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Abstract 

This paper suggests new physics. In a different approach, it proposes fundamental particles 

formed from infinite superpositions with mass borrowed from a Higgs type scalar field. 

However energy is also borrowed from zero point vector fields. Just as the Standard Model 

divides the fundamental particles into two types…those with mass and those without, with 

the Higgs mechanism providing the difference…infinite superpositions seem also to divide 

naturally into two sets: (a) those with  “infinitesimal” mass, and (b) those with significant 

mass (from micro electron volts upwards). In the infinitesimal set (a), photons, gluons and 

gravitons (to fit with cosmology and the expansion of the cosmos) all have 34
10


 eV mass, 

approximately the inverse of the causally connected horizon radius. These values are so close 

to zero the symmetry breaking of the Standard Model remains essentially valid. These 

particles travel so close to the speed of light they have virtually fixed helicity, with the Higgs 

mechanism increasing their mass from infinitesimal type (a) to significant or measureable 

type (b) values. Also the energy in the zero point fields (borrowed to build the fundamental 

particles) is limited, particularly at the extreme wavelengths of virtual gravitons interacting at 

near horizon radii. Any causally connected region grows with time after the big bang and the 

number of virtual gravitons with wavelengths similar to the size of the causally connected 

region increases approximately as the square of the causally connected mass. Space has to 

expand exponentially with time in an accelerating manner after the big bang to make 

available the zero point energy to meet this increased requirement. For similar reasons the 

extra gravitons near mass concentrations change the metric in proportion to /m r , in 

accordance with the Schwarzschild solution of Einstein’s equations. There is a maximum 

wavelength virtual graviton probability density min min minGk Gk
K dk   where minGk

K  is a 

constant scalar, in any coordinates, at all points in spacetime. But the local value of the 

minimum wavenumber 1

min Horizon
k R


  depends on both the cosmic time T and the value of 00

g

in the local metric. Approximately the first two thirds of this paper look at building and 

analysing the fundamental particles formed from infinite virtual superpositions. The final 

portion looks at the expanding Universe and possible connections with General Relativity; 

but only after attempting to show that infinite superpositions can be equivalent to the 

Standard Model fundamental particles, apart from infinitesimal differences.  
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1 Introduction 

Since the weak and electromagnetic forces were unified in the 1970’s physicists have wished 

to somehow unite all the fundamental forces. Initially it seemed that three of the forces 

(excluding gravity) could unite near Planck scale. High energy experiments however ruled 

out the possibility of single energy unification. Some type of Supersymmetry is seen by many 

as the solution to several current Standard Model problems; one version modifying the high 

energy running constants of the three forces in such a manner they unite near the Planck 

scale. The particles predicted however have yet to been seen. String theory is also seen by 

many as the future path, but not all physicists are comfortable with its non-testability and 

need for 10 or 11 dimensions. The enormous landscape of different universes or multiverse it 

proposes is also widely regarded as the solution to the minute amount of dark energy 

proposed to explain the current accelerating expansion of the universe. Some recent 

cosmological surveys [1] however have not so far supported dark energy as the cause of this 

acceleration. This all suggests some important and relevant questions, for example: 

1. Is it possible that the fundamental forces may connect in some different way?  

2. Are the extra dimensions of String Theory really necessary? 

3. Is “The Multiverse” the only explanation of accelerating cosmic expansion? 

4. Can the problems these theories solve be addressed differently?  

Approaching all this in a completely new direction, this paper explores possible solutions to 

these puzzles in a different way, but still using basic principles of quantum mechanics and 

relativity. Apart from infinitesimal differences it seems to be consistent with the Standard 

Model. It requires the universe to expand exponentially after the big bang in an accelerating 

manner. It changes the metric around mass concentrations in accordance with General 

Relativity. It requires photons, gluons and gravitons to have mass of 34
10 ,eV


 close to some 

recent proposals [2] [3] giving gravitons a mass of 33
10 eV


 to explain the accelerating 

expansion of the universe. It argues General Relativity cuts off at Black Hole event horizons, 

one of the possible implications of the current Firewall paradox. [15] [16] [17] [18[19].  

