ationary osmology, for the time

being, and it an �t the data presented to date by projets suh as

WMAP.

Future observations, suh as those planned at the European Ex-

tremely Large Telesope[42, 43, 44℄, and gravitational wave bak-

ground observations[26℄ ould falsify VSL osmology with a high de-

gree of on�dene. If alpha is found to not vary with time then VSL

need not even be onsidered. If a gravitational wave bakground of

the proper form ,predited by in�ation, is observed then VSL ould

be ruled out. Conversely we ould have alpha varying with a ob-

served gravitational wave bakground that indiates in�ation. Then

we would all need to think again!
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7.2.2 Loally Lorentz invariant varying speed of

light osmology.

With the purely theoretial objetions to varying speed of light os-

mology dealt with we an move onto a simple model of VSL osmol-

ogy.

The theory of loally Lorentz invariant VSL was proposed by Magueijo

in [66℄. In this theory Magueijo required that at all times αi ∝ gi ∝
~c ∝ cq where q was a dimensionless parameter. This implies mini-

mal oupling to matter. A salar �eld is then de�ned ψ = log(c/c0)
(In other words the �eld is parameterized as one over the index of re-

fration of the spae-time that existed during the in�ationary/VSL

epo.) The ation of the theory is...

S =

∫

d4x
√−g(eaψ(R− 2Λ + Lψ) +

16πG

c40
ebψLm) (7.4)

Where Lψ is a term in the Lagrangian whih enodes the dynamis

of the salar �eld.

Lψ = −κ(ψ)∇µψ∇µψ (7.5)

It is then postulated that at all times Λ is proportion to the n'th

power of c/c0.

Λ ∝ (c/c0)
n = enψ (7.6)

This gives a general equation for ψ in whih Λ produes a potential

whih drives the variation of ψ and therefore .

�ψ =
32πG

c4κ
Lm +

1

κ
nΛ (7.7)

Lorentz invariant VSL looks very similar to in�ation theory in many

ways.[9, 66℄ The main physial di�erene is that in in�ation the

salar �eld φ has nothing to do with light. The salar �eldφ is

eventually related to the Hubble parameter instead of to light. The

salar �eld is also treated as a fundamental �eld, or no onsideration

is given to its origins what so ever. It will also be noted that what is

denoted here as Lm is the same as what was denoted in the setion

on General Relativity as Lmatter.

There are a plethora of other VSL theories whih will now be listed

here. Theories where the speed of light is dependent on wavelength.

String/M-theory based attempts where the speed of light is di�erent

on the membrane and in the bulk. Quantum Field theory in urved
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Figure 7.1: The VSL solution to the horizon problem. This may look odd,

however, ompare this to the onformal diagram of �gure 2.5. They are drawn

di�erently yet they are in deed the same.

spae times whih allows photon propagation o� the light one, in

other words photons may travel faster or slower than light. Alterna-

tive theories of gravity whih have two metris one for gravity and

the other for matter in whih  may vary.

7.2.3 Varying speed of light Cosmology

The basi idea of varying speed of light osmology (VSL) is that

the speed of light was high enough, long enough to allow the entire

universe to reah thermal equilibrium. All points on the sky were

within eah others light one long enough to explain the spatial

�atness and isotropy of the CMB and solve the horizon problem.

How high a speed of light is high enough? Roughly 60 orders of

magnitude higher than it is now. How long is long enough? From

10−36 sec. ≤ t ≤ 10−34 sec. or just as long as in�ation would have

lasted.

Figure 7.1 shows the result of VSL as a onformal diagram. This

is a three dimensional variant of �gure 2.5. The muh higher speed

of light asually onnets all of the universe for briefest of moment.

Thus solving the horizon problem. The other problems are also
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solved sine the universe is dominated by radiation at this stage.

All parts of the universe an ommuniate with all other parts at

the inreased speed of light. Radiation an zip from one end of the

universe to the other during this brief period. The isotropy that

would eventually tell tale on the CMB, as well as the near ritial

density �atness an all set in before the speed of light drops.

As for the anisotropy of the CMB; In in�ation theory this anisotropy

an be explained by in�ation having lasted slightly longer or shorter

in di�erent regions. This leads to density �utuations, whih show

up as warm spots in the CMB, and lusters of galaxy's whih we

look up and see. In VSL osmology the speed of light would depend

on loal onditions, as indiated by equation 8.4 therefore VSL an

also aommodate density �utuations, et. et. The di�erene in

time that the speed of light varying in one plae or the other would

be almost immeasurably short, just enough to allow for the slight

di�erenes in temperature of the CMB, and observed density to allow

for large sale struture formation.

Like the vetorial variant of in�ation, VSL has the advantage of not

having to rely on a type of �eld that has never been observed in

nature, or in partile physis experiments. The �eld whih varies in

VSL is simply the EM �eld as it interats with spae-time. This is a

huge advantage over the non vetorial theories of in�ation. Further

what would drive Lorentz invariant VSL is the osmologial on-

stant, whih we have already observed in the form of dark energy.

VSL osmology, was proposed in order to explain an anomalous ob-

servation as well as solving the same problems as in�ation. There

are ertain ommon objetions all of whih have been overome by

lever theoretial formulation of this theory. Their are observational

test for this theory in the works. This theory is ompatible with the

same data as in�ation when it omes to the slight anisotropy of the

CMB.

7.3 VSL and in�ation as equivalent mod-

els.

In�ation and varying speed of light osmology are on a ertain level

ompletely equivalent models. That level being their e�et on the

FLRW spae-time as shown by their onformal diagrams. The other

was pointed out by Avelino and Martins and will now be reviewed

here.

Avelino and Martins point out that there is one fundamental and

dimensionless ratio whih an tell us if a osmologial model solves

the horizon, �atness and isotropy problems of the big bang. They
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alled it �the expansion number�. They notied that nature provides

osmology with natural units of length and time. The unit of length

being the urvature sale ℓc ≡ a|k|−1/2
and the unit of time being

the Hubble time H−1 ≡ a/(da/dt). The a and k are both just as

found in the FLRW metri. The expansion number is the ratio of

these [14℄.

Ce =
c|k|1/2
aH

(7.8)

This de�nition shows that all varying osmi speed theories, whih

inludes every model of in�ation, and VSL osmology are generi.

That is they are fundamentally the same [14℄. Assuming only the

osmologial priniple one an see that the resolution of the horizon

problem results from having a period in the history of the universe

where the sale fator grows faster than the Hubble radius [14℄. This

ondition auses a dereasing osmi speed, mathematially

d

dt
Ce < 0 (7.9)

Any osmologial model for whih that is true an solve the horizon

problem and hene the other problems of the big bang. The various

models of in�ation and VSL meet this riterion. Any future proposed

osmologial model must also satisfy this riterion as a neessary but

not su�ient ondition.[14℄

The unassuming nature of Avelino and Martins's paper has been

part of why it has only been referened three times. This lak of

fanfare mask what I am sure will prove to be a very important test

for future osmologial models.

The same point made by Avelino and Martins an be seen in the

way that the FLRW metri was written in this thesis and in Sean

Caroll's book [6℄. In setion ?? the sale fator a(t) is made di-

mensionless, and for reasons argued by ritis of VSL muh more

physially meaningful through the Plank length. This was done by

dividing R by ℓP =
√

~G
c3 ≈ 1.616252(81)× 10−35

. This length was

assumed in that instane to be a onstant and fundamental length.

Suppose  varies in that formula dropping exponentially after the

big bang from a very high value, to the value of  we observe today?

a(t) =
R(t)

ℓP
(7.10)

ℓP r̄ = r (7.11)
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Figure 7.2: The blak line in this �gure is the sale fator, the red line is the

speed of light .  drops to its urrent value very quikly but its variane drives

an exponential expansion in the sale fator muh the same as is found in models

of in�ation.
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What will the sale fator do? The following plot,7.2 should illumi-

nate this subjet.

As �gure 7.2 shows, the sale fator inreases exponentially as the

speed of light drops exponentially. This exponential inrease in the

sale fator for this brief period is, in e�et, the same as in�ation.

At this point this thesis has shown several di�erent lines of reason-

ing whih lead to the onlusion that in�ation and varying speed of

light osmology are just di�erent models for the very same physis

up to the apparent lak of a varying �ne struture onstant in in-

�ation. If observations of a varying �ne struture onstant are ever

on�rmed VSL will be able to take the plae of in�ation. In suh

a new standard model of osmology that would be only minimally

modi�ed from the urrent onordane model by its presene.
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The summation of this thesis will ondense all of the most salient

points overed and integrate everything into one uni�ed piture of

the �eld of osmology.
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Chapter 8

Summary

The universe began from a state of high density, and energy and

expanded rapidly ooling in the proess. This has been termed the

big bang. Aording to lassial theories the big bang started from

a point of in�nite density and zero volume. Aording to theories of

Quantum Gravity and Quantum Cosmology the big bang began from

a point of very high but �nite density. Aording to these theories

the universe was on the order of the Plank volume 10−105m3
, and

the time was about 10−44sec.

After the big bang at 10−36sec. the universe began to expand rapidly.
The fores of nature known to physis began to di�erentiate them-

selves. Gravity was the �rst to go its own way as spae-time ex-

panded. Then the three remaining quantum �elds. As this ourred

spae time went through a period of rapid expansion or , in�ation.

This in�ation would, aording the standard model of osmology

lead to a universe whih is �at, and uniform or isotropi on the

osmologial sale.