 

1.1 Summary 

Papers modifying the Standard Model are too numerous to list, however we briefly touch on a 

small number of some early versions of these in section 1.1.2. The approach in this paper is 

very different from that in most of these earlier papers. The main differences are summarized 

below. 

1.1.1 General Relativity as our starting point 

General Relativity tells us that all forms of mass, energy and pressure are sources of the 

gravitational field. Thus to create gravitational fields all spin ½ leptons & quarks, spin 1 

gluons, photons, 0
W & Z

 particles etc. emit virtual gravitons, except possibly gravitons  

themselves (section 6.2.6), as gravitational energy is not part of the Einstein tensor.  
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The starting point of this paper assumes there is a common thread uniting these fundamental 

particles making this possible. Equations are developed that unite the amplitudes of the 

colour and electromagnetic coupling constants with that of gravity. The precision required by 

quantum mechanics for half integral and integral angular momentum allows gravity to be 

included, despite the vast disparity in magnitude between gravity and the other two. This 

combination of colour, electromagnetic and gravitational amplitudes in the same equation is 

possible because of a radically different approach taken in this paper: An approach using 

infinite superpositions of positive and negative integral  angular momentum virtual 

wavefunctions for spin ½, spin 1 and spin 2 particles. The final result is almost identical to 

the Standard Model, with infinitesimal but important differences.  

The total angular momentum can be summed over all wavenumbers ;k  from 0k   to some 

cutoff value
cutoff

k . We will assume (as with many unification theories) that the cutoff for 

these infinite superpositions is somewhere near Planck scale. Firstly imagine a universe 

where the gravitational constant 0G  . As 0G  , the Planck length 0
P

L  , the Planck 

energy  and
P

E  
cutoff

k  also. If we sum the angular momentum of these infinite 

superpositions when 0G   (i.e. from 0k   to )
cutoff

k  we get precisely half integral or 

integral  for the fundamental spin ½, spin 1 & spin 2 particles in appropriate m  states. If we 

now put 0G   the infinitesimal effect of including gravity can be balanced by an equal but 

opposite effect due to the non-infinite cutoff value in .k  A near Planck scale superposition 

cutoff requires gravity to be included to get precisely half integral or integral . (Section 4.2) 

These infinite superpositions have another very relevant property relating to the fact that all 

experiments indicate that fundamental particles such as electrons behave as point particles. 

Each wavefunction with wavenumber k , which we label as k
 , has a maximum radial 

probability at 1/r k  and they all look the same (Figure 1.1. 1.)   

                                     

Figure 1.1. 1  The radial probability of the dominant 6n   for spin ½ wavefunction 6k
 . 

Every wavefunction k
  of these infinite superpositions, interacts only with virtual photons 

(for example) of the same ;k if superpositions representing say an electron are probed with 

such photons (that interact only with wavefunction k
 ) the resolution possible is of the same 

4
*R R

k


  

kr   
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order as the dimensions of ,
k

 both have 1/ .r k  The higher the energy of the probing 

particle the smaller the k


 
it interacts with, the resolution of an observing photon can never 

be fine enough to see any k
 dimensions. Even if this energy approaches the Planck value, 

with a matching k
  radius near the Planck length it is still not possible to resolve it. This 

behaviour is consistent with the quantum mechanical properties of point particles.  

1.1.2 Primary interactions and Secondary interactions 

Supposing that superpositions can in fact build the fundamental spin ½, spin 1, and spin 2 

particles, then what builds the superpositions? Before answering that question, this paper can 

only make sense if we divide the world of all interactions into two categories. 

Secondary Interactions are those we are familiar with and are covered by the Standard 

Model, but with the addition of gravity, which is not included in the Standard Model. They 

take place between the fundamental spin ½, spin 1 and spin 2 particles formed from infinite 

superpositions. They are the QED/QCD etc, interactions of all real world experiments. 

Primary Interactions we conjecture on the other hand are those that build infinite 

superpositions and are hidden to the real world of experiments.  

The majority of this paper is about these primary interactions, and the superpositions they 

build representing the fundamental spin ½, spin 1 and spin 2 particles. Primary interactions 

are between spin zero particles borrowed from a Higgs type scalar field and the zero point 

vector fields. In the 1970’s models were proposed with preons as common building blocks of 

leptons and quarks [4] [5] [6] [7]. In contrast with the virtual particles in this paper some of 

these earlier models used real spin ½ building blocks. Real substructure has difficulties with 

large masses if compressed into the small volumes required to approach point particle 

behaviour. On the other hand with virtual substructure borrowing energy from zero point 

fields the mass contribution at high k  values can be cancelled (section 3.2.1). As in earlier 

models this paper also calls the common building blocks preons, but here the preons are both 

virtual and spin zero. They also now build all spin ½ leptons and quarks, spin 1 gluons, 

photons, W & Z particles, plus spin 2 gravitons in contrast to only the leptons and quarks in 

the earlier models. (See Table 2.2. 1) 

As these preons have zero spin they possess no weak charge, primary interactions (section 

2.2.1) can take place only with the zero point colour, electromagnetic and gravitational fields. 

The three primary coupling constants for each of these three zero point fields are different 

from, (but related to) the secondary coupling constants. The behaviour of primary coupling is 

also entirely different from secondary coupling. Secondary coupling strengths vary (or run) 

with wavenumber k  (the electromagnetic increasing with k  and colour decreasing with k ). 

In contrast, we conjecture primary coupling strengths (or constants) do not run. In this paper 
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virtual preons are continually born with mass out of a Higgs type scalar field, existing only 

for time / .t E   At their birth, they interact while still bare with zero point vector fields at 

this instant of birth 0t  . The primary coupling constants consequently are fixed for all :k  

there is no time for charge canceling or reinforcing, which in secondary interactions forms 

around the bare charge progressively after its birth. The equations work only if this is true, 

and they also work only if the primary colour coupling constant is 1.  This does not seem 

implausible as it simply means that primary colour coupling is certain (sections 2.2.2). The 

ratio between the primary and secondary colour coupling constants labelled C
  is thus (if 

primary colour coupling is 1) the inverse of the secondary (or usual 1

3
  of QCD) colour 

coupling constant at the superposition cutoff @ Planck Energy. (Sections 3.3 & 4.2.2)  

To enable the primary coupling to colour, electromagnetic and gravitational zero point fields, 

preons need colour, electric charge and mass. Red green or blue coloured preons have 

positive electric charge; anticolour red, green or blue preons have negative electric charge. 

Their mass which is borrowed from some type of scalar Higg’s field must always be non-

zero, which is discussed further in section 1.1.3.  As there are 8 gluon fields, superpositions 

are built with 8 virtual preons for each virtual wavefunction k
 . The nett sum of these 8 

electric charges is 0, 2, 4, 6   , and never 6  . This leads to the usual 0, 1/ 3, 2 / 3, 1    

electric charge seen in the real world. Various combinations of these 8 preons in appropriate 

superpositions can build leptons and quarks, colour changing and neutral gluons, neutral 

photons, neutral massive 0
Z  photons and the charged massiveW

  photons. (Table 2.2. 1) 

1.1.3  Photons, gluons and gravitons with infinitesimal mass ( 34
10 eV


 ).  

For many decades after the discovery of the neutrino in the 1930s it was thought to be 

massless, and to travel at velocity c . Despite being in conflict with the Standard Model, 

towards the end of last century evidence slowly accumulated that this may not in fact be true, 

and that the family of 3 neutrinos have masses in the electron volt range. Due to this very low 

mass, and their normal emitted energies, they invariably travel at virtually the velocity of 

light c .  Photons also have always been seen as massless traveling precisely at velocity ,c  

except in the case of the massive W
 & 0

.Z  Massless virtual photons have an infinite range, 

which has always been seen as an absolute requirement of the electromagnetic field. On the 

other hand, this paper requires some rest frame (even if this frame normally moves virtually 

at c) in which to build all the fundamental particles. Table 6.2 1 suggests photons, gluons and 

gravitons have 33
10 eV


 mass with a range of approximately the inverse of the causally 

connected horizon radius, and velocities sufficiently close to that of light their helicity 

remains essentially fixed. This allows some form of Higgs mechanism to increase this 

infinitesimal mass to the various values in the massive set. These infinitesimal masses are in 

line with some recent proposals [2] [3] where gravitons have a mass of 33
10 eV


  to explain 

accelerating expansion. 
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The virtual wavefunction we use is 3 2 2 2
exp( /18) ( , )

nk nk
C r n k r Y   

 
an 3l 

wavefunction. This virtual 3l  property is normally hidden. In the same way as scattering 

experiments on spin 0 pions show spin 0 properties, and not the properties of the two 

canceling spin ½ component particles, this 3l   property of the virtual components of 

superpositions is not visible in the real world. Scattering experiments can exhibit only the 

spin properties of the resulting particle. The individual angular momentum vectors 