While spae time was rapidly expanding and for the next seond

after it, all the normal matter in the universe was reated. The

symmetries that keep matter from being reated, in most irum-

stanes, were broken. Matter and anti matter were reated and

most of the matter was annihilated by the anti matter. This proess

is known as baryogenesis. Shortly after this, and for the next few

minutes of existene the universe was hot and dense enough to syn-

thesize heavy ions suh as helium. The proess lead to the reation

of a universe that was dominated by hydrogen ions, free photons,

and free eletrons. No light ould travel far as photons would be

onstantly reabsorbed and emitted as hydrogen atoms would form

then �y apart.

Finally the universe expanded and ooled to the point that light
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ould freely propagate. This light has ame to us in the form of mi-

rowaves. These mirowaves are the Cosmi Mirowave bakground

radiation. They last interated with matter 380,000 years after the

big bang.

Researh on this period from the big bang to the emission of the

Cosmi Mirowave bakground was the topi seleted for and overed

by this masters thesis.

8.1 The onordane model of osmology

and its evidene.

Setion one was a review of theoretial researh related to the onor-

dane model of osmology. This models is also known by the name

ΛCDM for the two major omponents of the universe aording to

this model. The dark energy omponent or osmologial onstant

Λ, and old dark matter CDM. First the thesis overed the basis

of General Relativity. This theory of gravity is at the heart of mod-

ern osmology. From this theory we get a set of equations whih

an postdit the evolution of the universe as time is reversed. The

universe shrinks to a point, a lassial singularity.

The seond theory that needs to be understood as part of the on-

ordane model is osmi In�ation. In�ation is a model for the rapid

expansion of the universe following the big bang. This expansion is

driven by a unknown, �eld or �elds whih has deayed away.

The single best evidene to date for this model is the observed an-

gular power spetrum of the Cosmi Mirowave Bakground as mea-

sured by the Wilkinson Mirowave Anisotropy Probe (WMAP) and

how well it �ts this data.

8.2 Observational and experimental stud-

ies.

Setion two was a review of researh literature on observational and

experimental studies whih deal with the time period in question.

The most important projets , the largest projets being the Euro-

pean Spae Ageny's Plank probe, and the CERN's Large Hadron

Collider.

The Plank probe is a satellite whih orbits the Sun-Earth Lagrange

point L2, faing away from the Earth and Sun. It's sensors have

a greater angular resolution than those of the WMAP probe. It's

sensors also over a wider range of frequenies. This probe will also
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Figure 8.1: The power spetrum of the CMB as measured by WMAP. This

�gure shows the power spetrum of the CMB as measured by WMAP, with a

best �t line provided by the standard ΛCDM model of osmology. Courtesy of

the WMAP siene team [4℄.
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be able to ollet more detailed data on the polarization of the CMB.

Enoded in this data ould be the �rst hard evidene of gravitational

waves. These waves would be a gravitational analog of the CMB and

depending on their features would support the onordane model.

The Plank probes data will allow us to re�ne our understanding

of the universe's early evolution in many many ways. For example

take the data from the WMAP probe gathered over seven years

and ompare it to the data from Plank after just one year as in

�gure 9.2. The fore grounds have not yet been removed, however

the greater angular resolution of the Plank data is obvious to the

asual observer.

The researh being done at the Large Hadron ollider will also touh

on osmologial issues. As part of its overall researh program a

searh will be onduted for any signs of partiles that ould be

identi�ed as dark matter, or partiles of the proposed in�ation �eld.

The main objetive of the LHC is the detetion of a Higgs boson.

This impats on osmology beause the simplest models of in�ation

all for the existene of a quantum �eld whih is similar to the Higgs

in terms of its spin angular momentum. If the Higgs is not found then

it ast doubt on suh models of in�ation, and favors more omplex

models suh as vetor in�ation.

In addition to the above huge new telesopes are in the works whih

will allow humanity to see farther bak in time, and in greater detail

than has heretofore be available. In partiular these will allow more

areful observations of distant primordial gas louds. The spetra

of these louds, their omposition and �ne struture will rule out

partiular osmologial models and raise new questions.

8.3 Speulative yet promising new theo-

ries.

In the very last setion models whih seek to extend, improve, and in

some ases replae portions of the onordane model were overed.

These inlude quantum osmologial models suh as loop quantum

gravity, and M theory osmology to theories of a time varying speed

of light.

Loop quantum gravity is a highly speulative but mathematially

well founded model of quantum gravity. This model extends General

Relativity to the quantum domain. In the proess it has shown

mathematial results suh quantization of area and volume. LQG

agrees well with semi lassial work done on the thermodynamis of

blak holes. In appliation to the big bang LQG makes preditions

in osmology whih are very interesting. In this quantum osmology
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PLANCK all sky survey.

WMAP Q-Band map

.

Figure 8.2: The top image is the WMAP data for seven years of olletion before

the foreground is removed. The bottom image is the Plank data for one year

without the bakground having been removed. Note the superior detail of the

Plank image. Images ourtesy of the WMAP siene team, and the Plank

siene team respetively.



98 CHAPTER 8. SUMMARY

the big bang does not begin from a singularity of in�nitesimal extent

and in�nite density but from a tiny region of very small volume, on

the order of 10−105
meters, and very high density.

WRITE HERE EXECUTIVE SUMMARY OF M THEORY COS-

MOLOGY.

In addition to quantum theories of osmology there is also an al-

ternative to osmologial in�ation. This is known as varying speed

of light osmology. The motivation for proposing this theory was

to explain the unon�rmed observation of a varying �ne struture

onstant. The �ne struture onstant depends on the speed of light,

Plank's onstant, and the harge of an eletron. This osmology

makes the same preditions as in�ation but is able to aount for

a momentarily muh higher speed of light, whih would have de-

ayed rapidly to very nearly the speed of light we observe today. As

this author's meta analysis of this model showed the speed of light

varying in the way suggested by VSL theory results in a exponen-

tial inrease in the sale fator whih ontrols the rate of expansion

of the universe. This is essentially the same predition made by

in�ationary models.

Last this author did write and submit for peer reviewed publiation a

Lagrangian whih if validated by observations and experimentation

ould provide a simple and elegant mathematial framework for the

standard Lambda CDM, (in�ation, dark energy and dark matter)

model of osmology.

8.4 Conlusions

From my review of the urrent researh the following onlusions an

be drawn. The most important being that there is still muh work

to be done in theoretial, and observational osmology. The urrent

models of osmology has the broad outlines of what ourred after

the big bang mostly right. The alternative models mentioned even

agree on these broad details and would represent only minor hanges

to the onordane model. However the details are laking.

The biggest detail being a spei� model for the rapid universal

expansion. There is more than one model. Eah model makes ever

so slightly di�erent preditions that an and will soon be tested.

While the overall osmologial model does not depend on weather

the in�ation �eld was a salar or a vetor our overall understanding

of physis does.

The seond biggest detail that needs to be �lled in is the identity

of the dark matter that omprises most of the matter in the uni-

verse aording to the onordane piture. Researh on this area is
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outside the sope of this thesis. However researh in this area will

impat the �eld of osmology. More work remains to be done in

solving the problem of dark matter.

The third biggest detail is the fat that the urrent model is built on

a lassial theory of gravity. Whih is a problem sine at the density

and energy of the big bang a quantum mehanial model is needed

to understand what happens. Researh on this is at the frontier

of osmology and theoretial physis and is highly speulative right

now. However suh work is where some new physis may or may not

be revealed.

While this model is not perfet by any means it �ts all of the agreed

upon data olleted to date and is �exible enough to aommodate

minor hanges suh as various models of in�ation or even VSL (if the

observations of a time varying �ne struture onstant reported on in

setion 7.1 are on�rmed) Filling out these blanks in the standard

model of osmology will oupy osmologist and partile physiist

for a great while.
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In these appendies I have written summaries of the basis of Gen-

eral Relativity and Quantum Field Theory. Those two theories are

the foundation stones of the study of the osmology of the early

universe. To these I add my own feeble attempt to explain the dif-

�ulties humanity has had in deteting dark matter in earth bound

experiments, while explaining the pratially irrefutable astronomi-

al evidene for it.
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Appendix A

The Priniples of

Relativity.

For those who read this thesis in the future and do not already know

General Relativity. This is for you. If you already know General

Relativity then this is just a review.

The priniples of General Relativity must be understood in order

to understand lassial and quantum osmology. To that end, this

hapter will lay the foundations neessary to understand the researh

whih will be presented in this thesis. I know that General Relativity

is not part of the ore ourses at most instiutions. So it is under-

standable that a student who may read this in the future may not

know these things.

I would enourage as many people as possible to study General Rel-

ativity. Sadly it seems to be a dying art.

Topis to be overed in this hapter will inlude the mathematial

onepts whih de�ne spaetime. Those onepts being manifolds,

a spei� type of mathematial spae. Tensors, whih are funtions

on a manifold whih obey ertain transformation rules. Metris,

are in pratie are a type of tensor, whih de�ne distane for that

manifold. Di�eomorphisms, whih are a large family of transforma-

tions on manifolds, whih in General Relativity the laws of physis

must be ovariant with respet to. Curvature of spaetime will be

de�ned with some rigor. From there the Einstein �eld equations

will be built up. The formulation of General relativity in terms

of non-oordinate bases whih are used in formulations of quantum

gravity and quantum osmology will be presented. Next the theory

of onformal diagrams will be presented. Conformal diagramming

provides a useful method for understanding problems in General Rel-

ativity without needing to solve omplex equations. After that, two

105
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important solutions to these equations, known as the Shwarzhild

(blak hole) metri, and the Friedman-Lemaître-Robertson-Walker

(big bang FLRW) metri will be disussed.