2 3L  of the infinite superposition all sum to a resulting: ( 3 / 2)
Total

L , 2  or 6  

for spin ½ , spin 1 or spin 2 respectively, in a similar way to two spin ½ particles forming 

spin 0 or spin 1 states.  

The wavefunction 3 2 2 2
exp( /18) ( , )

nk nk
C r n k r Y     has Eigenvalues 2 2 2 2

nk
n kP with

nk
n kP , suggesting it borrows n  parallel k quanta from zero point vector fields provided 

n  is integral. We can see this by letting k  allowing energy E n   by absorbing n  

quanta   from the zero point vector fields (section 2.3.2). As spin 3 needs at least 3 spin 1 

particles to create it, the lowest integral number n  can be is 3. The virtual 3l   property can 

however be used to derive the magnetic moment of a charged spin ½, 1/ 2m    state as a 

function of n . Section 3.5 shows 2g   Dirac electrons need an average (over integral n  

states) of 6.0135n  . Three member superpositions 
k n nk

n

c 
 

with 5,6,&7n   achieve 

this, creating Dirac spin ½ states. We also find that 6n   is the dominant member and each 

superposition k
 needs at least 3 members to make all the equations consistent for Dirac 

particles. Secondary interactions at any wavenumber k  can occur with k
  if integers n  

change by 1 , thus changing the Eigenvalues n kP  by k  where this can be only a 

temporary rearrangement of the triplets of values of n . This is true, whether the interaction is 

with leptons, quarks, photons, gluons, W & Z particles, or gravitons. (Section 3.3) 

1.1.4 Superpositions require only squared vector potentials  

The wavefunction 3 2 2 2
exp( /18) ( , )

nk nk
C r n k r Y     also requires a squared vector 

potential to create it: 
2 2 4 2 4 2

/ 81Q A n k r . There are no linear potential terms in contrast 

with secondary interactions. The primary interaction operator is 2 2 2 2 2ˆ ,P Q A     with no 

linear potential terms included and Q  simply represents a collective symbol for all the 

effective charges concerned. As an example, the dominant 6n   wavefunction of a spin ½ 

Dirac k
  requires a squared vector potential of 

2 2 4 2 4 2
/ 81Q A n k r 2 4 2

16 k r  (section 

2.3.1).  Primary coupling between the 8 virtual preons and the colour, electromagnetic and 

gravitational zero point fields produces a vector potential squared value for all infinite 

superpositions which can be expressed as: 

 
2

2 4 2

02 2
8 8 / (2 ) ( )

 
(1 )

(1 )

( )

( )3

EMP p
im G s c k r ds

ksN

k
Q A

N 
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(Where the length of the complex vector is simply squared here.) The significance of the 

cancelling top and bottom factors ( )sN  is explained in section 2.1.2. Also the cancelling 

(1 ) factors are due to gravity and explained in section 4.2. The primary colour coupling 

amplitude is conjectured to be 1 to each of the eight preons, and
EMP

 the primary 

electromagnetic coupling. This equation applies regardless of the individual preon colour or 

electric charge signs, whether positive or negative (section 2.2.3). The primary gravitational 

coupling is to the particle mass 0
.m
 
The primary gravitational constant is P

G  divided by c  

to put it in the same form as the other two coupling constants. The magnitude of the total 

angular momentum vector of the infinite superposition is ( 1)
Total

s s L . ) This 2 2
Q A  

without the gravity term generates superpositions with probability ( ) / kN s dk  where s is the 

superposition spin, 1N   for massive spin ½ fermion & massive boson superpositions but 

2N   for infinitesimal mass boson superpositions (Table 4.3. 1, section 6 and its subsections 

cover this more fully). Section 4.2  includes gravity raising the superposition probability to 

/1 )( )(N ks d k  where the infinitesimal  (not to be confused with infinitesimal mass) is 
2

0
2 /m Spin   (in Planck units 1)c G  

45
7 10


  for electrons, and 34

10 
 for a 0

Z . 

The k
 superpositions require at least three integral n  members. The following three 

member superpositions fit the Standard Model best (see Table 4.3. 1) 

 

        Spin ½ massive 1N   fermion superpositions                              
5,6,7n

k n nk
c 



  .  

        Spin 1 massive 1N   boson superpositions                                  
4,5,6n

k n nk
c 



  .  

        Spins 1 & 2 infinitesimal mass 2N   boson superpositions       
3,4,5n

k n nk
c 



  .                                      

                  

Below are infinite superpositions 
, ,s m




for only spins ½ & 1. The symbol   refers to the 

infinite sum, s  the spin of the resulting real particle, m  its angular momentum state, and ss  

a spherically symmetric state. Section 3.1.3 explains this format. Also square cutoffs in 

wavenumber k are used here for simplicity.  Infinitesimal mass superpositions are introduced 

in section 6.2. (Complex number factors are not included here for clarity.) 

 

 

 

1/2, 4

( )

,1
, ,2

0

( )

,

5,6,7

1, 2

3

,

,4,

,

05

( ) 1
Massive              Spin , ( )

2

( ) 2 1
Infinitesimal mass Spin 1, ( )

1

2 

k cutoff

nk ss

n nk nk

nk

k cuto

m m

n

m

ff

nk ss

n n

nkn

nk mk

c dk
k

c dk

N

k
N

 
  



 
  











  
  

 






  

 


 

 

 

(1.1. 1) 

 

In these infinite superpositions the probability that the wavefunction is spherically symmetric 

is 2 2
1

nk nk
 

   and the probability that it is an m state is 2

nk
 where nk

 is the magnitude of the 

velocity of the centre of momentum of the primary interactions that generate each nk
 .  This 
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is similar to the superposition of time and spatially polarized virtual photons in QED. For 

example spin ½ has probabilities of 2 2
1

nk nk
 

   spherically symmetric nk
  wavefunctions, 

and 2

nk
   ( , 2)

nk
m    wavefunctions. Each k

 is normalized to 1 but the infinite 

superpositions 
, ,s m




are not normalized, diverging logarithmically with k ; the same 

logarithmic divergence that applies to virtual photon emission.  (Real wavefunctions have to 

be normalized to one as they refer to finding a real particle somewhere but this need not 

apply here.) Each member of these spin ½ superpositions has probability (1 ) / 2 ,dk k and if 

electrically charged emits virtual photons with probability 4 / .   Ignoring the factor of 

(1 ) 44
1 10 ,


    the overall virtual scalar photon emission probability is the usual

 2 / / .dk k 
 
(Possible implications of the infinitessimal  are discussed in section 6.6 )  

Section 3.1 finds that 2m   virtual wavefunctions have 2

nk
 probability of leaving an 2m    

debt in the zero point fields. Integrating over all k  produces a total angular momentum for a 

spin ½ state of  2
( / 2)(1 ) 1 / 2

Cutoff
 

   , (section 3.2.2). If 1/
Cutoff

k  is near the Planck 

length,  
12

(1 ) 1
Cutoff
 


   . A similar integration over all k  for the rest energy of the 

infinite superposition also leads to  2 2 2

0 0
(1 ) 1

Cutoff
m c m c 

     , (section 3.2.1). The 

infinitesimal quantity  vanishes in a zero gravity, zero Planck length universe where 

& .
Cutoff Cutoff

k   
 
In this paper each preon borrows virtual rest mass from a Higgs type 

scalar field. The superposition mass/energy is obtained by summing squared momenta over 

all k . The equations are based on probabilities of these in a similar manner to those for 

angular momentum. This suggests the superposition or equivalent particle mass is both 

energy borrowed from zero point vector, and mass borrowed from Higgs type scalar fields. 