With the mathematial mahinery of General Relativity in plae,

the disussion of the FLRW metri and lassi big bang theory will

be undertaken. This metri is known as the big bang metri due

to it's property of having spaetime grow or shrink with time due

to it's ontaining a sale fator. This sale fator will be disussed

at length. This metri, when ombined with observations of a very

uniform universe, on the osmi sale, leads to a problem. How an

the universe be this uniform is it a oinidene, or was something

else happening in those �rst moments whih drove the universe to

uniformity? The answer to that question is yes there was something

else that drove the universe to uniformity. That something else is

thought to be very rapid expansion of spaetime. In the next hapter

this theory will be disussed in detail.

A.1 Mathematial Conepts of General Rel-

ativity.

General Relativity is the theory of gravity due to Einstein whih

states that urved spaetime is the true soure of gravity[65℄. Spae-

time is urved by the presene of mass, energy and momentum ur-

rents.

The best and simplest way to think of General Relativity is to think

of it in referene to Newtons Law of inertia. Where that law has

been generalized to take aount of urved non-Eulidean spae-

times. Newtons law of inertia says:

Objets at rest will tend to stay at rest, and objets in motion will

tend to stay in motion along straight lines unless ated upon by an

outside fore.

The important part to onsider is �along straight lines�. To Newton

the only geometry there was had been settled thousands of years

before by Eulid and others. Spae and time were separate things.

Straight lines were just straight lines, nothing ould hange that.

To see this more learly look at the mathematis of newtons seond

law of motion. The net fore on a partile is equal to the time rate

of hange of the partiles net momentum. Show here expanded out

as it's total derivative.

−→
F =

d

dt

−→
P = m

d
−→
V

dt
+
−→
V
dm

dt
(A.1)
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Next apply Newtons law of inertia and set the fore equal to zero

and assume that the mass is onstant to get the following equation.

−→
0 = m

d2

dt2
−→
X (A.2)

The solution to this equation is...

−→
X = −→v0t+−→x0 (A.3)

...just the equation for a straight line in Eulidean spae. In what

will follow how to determine the equation for the equivalent of a

�straight line� will be determined in a spaetime that is urved and

a geometry whih is not Eulidean. In Einstein's universe of General

Relativity we all live in a di�erentiable vetor spae whih reats to

the motions of momentum and energy urrents through it. Spae is

no longer a �xed bakground in whih more interesting things our,

but it is a physial entity whih ats on and reats to everything in

it.

In these urved spaes �straight lines" are now geodesis. A geodesi

is the shortest path from point A to point B in any spae. In the

�at spaetime of Speial Relativity that means a straight line muh

as it does in Eulidean spae. In General Relativity the gravita-

tional �eld an be thought of as the hange from �at spae with Eu-

lidean straight lines, to a urved spae with geodesis. The spaes

of General Relativity loally, on a small enough sale, resemble truly

�at Minkowski spae. Minkowski spae in turn resembles Eulidean

spae on a small enough sale. This is true no matter how ontorted

the spae beomes. Just what this means will be given more rigor

latter in the hapter.

All of this said Newton's law of inertia still survives, after a fashion,

in General Relativity. Objets in motion tend to stay in motion along

geodesis unless ated upon by an outside fore. Hene when you are

falling from a high plae you are not being pulled by the Earth. In

fat you are simply following the geodesi from one point to another

as if no fore was ating. Due to the variation in the urvature with

position in spae aeleration is felt alled gravity.

In the following setions the General theory of Relativity will be

built up from it's mathematial foundations up.

A.2 Prior knowledge whih will be assumed.

In building up Einstein's General theory of Relativity it is neessary

to assume a ertain level of prior mathematial knowledge. It will be
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assumed that an interested student reader is knowledgeable of basi

terms of linear algebra, linear transformations , and maps. It will be

assumed that the student reader is knowledgeable of vetor spaes

and inner produts. Furthermore it will be assumed that the student

reader is familiar with Speial Relativity and lassial �eld theory

(Lagrangian, and Hamiltonian dynamis stress energy tensors et).

These terms will be assumed as known to a student reader and will

not be explained in detail. Any good textbook on the subjets of

linear algebra or eletromagnetism will explain these points.

A.3 Tensors

The language of General relativity is the language of tensors, and

tensor �elds ating over ertain vetor spaes. There are several

equivalent de�nitions of a tensor.

A tensor of rank n in a m dimensional spae, over the �eld of real

numbers, is a funtion whih is linear in n variables with mn
omponents

whih, under transformation of oordinates, the omponents of the

objet undergo a transformation of a ertain nature and it maps n

vetors to the real numbers.

MµνV
µV ν → m (A.4)

, m ∈ R.

The simplest way to think of this de�nition of a tensor is by way of

it's representation as a matrix. For example a tensor of rank zero

in a four dimensional spae would be a single number denoted as q.

Suh tensors are referred to as salars. The next example would be

a tensor of rank one in four dimensional spae. This would be an

array with four elements and one index. These are notated like so qµ

in the index notation ommon to Speial Relativity. Alternatively,

these will be written as a olumn matrix. Tensors of this rank are

known as vetors. Last, but not least, are tensors of rank two in

a four dimensional spae. These tensors are denoted as Qµν and

represented as a four by four matrix. Tensors of rank two and above

are simply referred to as tensors.

The most familiar tensor to anyone who has studied Speial Rela-

tivity would be the Lorentz transformation tensor Λµν









γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1









(A.5)
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The math of General Relativity is a tensor �eld theory. For that

reason a de�nition for a tensor �eld is neessary.

A tensor �eld of rank n in a m dimensional spae, over the �eld

of real numbers, is a funtional whih is linear in n funtions of n

variables with mn
omponents whih, under transformation of oor-

dinates, the omponents of the objet undergo a transformation of a

ertain nature and it maps n vetor valued funtions to a funtion

of the real numbers.

Mµν(x
µ)V µ(xµ)V ν(xµ) → m(xµ) (A.6)

, m ∈ R.

The way these are presented is often using the familiar funtion

notation Aµ(x
µ), or alternatively they will use the partial derivative.

Other than the elements of a tensor �eld being funtions everything

about the �rst de�nition applies to them. The most familiar example

of a tensor �eld would be the eletromagneti �eld tensor.

Fµν =









0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By
Ey/c Bz 0 −Bx
Ez/c −By Bx 0









(A.7)

The di�erene between the eletromagneti �eld tensor, and the

Lorentz transformation tensor, is that the Lorentz transformation

tensor is not an expliit funtion of the oordinates.

The Lorentz transformation tensor is an example of a tensor ating

on the spaetime itself. Tensors an be thought of as strething or

expanding spae, even a �at spae like the spae of Speial Relativity.

The spae of Speial Relativity is known as Minkowski spae, and it

has assoiated with it, the Minkowski metri. In most Speial Rela-

tivity text, just what a metri is, in general terms, is never de�ned.

A metri is a funtion in a given spae whih de�nes distanes in

that spae. In Speial Relativity the metri tensor is used in just

that way in de�ning the separation between points in Minkowski

spaetime. In this way, the Minkowski metri is used to de�ne a

�inner produt". In standard form the Minkowski metri tensor is

as follows.

η =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









(A.8)

The Minkowski inner produt of two vetors X and Y is.

〈x, y〉 = ηµνx
µyν = −x0y0 + x1y1 + x2y2 + x3y3 (A.9)
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Note that this metri is symmetri whih is re�eted in the matrix

being diagonal of the Minkowski metri tensor. Like all suh ma-

tries it is bilinear, in that this funtion takes a pair of vetors to

produe it's output. Last but not least it produes a output that

is a real an nonzero number as long as both of the inputs are not

zero. In other words it is non-degenerate. The Minkowski metri,

and Minkowski spae show all of the basi properties that a spae-

time in General Relativity needs to have. These spaetimes are in

mathematis terms known as manifolds.

A.3.1 Basi Tensor Operations

There are some basi operations that an be performed on general

tensors whih will show up in this thesis. In the literature and in this

thesis there are two onvenient ways of presenting these operations.

One is the old and familiar index notation. The other is a more

modern and leaner index free notation. Whih one will be used

depends on the ontext, further in some plaes a odd ombination

of both will ome in handy. In all ases the notation presented will

have been found in literature and is a standard for disussing the

partiular topi.

The most basi operations are addition and subtration. The general

rule is that Tensors of di�ering rank annot be added or subtrated

from eah other. Think of this in terms of tensors being presented

as matries. What does it mean to subtrat a olumn vetor from a

matrix? It means nothing, it is unde�ned and non-sensial. Provided

that the tensors are of the same rank (or in matrix form they are of

the same dimensions) they an be added and subtrated element by

element. For example.

aµν − bµν = a00 − b00, a11 − b11, a01 − b01, ... (A.10)

The next tensor operation to be onerned with is that of the prod-

ut. Tensors have more than one kind of multipliation. Eah with

a di�erent notation. The most familiar by now would be the inner

produt as de�ned above in Minkowski spaetime.

The next most familiar, to anyone who has had advaned Quantum

Mehanis, would be the outer produt. In Quantum Mehanis one

may have seen expressions suh as |φ >< ψ|. These same expres-

sions exist in General Relativity. However in General Relativity the

notation is di�erent. The ommon representation of an outer prod-

ut in index notation is two vetors next to eah other like so AµBν .
Similarly in index free notation this will often be presented as two

vetors next to eah other with no symbol in between. In terms of

matries a simple example of a outer produt would be...
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Let V be a vetor spae with vetors A,B ∈ V . A = (a1, a2) and
B = (b1, b2) The outer produt of these two vetors would be.