The final sections of this paper (5 & 6) argue that the limited zero point energies (required to 

generate virtual gravitons) available at causally connected cosmos wavelengths require it to 

expand exponentially in an accelerating manner (Figure 5.3. 4). Section 5.3 finds that the 

warping of spacetime around mass concentrations is consistent with local observers 

measuring a maximum wavelength virtual graviton probability density min min minGk Gk
K dk   

where minGk
K is a constant scalar in all coordinates. The local measurement of 1

min Horizon
k R


  

however depends on both the cosmic time T and the local metric clockrates
00

g . (Figure 

5.3. 8.) This can only happen if at any radius r around a mass m, space expands 

proportionally to m/r in accordance with the Schwarzschild solution (Figure 5.2. 2). We argue 

that this implies General Relativity (in an infinitesimally modified form effective only at 

cosmic scale) and the warping of spacetime is a consequence of Quantum Mechanics. The 

first two thirds of this paper is about the primary interactions between spin zero preons and 

spin one quanta that build the fundamental particles. The Standard Model is about the 

secondary interactions between them. (The weak force is only between spin ½ particles and 

thus a secondary interaction. It can not be involved in primary interactions.) Apart from 

infinitesimal effects, such as infinitesimal masses, the properties of fundamental particles 

covered in this paper seem consistent with their Standard Model counterparts. All 
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1& 2N N   superpositions as in Table 4.3. 1 are conjectured to cutoff at the Planck energy

.
P

E   If this is so both colour and electromagnetic interaction energies must cutoff at /
P

E n
18

2.03 10 .,GeV   or  1/ 6  of the Planck energy. (The expectation value  is 6.0135n   for 

spin ½ leptons and quarks Eq. (3.5. 16)). The electromagnetic and colour coupling constants 

at this cutoff are consistent with Standard Model predictions assuming three families of 

fermions and one Higgs field. (See Figure 4.1. 1 & Figure 4.1. 2). Only after attempting to 

show that infinite superpositions can be equivalent to the Standard Model fundamental 

particles do we try to connect them with General Relativity.  

2 Building Infinite Virtual Superpositions 

2.1 The possibility of Infinite Superpositions 

 

2.1.1 Early ideas 

After World War II there was still much confusion about QED. In 1947 at the Long Island 

Conference the results of the Lamb shift experiment were announced [8]. Some of the first 

early explanations that gave approximately correct answers used simple semi classical 

thinking to get a better understanding of what seemed to be going on. These early ideas 

helped to eventually lead to the QED of today, perhaps in a similar manner to the way Bohr’s 

original simple semi classical explanation of quantized atomic energy levels played such a 

large part in the eventual development of full three dimensional wavefunction solutions of 

atoms, and quantum mechanics. We start this paper with an example of a semi classical Lamb 

shift explanation that seems to lead into the possibility of fundamental particles and infinite 

virtual superpositions being one and the same.  

The density of transverse modes of waves at frequency   is 2 2 3
/d c    and the zero point 

energy for each of these modes is / 2 . The electrostatic and magnetic energy densities in 

electromagnetic waves are equal, thus for electromagnetic zero point fields:  

 
2 2 2 2

0 0

2 3
2 2 2

E c B d

c

    



 
   

    

 and    
4

2 2 2

0 0 2 3
.

2

d
E c B

c

 
 

 
 

 

For a fundamental charge e  using
2

0
/ 4 ,e c   and provided 1,   this gives an 

 

                                 

2 4

2 2 2

2

2
Average force squared of    

d
F e E

c

  

 
   

   (2.1. 1)  
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Thinking semi classically, for an electron of rest mass m  this can generate simple harmonic 

motion of amplitude r , where 2 2 4 2
F m r  (if 1  ). Solving for 2

r  (where 2
r  is 

superimposed on the normal quantum mechanical electron orbit, 
C / mc  is the Compton  

 

wavelength, and / ) :k c           

2

2 2

2 2

2 2
      .

C

d dk
r

m c k

  

  

 
      

   

Integrating 2
r (directions are random) : 

max

2 2 2

max min

min

2 2
 log( / )

k

Total C C

k

dk
r k k

k

 

 
  . 