(

a1
a2

)(

b1
b2

)

=

(

a1b1 a1b2
a2b1 a2b2

)

(A.11)

Taking a derivative of a tensor is another operation whih will show

up again and again, and again in this thesis. This will often be

denoted like so.

∂µA
µν =

(

∂0A
0ν + ∂1A

1ν + ∂2A
2ν + ∂3A

3ν
)

(A.12)

Where a notation has been used that is ommonly found in the study

of Speial Relativity, and Quantum Field Theory. Another ommon

notation is known as omma notation for taking a derivative with

respet to a partiular index. The last expression would be denoted

as Aµν , µ That notation will also appear in this thesis.

The reason for all of these di�erent ways of denoting a derivative is

beause of the various ways of denoting the other operations on a

tensor. Their are many ontext in whih they appear and in eah one

there is a di�erent standard of notation. For this reason no single

notation an be hosen whih will work in all ases. This author will

mention whih notation is in e�et if it is not lear from the ontext.

A.4 Manifolds

In the most informal sense a manifold is a vetor spae whih is

similar enough to Eulidean spae. To de�ne a manifold mathemat-

ially we �rst need to de�ne a spei� type of linear transformation

known as a homeomorphism. If a given vetor spae is at least lo-

ally homeomorphi to Eulidean spae then it is similar enough. A

funtion H is a homeomorphism if it has the following properties.

• H is a map from one vetor spae M to a vetor spae N.

• H:M → N is onto.

• H:M → N is one to one.

• H−1
exist.

With the notion of a Homeomorphism de�ned a manifold an be

de�ned as a vetor spae M whih for whih there exist a map H :
M → E (where E represents Eulidean spae.) If that map H exist

then M is a manifold. That map H does not need to be global

it an be loal. A loal homeomorphism simply means that eah



112 APPENDIX A. THE PRINCIPLES OF RELATIVITY.

point in the manifold has a small neighborhood around it whih is

homeomorphi to to Eulidean spae.

In formulating General Relativity Einstein applies this idea as he

himself stated it.

For in�nitely small four-dimensional regions the theory of relativity

in the restrited sense is appropriate, if the oordinates are suitably

hosen.[65, p. 118℄

In so doing he de�nes the type of manifold that is used in General

Relativity a manifold whih is loally homeomorphi to Minkowski

spae is known as a pseudo Riemannian manifold. Suh a manifold

is equipped with a metri whih like the Minkowski metri is bilin-

ear, symmetri and non-degenerate, as previously disussed. The

di�erene will be that in General Relativity the metri tensor is now

a tensor �eld. This has to be the ase so that the �at spaetime

of Speial Relativity will be one solution to the �eld equations of

General Relativity.

A.5 General Covariane

General ovariane is the generalization of Lorentz ovariane as seen

in Speial Relativity. In speial Relativity the laws of physis need

to be written in suh a way that they are ovariant with respet

to Lorentz transformations. Lorentz ovariane ensures that the

laws of physis will be of the same form in any inertial frame of

referene. To deal with this a more robust mathematial framework

is needed whih will extend Lorentz ovariane to handle referene

frames whih are not in relative inertial motion.

A.5.1 Why is General Covariane important?

Why is general ovariane important? Why isn't Lorentz Covariane

enough for a theory of gravity? In a nutshell Lorentz ovariane is

not �exible enough to handle aelerated frames of referene, so

general ovariane and it's riher mathematial struture are needed

to handle any relative motion what so ever.

Lorentz ovariane is not enough for a theory that inorporates grav-

ity beause gravity auses aeleration and Lorentz transformations

an't handle a relative aeleration. In the presene of a gravitational

�eld everything is being aelerated. Hene the frame of referene is

not inertial. So a more general form of ovariane is needed. Covari-

ane that an handle any kind of aelerated referene frame what

so ever. That is what general ovariane is. Lorentz ovariane is
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valid when the aeleration is zero, General ovariane applies when

the aeleration is not zero.

The onept of general ovariane also onnets to the priniple of

equivalene. This is often thought of in terms of gravitational mass

being equal to inertial mass. A more illuminating way to think of it

is in terms of the equivalene of the laws of physis aross di�erent

frames of referene no matter their relative aelerations.

The lassi thought experiment is onsidering a astronaut in a box

in orbit, and another astronaut in a box in free fall. The box in

orbit experienes no or very little gravitational aeleration. Physis

experiments performed in this frame of referene on�rm that there

is no gravitational �eld. For example if the astronaut in orbit takes

out a tennis ball and plaes it next to his head, it will not fall. Now

onsider what happens when the astronaut in a box in free fall would

see if she plaed a tennis ball next to her head. Would the ball fall,

or would the ball �oat just like it would in zero gravity. The answer

is of ourse that the ball would �oat.

This leads us to another more useful statement of equivalene. That

experiments performed in referene frames with the same aelera-

tion are equivalent. From this general statement it follows that the

gravitational and inertial masses are equal. If these masses were not

equal, then the astronaut in the freely falling referene frame would

see a di�erent result than the one in zero gravity.

A.5.2 Di�eomorphism Covariane

Sine Lorentz transformations are not enough what should they be

replaed with in General Relativity? Them answer is di�eomor-

phisms. A di�eomorhpism D from one manifold M to another man-

ifold N is de�ned as a map with the following properties.

• D is a map from one di�erentiable manifold M to another dif-

ferentiable manifold N.

• D:M → N is onto.

• D:M → N is one to one.

• The map D is smoothly di�erentiable (at least to some degree).

• The map D has an inverse D−1
:N → M whih has all of the

above properties.

This all means that any map whih has all of the above properties

will be valid in General Relativity. Notie that a Di�eomorphism

is a Homeomorphism with the added requirements of di�erentiabil-

ity of the map and the manifolds. This di�erentiability is needed
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beause the �eld equations of General Relativity will be di�erential

equations muh like every other law of physis. For those reasons

di�eomorphism ovariane is required.

A law of physis is generally ovariant if it is di�eomorphism o-

variant This statement an be taken as proven by the de�nition of a

di�eomorphism. It is general enough to aommodate any possible

aeleration. A Lorentz transformation is one type of di�eomor-

phism. In an older notation a di�eomorphism would be written as

a tensor transformation like so.

T ′

µν =
∂xα

∂x′ µ
∂xβ

∂x′ ν
Tαβ (A.13)

That is a spei� kind of di�eomorphism, a ovariant transformation.

The more modern formalism is more general and it is what will be

used in this thesis.

A good example of two spaes that are related by a di�eomorphism

would be the �at Minkowski spaetime of Speial Relativity, and the

urved spaetime around a star like our sun. Think about it in a

physial way. Imagine spaetime with no matter in it. It will be

�at Minkowski spaetime. Then imagine a star �oating into that

spaetime. That spae time will smoothly transform into a urved

one due to the mass of the star. This thought experiment is an

example of a di�eomorphism in ation. Just what does it mean for

a spaetime to be �at or urved?

A.6 Curvature of spaetime, Einstein's Field

Equations, and two important solutions.

To understand what it means for a spaetime to be urved we need

to think of what it means to take a derivative on a urved spaetime.

First a derivative in urved spaetime will be de�ned and from there

the onept of a urved spaetime will be lari�ed mathematially.

In the proess the mahinery of Einstein's �eld equations will be

exposed.

A.6.1 Derivatives in Curved Spae-Time; Christof-

fel Symbols

A ommon statement about General Relativity is that it is a theory

in whih gravity is not a fore, but a artifat of a urved spaetime.

Just what is a urved spaetime? How does one determine if a given

spaetime (pesudo-Riemannian) manifold is urved? The answer to
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both of these an be found by formulating the ovariant derivative

∇. The ovariant derivative will have to obey two fundamental rules.

It must be linear.

∇(Y +X) = ∇Y +∇X (A.14)

It must also obey the produt rule.

∇(Y ⊗X) = (∇Y )⊗X + Y ⊗ (∇X) (A.15)

In whih⊗ in the above is any multipliation like produt (salar,inner,

outer, or tensor produts). If these two rules are not followed then

muh of our usual skills in solving di�erential equations would be

rendered useless. Linearity, and the produt rule are very important

algebrai rules used again and again in solving di�erential equa-

tions. These two requirements mean that we an write this ovariant

derivative as the standard partial derivative plus a orretive term.

The result is the following.

∇µV
ν = ∂µV

ν + ΓνµλV
λ

(A.16)

Where the Γνµλ is known as the Christo�el onnetion oe�ients.

They are found by taking several derivatives of the metri tensor.

[6℄

Γσµν =
1

2
gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν) (A.17)

This allows a oneptually simple, if mathematially tedious test of

urvature. Any spae will be �at if the Christo�el onnetion is

zero in all it's omponents. It is lear that for the Minkowski metri

whih is omposed of 1's on the diagonal, this will be the ase. Hene

�at spaetime is the spaetime of Speial Relativity up to a saling

fator.

A.6.2 The Geodesi Equation

It was written earlier that General Relativity an be thought of

as a generalization of Newton's law of inertia to aommodate non

Eulidean geometries. Spei�ally to aommodate the notion of a

spae where straight lines were not simply straight lines but were

replaed with the onept of a geodesi. Here is the equation for

�nding the geodesis of a given geometry. [6℄

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0 (A.18)
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.

λ in the above equation is a parameter, the most ommon hoie in

pratie is the proper time. Note that if the Christo�el onnetion

oe�ients are zero and λ is replaed with time t, then the equation

for a straight line, in �at spaetime is reovered. Thus Newtonian

physis is learly a speial ase of General Relativisti physis.

This equation is very important in General Relativity, sine it is this

equation whih will give the paths followed by an unaelerated test

partile in General Relativity. In other words if you want to know

the path of a planet about a star, or stars about the enter of a

galaxy using General Relativity this is the equation that needs to be

solved.

The most important speial ase of a geodesi would be a null or

�light-like" geodesi.

gµν
dxµ

dλ

dxν

dλ
= 0 (A.19)

The geodesis whih satisfy the previous equation are the paths that

would be followed by a ray of light in a given geometry. This is the

equation that one would use to analyze something like gravitational

lensing for example.

These equations will ome up again and again in this thesis in a

number of ontext. In a sense �nding these geodesis is one of the

main objetives of applied General Relativity.

A.6.3 Riemann and Rii urvature tensors

The Christo�el symbols tell if a spaetime is urved, and provide a

orretion to the derivatives on that spaetime. However they don't

tell just how urved a spaetime is To do that we need to take the

seond derivative of the metri. The result is the Riemann urvature

tensor. The Riemann urvature tensor is by de�nition...

Rρσµν = ∂µΓ
ρ
νσ − ∂νΓ

ρ
µσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ (A.20)

This is a tensor of rank four, hene it has four indies's. To represent

this tensor with a matrix one would need a four dimensional hyper-

ubi array of elements. This is very unwieldy to work with. In

pratie a simpli�ation of this tensor is used. Using the metri

to ontrat two indies's the Riemann urvature an be put into a

simpler form. This simpler form is known as the Rii urvature

tensor.
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Rµν = Rλµλν = gλδRλµδν (A.21)

This urvature tensor is the one whih is used in the Einstein �eld

equations. It is a tensor of rank two and an therefore be represented

by a four by four square matrix and handled in the familiar way.

Furthermore at this dimension this tensor an �t into the Einstein

�eld equation whih as we shall soon see requires subtration of one

tensor from another. The other tensors being of rank two means

ontration of the Riemann tensor into a tensor of rank two, the

Rii tensor was the most sensible step.

The Rii tensor an be ontrated one more to arrive at the Rii

urvature salar as follows... using whihever metri tensor is ap-

propriate.

Rµνg
µν = R (A.22)

That looks easy... if the metri tensor is already known. However

in General Relativity the lassi problem is to �nd the metri tensor

given a partiular distribution of mass energy. The way to �nd out

whih metri tensor to use is to set up and solve the Einstein �eld

equations.

A.6.4 Einstein's Field Equations of Gravity.

The Einstein �eld equations are the result of about a deade of

intense alulations and trial and error by Albert Einstein. The

are the result of his initial problem whih was �nding a way to

inorporate gravity into relativity. The onlusion he arrived at

was as we now know to generalize relativity to aount for referene

frames in relative states of aeleration. Thus generalizing relativity

into the theory presented in this paper. He ame to the onlusion

that gravity was the result of a urving of spaetime. The left side

of the equation he arrived at is as follows.

Gµν = Rµν −
1

2
Rgµν (A.23)

The Einstein tensor Gµν is equal to the di�erene between the Rii

urvature minus one half of the Rii salar urvature times the

Metri tensor.

The right hand side of the Einstein equations onsist mainly of the

stress energy tensor of the system. Tµν This will be di�erent from

system to system. The General formula for it due to David Hilbert

is.
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T µν =
2√−g

δ(Lmatter
√−g)

δgµν
= 2

δLmatter

δgµν
+ gµνLmatter (A.24)

Where Lmatter is the Lagrangian exluding gravitational terms of any

kind. To ompute the Hilbert stress energy one needs to ompute the

Lagrangian for a system while ignoring gravity. In lassial physis

that would be all the kineti energy and eletromagneti energies

but not gravity. It annot be stressed enough that Lmatter does not

inlude any form of gravity. To inlude any form of gravity in that

Lagrangian would be to assume the very thing we are trying to �gure

out.

With all of the tensors that are part of the Einstein �eld equations

de�ned and explained the equations themselves an be written.

Gµν + gµνΛ = Rµν −
1

2
gµν R+ gµνΛ = 8πGTµν (A.25)

Where Λ is the osmologial onstant. This is the most ommon

and anonial form of the Einstein �eld equations. These equations

an also be re written with the stress energy tensor taking a more

prominent role. In the following form solving for the metri tensor

is far more straight forward if the stress energy tensor is a given.

Rµν − gµνΛ = 8πG(Tµν −
1

2
T gµν) . (A.26)

These two forms of the Einstein �eld equations omplement eah

other. These allow one to hoose a on�guration of stress-energy

and solve for the metri it would generate about itself. Alterna-

tively one an begin with a given metri, and solve for the stress-

energy that would generate that metri. For the last many years

osmologist have taken the observed universe's uniformity, whih

will be disussed at length latter, and used a metri that represents

that uniform universe, to solve for the needed stress energy. It is

from suh a alulation that the amount of dark energy has been

divined[6℄.

It is also worth noting that the dynamis of General Relativity an

be written in terms of an invariant ation integral. This is known as

the Einstein-Hilbert ation.

SH =

∫ √−gRdnx (A.27)

This was arrived at by �rst realizing that a Lagrangian in a urved

spaetime would have two fators. One would depend on the met-

ri and would be of the form

√−g. The other would be a salar.
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The only salar in the theory of General Relativity that ontains

seond derivatives of the metri tensor is the Rii salar. David

Hilbert dedued this form of the ation for General Relativity as

would Einstein.

Disussion of the Einstein Field Equations.

Notie that the way in whih these laws of physis are written is 100%

di�eomorphism ovariant. They make no referene to any partiular

manifold, or oordinate system what so ever. Hene they would be

valid at all plaes and times in any frame of referene in any state

of motion. This bakground independene of the laws of physis is,

for a theoretial and mathematial physiist, one of the great lessons

of General Relativity. Well onstruted theories will be bakground

independent or in other words di�eomorphism ovariant.

The other, and in Sean Caroll's opinion more profound lesson of

General Relativity is that gravitation is merely a onsequene of

the urvature of the spaetime metri. Gravity is in that sense not

a real �fore" there is no pushing or pulling or partile to transfer

momentum. Everything merely follows along a geodesi just as if it

were in inertial motion along a straight line in a �at spaetime.

Given that the metris are so important in General Relativity what

are some solutions to Einstein's equations? There are a in�nite num-

ber of possible solutions. Most of whih are found by omputational

means and are not exat. There are however a few exat solutions

to Einstein's equations. Two of these will be disussed in detail.

A.7 Metris, or Solutions to Einstein's Equa-

tions.

Terminologially a solution to the Einstein �eld equations is referred

to as a metri, beause that's what one is solving for. There are sev-

eral suh solutions to the Einstein �eld equations whih are exat and

have no approximations. There are also several tehniques whih are

not exat, grid based omputational methods for example. For the

purposes of this thesis only two metris will be useful or important.

Without proof or derivation here are the two most osmologially

useful solutions to Einstein's Field Equations. The �rst being the

Shwarzshild metri, the seond being the Friedman-Lemaître-Robertson-

Walker metri. The Shwarzshild metri is historially signi�ant

beause it was the �rst exat solution to Einstein's Field Equations

due to Karl Shwarzshild[5℄. More importantly the Shwarzshild

metri gives us the basi physis of the simplest possible blak hole.
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The Friedman-Lemaître-Robertson-Walker (FLRW) metri gives us

a solution for a expanding universe, whih was one onentrated

into a tiny point, or the big bang theory[1℄.

The Shwarzshild metri due to Karl Shwarzhild was derived from

onsidering Einstein's equations as they existed when Shwarzshild

obtained them in a spaetime near a spherially symmetri non ro-

tating unharged mass. This is a very arti�ial situation sine any

body of any appreiable mass that has been observed so far has been

seen to rotate about some axis or the other. The assumption is fur-

ther made that the metri will exhibit azimuthal symmetry. These

assumptions simpli�ed the problem and allowed Shwarzshild to

derive the �rst exat solution to Einstein's �eld equations as they

existed in 1916[5℄.

gµν =









−
(

1− 2GM
r

)

0 0 0

0
(

1− 2GM
r

)−1
0 0

0 0 r2 0
0 0 0 r2 sin2 θ









(A.28)

Alternatively these solutions will be presented in terms of their as-

soiated line element. This formula will give the length of a geodesi

in a urved spae, whih has Shwarzshild geometry.

ds2 = −
(

1− 2GM

r

)

dt2+

(

1− 2GM

r

)

−1

dr2+r2dθ2+r2 sin2 θ dφ2

(A.29)

The Shwarzshild metri is the simplest metri whih will give a

blak hole. The quantity 2GM is known as the Shwarzshild Radius.

For any given mass M there will be a nonzero radius to whih if it

were ompressed it would beome a blak hole. There is no lassial

limit to the size M has to be for this ollapse to be possible. In

nature as far as we know it takes a supernova ompressing the ore

of a star to reate blak holes.

This is also the metri whih was used to test General Relativity

early on. From it a e�etive potential whih an model the orbit of

Merury an be obtained. From this metri the amount that a mass

suh as the sun would bend a light ray an be found. In all but the

most exoti environments lose to harged spinning blak holes this

metri will work as a good approximation.
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A.8 General Relativity in non-oordinate

bases.