The minimum and maximum values for k  are chosen to fit atomic orbits, and a root mean 

square value for r  can be found. Combining this with the small probability that the electron 

will be found in the nucleus, this small root mean square deviation shifts the average potential 

by approximately the Lamb shift. This can also be thought of as simple harmonic motion of 

amplitude ,
C

  occurring with probability (2 / ) /dk k  . It can also be interpreted as the 

electron recoiling by ,
C

  (provided 1
Recoil

  ) in random directions due to virtual photon 

emission with a probability of (2 / ) /dk k  .   

 

2.1.2 Dividing probabilities into the product of two component parts 

This probability (2 / ) /dk k  can be thought of as the product of two terms &A B , where A  

includes the electromagnetic coupling constant , B  includes /dk k , and (2 / ) / .AB dk k   

This suggests that this same behaviour is possible if we have an appropriate superposition of 

virtual wavefunctions occurring with probability B , which emits virtual photons with 

probability A  (by changing Eigenvalues
nk

n kp
 
by 1n   ).  For example, if a virtual 

superposition occurs with probability B  ( ) / kN s dk , and has a virtual photon emission 

probability for each member of these superpositions of A 
1

( ) (2 / )N s  
 , then the overall 

virtual photon emission probability remains as above at AB  (2 / ) /dk k  . This applies 

equally whether it is virtual gluon/photon/W&Z/graviton etc. emission. Provided A includes 

the appropriate coupling constant this same logic applies regardless of the type of boson 

emitted. As is usual to get integral or half integral total angular momentum 2s has to be 

integral and section 6.2 argues that N must also be integral.  (This paragraph is simplified to 

illustrate the principle and will later be modified in section 3.3.) 

In section 1.1.4 we said that these wavefunctions are built with squared vector potentials. If 

superpositions of them are to represent real particles they must be able to exist anywhere. 

This is possible only if they are generated by uniform fields. The only fields uniform in 

space-time are the zero point fields, and looking at the electromagnetic field first we can use 

section 2.1.1 above. Consider a vector r  from some central origin O  and a magnetic field 

vector B  through origin ,O  then the vector potential at point r  is   / 2 A B r and the 

vector potential squared is  2 2 2 2
sin / 4A B r  where the angle between vectors &B r is  .                              
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2 2 2 2
As  averages 2/3 over a spheresin  : / 6  A B r 

  

                (2.1. 2) 

 

Here 2
B  is the magnetic field squared at any point due to the cubic intensity of zero point 

EM also as in section 2.1.1. Putting Eq’s.    (2.1. 1) & (2.1. 2) together the vector potential 

squared is  

                                               
2 2

e A

2 2 2 2 4 2

2 4 2

4
6 3 3

e B r r d dk
k r

c k

   

  
    

 

                    (2.1. 3) 

 

As in section 2.1.2 we can divide this into two parts, noting the inclusion of spin s and integer 

N in the numerator and denominator:  
  

                                                            
2 2 2 4 2

.
3

dk
e

s

s
A k r

k

N

N





   
    
   

                       

(2.1. 4) 

But here a vector potential squared term  2 4 2

3
k r

sN





 
 
    

occurs with probability
sN dk

k

 
 
 

. 

Another way of looking at this is that a wavefunction k
  that is generated by a vector 

potential squared term 2 4 2

3
k r

sN





 
 
 

 can occur with 
sN dk

k

 
 
 

probability.  

This is similar reasoning to that used in the semi classical Lamb shift explanation of section 

2.1.1. In the first bracketed term of Eq. (2.1. 4),  is the electromagnetic coupling constant, 

but the same logic applies for the eight gluon and gravitational zero point vector fields where 

we will sum appropriate amplitudes of these and square this total as our effective coupling 

constant in Eq. (2.1. 4). But first we need to look at groups of spin zero preons that could 

build these wavefunctions. What mixtures of colours and electrical charges end up with the 

appropriate final colour and electrical charge for each of the fundamental particles or at least 

the ones we know of? 

2.2 Spin Zero Virtual Preons from a Higgs type Scalar Field 

2.2.1 Groups of eight preons that form superpositions 

In this paper preons have zero spin and can have no weak charge. The only fields they can 

interact with (via Primary Interactions that build superpositions as in section 1.1.2) are 

colour, electromagnetic and gravity. In the simplest world there would be just one type of 

preon that comes in three colours, always positively charged say, with their three anti colours 

all negatively charged. We will assume that this is true unless it does not work. Looking at 

Table 2.2. 1 we see that a minimum of 6 preons is required to get the correct charge ratios of 

3:2:1 between electrons, and up and down quarks. 
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Table 2.2. 1 Groups of 8 virtual preons forming the fundamental particles. The Higgs boson 

is discussed in section 6.5. If it is a superposition it would be in the neutral group at top. 