This formalism is known as �tetrad formalism�. In all of the above

formalism we have assumed that there exist a natural basis for the

spae we are working in. In this formalism no suh assumption is

made, and the result is atually a simpli�ation. In this formalism a

sort of �square root or fatorization of the metri is taken� in terms

of what are known as di�erential forms. What is known as the

spin onnetion instead of the Christo�el onnetion is used in this

formalism. This formalism has even been used, after a fashion, in

the theory of Loop Quantum Gravity, whih extends gravity into a

quantum theory. This may sound more omplex than using straight

alulus. This author has in pratie found this formalism to be far

more useful for solving atual problems. For a in depth review of

this tehnique whih inludes exerises see Appendix J of [6℄.

Before delving into the abstrat algebra some basi terms need to be

de�ned. New operations need to be de�ned in order for any of this

to make sense. First there is the antisymmetri or wedge produt∧.
For this brief review the wedge produt of two di�erential forms is

all that is needed. [6℄

(A ∧B)µν = 2A[µBν] = AµBν −AνBµ (A.30)

Next there is the derivative operator as shown above alled a exterior

derivative. If ω is a P form (where P denotes the tensor order of the

form. i.e. a vetor is a one form, a tensor is a two form et) and η
is a q form[6℄.

d (ω ∧ η) = (dω) ∧ η + (−1)
p
ω ∧ (dη) (A.31)

Two interesting and useful results of di�erential forms would be the

gradient d(φ)µ = ∂µφ. The next is the fat that d (dA) = 0. These
two results are very useful when solving problems in General Rela-

tivity using di�erential forms. Equations that had seond derivatives

now only have �rst exterior derivatives. Equations that used to be

alulus are now just algebra, as promised. Now how to write a met-

ri tensor in terms of these forms? In terms of tetrads and di�erential

forms the metri tensor is.[6℄

gµν = eµae
ν
bη
ab

(A.32)

The quantities eµa represent a n × n invertible matrix. With their

inverses de�ned by the equations. eµae
a
ν = δµν e

a
µe
µ
b = δab [6℄
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ηab is the usual or anonial form of the spatial Minkowski metri

whih an be two three or four dimensional. This formalism so far

is not spei� to the number of dimensions.

The next key equation to know is the equation for the spin onnetion[6℄.

ωab ∧ eb = −dea (A.33)

There are three new symbols that need to be onsidered. ωab is alled
the spin onnetion. This replaes the normal Christo�el onnetion.

Both of these are related by the following equation.

ωaµb = eaνe
λ
bΓ

ν
µλ − eλb ∂µe

a
λ (A.34)

The utility of this tehnique beomes apparent when one onsiders

the form that quantities suh as the Rii tensor take in this formal-

ism. It is muh simpler in terms of the operations that have to be

arried out.[6℄

Rab = dωab + ωac ∧ ωcb (A.35)

In this formalism the Einstein �eld equation an be written as fol-

lows.

Gab = Rab −
1

2
gab R+ gab Λ = 8πGT ab (A.36)

This does not look simpler on the fae of it. However looking at the

underlying math. One an do algebra in terms of the antisymmetri

produt, and alulus in terms of the exterior derivative. E�etively

reduing the order of the di�erential equations by one. Or one an

solve seond order hyperboli-ellipti partial di�erential equations

in the traditional form. The hoie of whih tehnique is simpler

depends on the problem. In most ases the formulation just shown

is the way to go.

Furthermore this formulation of General Relativity will beome use-

ful in the disussion of Quantum Gravity and Quantum osmology.

In partiular the theory of Loop Quantum Gravity whih will be

disussed at length latter in this thesis uses some of this formal-

ism. The �rst step in the formulation of Loop Quantum Gravity is

to reformulate lassial General Relativity using what are referred

to as �new variables" or Astekar variables, whih are rooted in the

approah just desribed.
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A.9 Conformal Transformations and Con-

formal Diagrams.

Conformal transformations and the related Conformal diagrams an

be used to analyze and illustrate problems in osmology in a simple

and beautiful way. For that reason a disussion of these topis is

warranted. In a nutshell a onformal transformation is a saling of

the metri whih leaves null geodesis invariant.

A transformation suh as ...

g̃µν = ω2(x)gµν (A.37)

... is a onformal transformation if it satis�es.

g̃µν
dxρ

dλ

dxσ

dλ
= ω2(x)gµν

dxρ

dλ

dxσ

dλ
= 0 (A.38)

A onformal transformation multiplies the metri by a spaetime

dependent funtion and leaves the null geodesis invariant.

Related to this idea is the onstrution of onformal diagrams. A

onformal diagram is a ordinary spaetime diagram in whih a urved

spaetime has been transformed in suh a way that radial light ones

are portrayed at 45 degree angels. The advantage to suh a on-

strution is that the resulting diagram is visualization. Many prob-

lems that would require omplex mathematis to address an be

solved almost by inspetion one a onformal diagram has been on-

struted. For example for Shwarzshild spaetime the onformal

diagram looks like. [6℄

r
=
2G
M

r
=
2G
M

t = −∞

t = ∞

Figure A.1: This is the onformal diagram for the Shwarzhild solution (or

metri) to Einstein's �eld equations. This geometry is essentially the one in

whih we live.

Figure A.1 is the onformal diagram for the Shwarzhild solution

(or metri) to Einstein's �eld equations. The 45 degree lines are null
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geodesis, whih take on the form of a �light one". The lines labeled

r = 2GM are the event Horizon's of the blak hole.Using a diagram

like this it is a easy matter to see how a partile will behave in this

spaetime geometry given it's position. One an see that there are

path's from time minus in�nity, to time plus in�nity whih do not

enounter the singularity. The onformal diagram makes it possible

to realize this without having to solve for a number of path's using

the Shwarzshild metri.

For more details on this please see [6℄ and [1℄.

Applying this tehnique to FLRW spaetime requires one more key

onept, onformal time. This is needed due to the sale fator in

the FLRW metri and it's time evolution. Conformal time τ is used

�gures 2.2 and 2.3. It is de�ned by the following equation.

τ =

∫

dt

a (t)
(A.39)

a (t) is the sale fator whih appears in the Friedman�Robertson�Walker-

Lemaître (FRWL).

Another name for the onformal time is the o-moving partile hori-

zon. For matter and radiation dominated universes this works out

to

τ ≡
∫ t

0

dt′

a(t′)
=

∫ a

0

d ln a

(

1

aH

)

∝
{

a

a1/2
(A.40)

[1℄

Using onformal time and onstruting a onformal diagram for the

FLRW metri the problems of osmology an be approahed in a

rigorous yet intuitive way without resorting to solving nonlinear dif-

ferential equations for the geodesis.

Conformal transformations and onformal diagrams are useful in

visualization of the spaetime geometries enountered in General

Relativity. Questions whih depend on the ausal struture of the

spaetime, suh as weather or not a partile at a given point ould

be e�eted by an event at another point, an be easily answered.

Just suh an issue will prove ritial to the examination of ertain

issues with the standard big bang theory and the FLRW metri.



Appendix B

Basis of quantum �eld

theory.

B.1 Lagrangians in Quantum Field The-

ory.

One of the most important things to note is that in QFT x and t are

both just parameters not �elds or operators. In a Lorentz invariant

mehanis x and t are both part of the same four vetor. They either

had to both be operators, or both parameters. As it happens they

are parameters of the quantum �elds.

There are basially two ways to approah quantum �eld theory.

Start from quantum mehanis and make it Lorentz invariant. The

other option is to start with a Lorentz invariant theory then quantize

it. The most ommon approah is to start from a Lorentz invariant

�eld theory and make it quantum. Take for example the Lagrangian

of Lorentz invariant eletrodynamis.

L = −1

4
FµνF

µν = −1

4
(∂µAν − ∂νAµ) (∂

µAν − ∂νAµ) (B.1)

The �eld in this theory isn't really the tensor Fµν , it's the potential
Aµ. The operator is the partial derivative ∂µ. As it will turn out,

this is already a quantum �eld theory.is. This gives the �eld of a

freely propagating photon.

Spin also plays a very interesting part in Quantum Field Theory.

Spin one �elds are always represented by vetors in QFT. They are

125
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sometimes referred to as �vetor bosons�. In keeping with this pat-

tern spin two �elds have been most naturally represented using ten-

sors. Aordingly the are referred to often as tensor bosons. The

theorized graviton would be suh a partile. Then there are spin

zero �elds whih would be represented as salar quantities. The

Higgs partile would be suh a partile. Suppose we wanted to write

a Lagrangian, whih was Lorentz invariant for a freely propagating

salar �eld φ. Why not propose a Lagrangian as simple as...

L =
~
2

2m
φ (B.2)

What's wrong with this Lagrangian is that it is utterly trivial. This

an be seen by omputing the stress energy tensor, whih involves

taking derivatives with respet to (∂µφ). The stress energy tensor

of this Lagrangian would go to zero everywhere.

How about a slightly more ompliated Lagrangian? The next most

ompliated Lorentz invariant Lagrangian would be.

L =
~
2

2m
(∂µφ)

2
(B.3)

This Lagrangian represents only the kineti term for a salar �eld.

This �eld would propagate freely and not interat with anything.

The next simplest non-trivial Lagrangian ould almost be guessed

from knowing that it is the Lagrangian for a massive salar �eld.

This is the Klein-Gordon Field.

L =
1

2
(∂µφ)

2 − 1

2
φ2 (B.4)

This is the Lagrangian for the Klien-Gordon �eld. In pratie the

�eld is usually modeled as being a omplex salar �eld.

B.2 Calulations in Quantum Field The-

ory.

One good way to see the utility of this theory is to do some al-

ulations. One way to look at alulations in QFT is in terms of

Feynman diagrams. The skill of working with these takes time to

develop. An easy way to explain it is in terms of money. In om-

munities where people are illiterate, money is ounted in terms of

the faes on it. Usually only bills are onsidered. Tell some people

$543 and they won't understand that. However the same people
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will understand �ve Benjamins, two Jaksons and three Washing-

tons. Working with Feynman diagrams is kind of like that. One

learns to look at a mathematial expression whih is essentially a

number. Then express that number in terms of these graphial di-

agrams. One also learns how to look at the diagrams and enode

them into mathematis.

Consider a simple example. A salar �eld with a φ4 interation term.

L = (∂µφ)
2 −m2φ2 − λ

4!
φ4 (B.5)

This is a Klien Gordon �eld with a self interation term. One an

begin to make meaningful alulations by simply remembering the

following orrespondenes.

(∂µφ)
2 −m2φ2

1
4!
φ4 −ıλ

External points e−ıp.x

ı
p2−m2+ıǫ

P

Figure B.1: Relating Lagrangians to Feynman diagrams.

In this way just by looking at it, a interation in �eld theory, an

be deomposed into diagrams. Then those diagrams an be redued

bak into terms whih appear in the Feynman diagram expansion.

Likewise one an start from a term expand it in terms of Feynman

diagrams and work our way to �nding the interation ross setion

of this theory.

K ′P ′

P

K

L

+

P

+

K

L

−λ2

2

∫

d4L
(2π)4

1
L2

−m2+ıǫ
1

(L+S)2−m2+ıǫ

Figure B.2: Translating Feynman Diagrams to Mathematis. A simple diagram

an be mathematially omplex.
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Where in �gure B.2 shows a simple Feynman diagram with one loop

in the momentum. Integration over this momentum will eventu-

ally give the probability amplitude for the interation, whih an be

squared to give the ross-setion of the interation. As you an see

above the mathematis an beome very onvoluted from a simple

looking diagram. This is a large part of why Feynman diagrams are

used.

What are these �groups" �Lie groups" and Lie algebra's just written

of? To start let us look at the de�nition of a group for the purpose

of mathematis and build from there.

De�nition: A Group (G) is a set G along with a binary operation ◦
whih has the following properties. Denote a group as G = {G, ◦}.

• Let g1, g2 ∈ G then g1 ◦ g2 ∈ G ∀ g1, g2 ∈ G.

• ∀ g1, g2, g3 ∈ G. (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3)
• ∃ some I ∈ G suh that I ◦ gi = gi ∈ G

• For eah and every element gi of {G, ◦} there exist another

element gj suh that gi ◦ gj = I ∈ G

Example: Consider integers under multipliation. {Z,×}
Clearly any integer times any integer is an integer. Multipliation is

obviously assoiative. The identity element is obviously going to be

1. But how about the inverse element. While those exist they are

not integers. Therefore {Z,×} is not a group

Instead onsider {Z,+}. For this proposed group it is obvious that

any two integers added is an integer, addition is assoiative, the

identity element would be zero. For the last requirement eah and

every integer has an additive inverse whih is also an integer, the

negative integers. Therefore {Z,+} is a group.

Now how about Lie groups? What makes a Lie group di�erent is

ontinuity or ountability. A Lie group is a group whih is built from

an unountable and ontinuous set. Along with a binary operation

that is smooth and invertible. In other words the set that the group

is also a manifold. A manifold as, de�ned in hapter two, is a spae

whih is loally similar enough to Eulidian spae. Consider this

simple example.

Example: Consider the real number line as a set along with addition.

So the proposed Lie group is

{

R
1,+

}

.

For the same reasons that the integers are a group this is a group.

Now to de�ne a Lie algebra?
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De�nition: A Lie Algebra L de�ned on a manifold whih is in turn

de�ned over a �eld of salars(often the same as a partiular Lie group

though it does not have to be, in QFT the salars are always the

omplex numbers.) along with an operation traditionally denoted

with a braket [ , ℄ , known as a Lie braket with the following

properties... let v, w, x ∈ L,

• [v, v] = 0

• [v, w] = −[w, v]

• [v, [w, x]] + [w, [x, v]] + [x, [v, w]] = 0

• Let a, b be salars [av+bw, x] = [av, x]+[bw, x] likewise [v, aw+
bx] = [v, aw] + [v, bx]

The Lie Algebra assoiated with the group is really what we end

up working with most of the time. Theoretial physiist often refer

to them just by referring to a Lie group without speifying a group

operation. This is done beause in pratie the Lie group we deal

with are often represented by matries for whom the group operation

is always matrix multipliation.

Example: Hermitian Operators in Quantum mehanis under the

ommutator are familiar example of a Lie Algebra.

When one is trying to �nd out the full set of operators for a physial

system they are trying to �gure out it's Lie algebra.
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Appendix C

A Lagrangian

formulation of the

Lambda CDM model

with preditions relating

to partile astrophysis.

The Lambda CDM model or �onordane model� is the standard

model of modern osmology. This model ontains a number of sep-

arate theories with di�erent mathematial formulations. The sub-

jet of this paper is a proposed Lagrangian whih would provide a

uni�ed mathematial framework for the onordane model of os-

mology. This uni�ation is ahieved by a ombination of the f(R)

approah, with the standard LCDM approah. It is postulated that

Dark matter-energy �elds depend on the Rii urvature R, and dark

energy �elds weaken as the Rii salar (R) inreases or strengthen

as R dereases. The utility of this is a great simpli�ation ompared

to the urrently aepted formulation. One Lagrangian plus one on-

straint an model the same physis as the three Lagrangian's found

in the standard formulations. The unexpeted degree of di�ulties

in observing the fermion like WIMPS of dark matter in Earth based

observatories are also explained
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C.1 Introdution

The ΛCDM model or �onordane model� is the standard model of

modern osmology. This model ontains a number of separate the-

ories with di�erent mathematial formulations. f(R) gravity is an

atively researhed alternative in whih gravity is modeled with fun-

tions of the Rii urvature R in the ation. The f(R) program, and

the in�ation with dark matter plus dark energy program both have

desirable traits. Suppose they were both ombined, by parameteriz-

ing the salar and vetor �elds of in�ation using the Rii urvature.

This uni�ation would in e�et make the salar and vetor in�ation-

ary models into f(R) models. What would be the onsequenes of

suh a uni�ation? Can a uni�ed model explain the negative results

of searhes for dark matter partiles on earth[8, 67℄, or the halos of

dark matter around galaxy's[68℄, or the apparent lak of dark matter

within 13,000 light years of the sun [69℄?

The subjet of this paper is a proposed Lagrangian whih would pro-

vide a uni�ed mathematial framework for the onordane model of

osmology. In the proess new insight will be gained into the nature

of dark matter and dark energy whih the separate formulations do

not provide. The motivation for writing this paper is to provide a

uni�ed mathematial basis for Lambda CDM.

There are ertain mysteries to the standard model of osmology. It

ontains vast amounts of matter and energy of a mysterious type

desribed as �dark�. Dark matter whih we annot detet in spite of

massive e�orts suh as the ryogeni dark matter searh II (CDMS

II) and XENON100[8, 67℄. Energy whih we an only detet by it's

e�et on the aeleration of the expansion of the universe. Energy

whih is then modeled with a simple onstant Λ. This simple model

makes very good preditions and mathes observations.

There has to be a mathematially more elegant, informative, and

dynami formulation than the urrent olletion of no less than three

very di�erent parts (depending on how one ounts). The following

outlines an attempt at a uni�ed and ultimately simpler model.

C.2 The Lagrangian

We have not observed any dark matter partiles on Earth to date.

The best results available are signals indistinguishable from noise[8,

67℄. It has also been observed that dark matter halo's form at a

harateristi distane from galaxies[68℄. One way to explain these

observations would be to have dark matter deay as the Rii urva-

ture inreases. Based on those observations I postulate the following:
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Dark matter-energy �elds depend on the Rii urvature R, dark

energy �elds weaken as (R) inreases or strengthen as R dereases.

The �elds preise behavior will depend on whih metri and hene

whih R is in e�et. In the ase of a galaxy the Rii urvature

orresponding to Shwarzhild's metri would be used, in the ase of

the universe the Friedman-Lemaitre-Robertson-Walker R would be

used.

To realize the postulate mathematially �rst write the �elds with R

as a parameter.

Aµ = Aµ (R) , φ = φ (R) (C.1)

Upon review of the published literature one �nds Lagrangian's for in-

�ation, dark matter, dark energy, et[15, 17, 16, 70, 1, 11, 71℄. The

standard formulation of Lambda CDM would onsist of Einsteins

�eld equation, a Lagrangian for in�ation, another one for dark mat-

ter, and another one for dark energy. These all model the universe

very well. So, it makes sense to use these theories as a starting point.

To realize this postulate mathematially let us write the Lagrangian

for a salar and vetor �eld, parameterized with and dependent upon

Rii urvature R, in urved spae time. Eah �eld has a mass whih

is at least an e�etive mass that has no assumed dependene on any

dynamial variables. The resulting ation is....

s =
∫ √−g

(

− R
16π − k(φ)∇µφ∇µφ− 1

4F
µνFµν + ψ̄ (Dµγ

µ −mψ)ψ

− 1
2

(

m2
φφ

2 +m2
AA

µAµ

)

− R
6

(

φ2 +AµAµ
)

− βψ̄γµψAµ

)

d4x

(C.2)

Using funtions of the Rii urvature has been done before in a pro-

gram known as f of R gravity. Here the funtions f(R) are identi�ed

with the salar and vetor �elds of in�ation. It is assumed that said

�elds have at least an e�etive mass. This mass is not assumed to

depend on any variables at the outset, however it will be shown that

a value for this e�etive mass is derivable and an depend on both

R and Λ. Mass dependene on Rii urvature is a feature of many

published models of f(R) gravity[72, 73℄.

These �elds are similar, yet not idential, to those found in theories

of in�ation in whih they drive the rapid expansion [15, 17, 16, 70,

1, 11, 71℄. To see how in�ation arises in this theory the equations of

motion need to be derived and solved.
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C.3 Equations of Motion.

Following all the elementary steps of lassial �eld theory the Euler-

Lagrange equations for this theory an be derived. One of those

equations is for R itself. That is none other than the Einstein �eld

equation. Then there are two more equations one for the salar and

one for the vetor �elds. One more onstraint is desirable. The Stress

energy tensor of this �eld must be proportional to the osmologial

onstant. This ensures agreement with known observations. The

result is a set of three equations, derived from the above ation.























Rµν −Rgµν = 8πG
c2 T µν

∇αF
αµ −

(

m2

A

2 + R
6

)

Aµ = 0

∇µ∇µφ−
(

m2

φ

2 + R
6

)

φ = 0

(∇µγ
µ −mψ)ψ = 0























(C.3)

In whih the stress energy tensor has the following form.

T µν = −2k(φ)∇µφ∇νφ− FµνgλδF
λδ −

(

m2
A + R

3

)

AµAν + i

2 ψ̄γ
µ∇νψ

−gµν
(

k(φ)∇µφ∇µφ+ FµνFµν − 1
2

(

m2
φφ

2 +mAA
µAµ

)

−R
6

(

φ2 +AµAµ
)

+ ψ̄ (Dµγ
µ −mψ)ψ

)

(C.4)

The stress energy needs to be at least proportional to the osmologi-

al onstant times the metri. This results in the following equation

of onstraint, whih is not derivable from the Lagrangian. In the

following λis simply a onstant of proportionality. This onstraint

is introdued in the same spirit as the osmologial onstant. Λ
is an important part of most any viable osmologial model. This

equation of onstraint ensures that the proposed model an math

observations whih have already been made.

T µν = λgµνΛ (C.5)

C.3.1 Solutions

The next task is to solve these equations for the salar and vetor

�elds. First the salar �elds solution.

φ (R) = φ0Exp







∫ R

1

(

m2

φ

2 + R′

6

)

�R′
dR′






(C.6)
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Next we will solve for the vetor �eld. The A0
omponent must

be zero in order to satisfy the equation of motion. The derivatives

whih make up F 00
work out that way just as one would expet for

an eletromagnetism like �eld. In the proess of solving for A0
the

e�etive mass of the A �eld an be alulated.

m2
A

2
+
R

6
= 0 → mA =

√

−R
3

(C.7)

On the osmi sale spae time is very nearly �at. In fat the ur-

vature of spae time observed to date it slightly negative. Therefore

this e�etive mass would be small but at a harateristi distane

from onentrations of luminous matter suh as galaxies. This is in

aord with the observations reported in[68℄. In a positively urved

spae time the mass of this �eld is imaginary. This would appear to

be a problem, but for the fat that so far no dark matter partiles

have been deteted on Earth in spite of very onerted e�orts [8, 67℄.

This theory predits that no WIMP orresponding to the type of ve-

tor �eld desribed here will ever be deteted near a onentration of

luminous matter suh as the Earth.

For the spae like omponents the solution is almost idential to that

for the salar �eld.

Aµ =



0, Ai0Exp





∫ R

1

(

m2

A

2 + R′

6

)

�R′
dR′









(C.8)

Where i ∈ {1, 2, 3}.
The e�etive masses of these �elds are �xed theoretially by the

onstraint that the stress energy tensor T µν needs to be proportional
to the osmologial onstant. It is possible to determine the e�etive

mass mφ from that onstraint. To �nd an expression for this mass

note that the T 00
omponent of the stress energy tensor will be

of a simple form. Terms whih depend on the vetor �eld drop out

as it's zero in that omponent. Terms whih depend on the veloity

∇0φ an be set to zero to ensure the resulting e�etive mass ats

as a rest mass of the partile. The resulting equation is

T 00 = g00
(

1

2
m2
φ +

R

6

)

φ2 = λg00Λ (C.9)

Whih simpli�es to...

mφ =

√

6λΛ−Rφ

3φ
(C.10)
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The e�etive mass of this salar �eld annot be zero unless the fol-

lowing equation holds true.

Rφ(R) = 6λΛ (C.11)

This equation determines a harateristi radius at whih a dark

matter halo would be observed from a galaxy. This is a point at

whih the Shwarzhild urvature due to the galaxy gives way to

the large sale FLRW spae time. This is in aordane with the

observations in [68℄. Within this radius the spae time urvature

would be large enough to make the mass of the salar �eld imagi-

nary, meaning no partiles. Only outside of this radius an partiles

assoiated with this �eld exist.

This e�etive mass was not a priori assumed to depend on expli-

itly on the Rii urvature R. However in the f of R gravity regime

impliit dependene of e�etive mass m on R is a standard feature

found in many publiations [72, 73℄. The bare rest masses of these

partiles would be found by setting R equal to zero. When R equals

zero mA is zero. The vetor �eld is then fundamentally massless

muh like an EM �eld. The salar �elds e�etive massmφ wold be

not be zero at that point. The salar �eld has a bare rest mass the

vetor �eld only has an e�etive mass. The �elds would still on-

tribute stress energy to the stress-energy tensor regardless of their

e�etive mass.

C.3.2 Probability of fermion fermion annihilation

to urvature.

In terrestrial experiments whih searh for dark matter we have as-

sumed that the dark matter will be fermioni. The way that fermion

like dark matter partiles behave in this theory, in terms of their ef-

fetive masses, will be the same as for the above partiles. However

there is an even more interesting interation in this theory. Let us

onsider the amplitude and ross setion for the annihilation of four

of these fermions into R.

< R|ψ̄ψψ̄ψ >=< R|AµAµ >< AµAµ|ψ̄ψψ̄ψ > (C.12)

After some omputation the answer works out to the following.

< R|ψ̄ψψ̄ψ >= (Aµ0A0µ)
(

ψ̄dirψdir
)

eG[R]

s′[R]eS[R]

(

R

G′[R]
− 1

)

(C.13)
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In equation C.13 the term G[R] is a funtional of the Rii urvature
salar R whih results from multiplying these �elds together,S[R] is
the ation as a funtional of the Rii urvature salar R . The terms

Aµ0 is onstant., and ψ̄dir is the standard solution for the Dira �elds.
G and S will osillate about. The interesting part of the squared

probability will look like.

∣

∣< R|ψ̄ψψ̄ψ >
∣

∣

2
≈ (R− 1)

2
= R2 − 2R+ 1 (C.14)

Equation C.14 shows us that the ross setion for these partiles

simply annihilating inreases in area as the urvature of spae time

inreases, and dereases as the urvature of spae time dereases.

Therefore as gravity beomes stronger, the partiles lifetime beomes

shorter. This behavior would explain why we have had so muh

trouble observing dark matter fermions in experiments on earth,

while their astronomial existene is beyond question.

C.3.3 In�ation

In�ation is in this model. To see it onsider the e�etive masses

shown in equations seven and ten. The physis of standard big bang

theory is modeled using the FLRW metri. In this metri at time

equals zero the urvature of spae time is in�nite. At that point

the e�etive masses of these �elds would be imaginary in�nity. At

the same time the strength of the �elds would be zero. When the

universe begins to expand the urvature begins to derease, this in

turn auses the mass of the �eld to roll towards zero. As the mass

rolls it drives the in�ationary expansion of the universe. All the

while the dark mass of the partiles is onverted into dark energy of

the assoiated �elds.

Thus the story of the universe is the story of two massive �elds

transforming one form of energy into another, along with some other

stu� we all ordinary matter.

C.4 Conlusions

The proposed Lagrangian ontains all the physis needed to rep-

resent the Lambda CDM model. There is a soure of dark matter,

dark energy, and in�ation. The behavior of the �elds is in agreement

with our overall observations . This Lagrangian also provides a min-

imal explanation for why dark matter has been so hard to observe

in experiments suh as CDMS II and XENON100. The dark matter

simply deays into dark energy when the urvature R is too high.

Thus there are not �partiles� to detet in a region of high spae
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time urvature, like on Earth. This would provide an explanation

for why it would be harder than expeted to detet these partiles

in a ground based experiment.

This model also explains observations of a dark matter halo around

galaxies at a harateristi distane in a simple and natural way.

The dark matter's e�etive mass is imaginary when the urvature is

positive. Whih means it physially and lassially annot exist.

The dark matter mass in this theory is simply the e�etive mass of

the �elds and their assoiated bosoni partiles. There may well be

other fermioni and super symmetri types of dark matter. Certainly

numerous partiles whih will be disovered at aelerator labora-

tories in the future whih may or may not be dark matter andi-

dates exist. I have no hypothesis about suh dark matter, or how

the hypothesized partiles ould be produed via aelerator based

experiments in this model at this time. Their is a disputed obser-

vation by Moni Bidin et. al. whih may support this theory[74℄.

They found indiations that the density of dark matter relatively

near earth may be less than the standard models predit. Bovy

and Tremaine's analysis found more dark matter onsistent with

the standard estimates[69℄. The problem with those analyses is that

they ontain the impliit assumption that the density of dark matter

will be uniform and spherially symmetri.
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