Fundamental 

Particles 

Preon colour Preon electric 

charge. 

Group 

colour 

Group electric 

charge. 

 

Spin ½  

Neutrino family. 

Spin 1  

Photons, 0
Z &  

Neutral gluons.  

Spin 2 Gravitons. 

Any colour +          

its Anticolour     

Red 

Antired 

Green 

Antigreen 

Blue 

Antiblue 

 1 

-1 

 1 

-1 

 1 

-1 

 1 

-1 

 

 

Colourless 

 

 

0 

                         

Spin ½  

Electron family.  

 

Spin 1 .W
  

Any colour +          

its Anticolour     

Antired 

Antired 

Antigreen 

Antigreen 

Antiblue 

Antiblue 

 1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

 

Colourless 

 

-6 

 

 

Spin ½  

Blue up quark 

family. 

Red     

Antired      

Green 

Antigreen 

Green 

Blue 

Blue 

Red 

 1 

-1 

 1 

-1 

 1 

 1 

 1 

 1 

 

 

Blue 

 

 

+4 

 

Spin ½  

Red down 

quark family. 

 

Green     

Antigreen     

Red 

Antired 

Green 

Antigreen 

Antiblue 

Antigreen 

 1 

-1 

 1 

-1 

 1 

-1 

-1 

-1 

Red 

 

-2 

 

Spin 1 

Red to green 

Gluons. 

 

Red     

Antigreen     

Red 

Antired 

Green 

Antigreen 

Blue 

Antiblue 

 1 

-1 

 1 

-1 

 1 

-1 

 1 

-1 

Red plus 

antigreen 

 

0 
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To get vector potential squared values that make all our equations work however, we need to 

couple to all 8 gluon fields requiring a total of 8 preons. Table 2.2. 1 has all the basic 

properties required to build infinite superpositions for the fundamental particles. We need to 

remember when looking at this table that from section 1.1.2 the effective secondary charge is 

much less than the primary charge and we have no idea yet of just what effective value the 

primary preon electric charge is.  

Particles only are addressed in the groups of preons in Table 2.2. 1. To get anti particles it 

would seem that we can just change the signs of each preon in the groups of 8, excepting 

those that are already their own antiparticle. The first point to notice however is that both the 

electron and the W
 are predominantly anti preons, yet they are both defined as particles. 

Have we got something wrong? When we look at relativistic masses in section 3.2.1 we get 

the usual plus and minus solutions and Feynman showed us how to interpret the negative 

solutions as antiparticles. If this also applies in anti preons then because they are zero spin, 

and the weak force discriminates between particles and antiparticles by their helicity, this 

discrimination can apply only in secondary interactions. The preon anti preon content of the 

groups in Table 2.2. 1 does not necessarily tell us whether they produce particles or 

antiparticles. We will discuss this further in section 3.2.1, also as of now there is still no good 

understanding of the predominance of matter over antimatter in our universe.  In Table 2.2. 1 

only one example of colour is given for quarks and gluons. Different colours can be obtained 

by simply changing appropriate preon colours. Various combinations of 8 preons in this table 

are borrowed from a scalar field for time /T E   , this process continually repeating in 

time. Conservation of charge normally allows only opposite sign pairs of electric charges to 

appear out of the vacuum. Let us imagine that these virtual preons are building an electron for 

example whose electric charge exists continually unless it meets a positron and is annihilated. 

This charged electron is thus due to a continuous appearance out of and back into the vacuum 

of virtual charged preons in a steady state process existing for the life of the superposition, 

and not conflicting with conservation of charge. If the electron itself does not conflict then 

neither do the borrowed preons that build it. 

2.2.2 Primary coupling constants behave differently and actually are constant 

Q.E.D. tells us that the bare (electric) charge of an electron for example increases 

logarithmically inversely with radius from its centre. Polarizations of the vacuum (of virtual 

charged pairs) progressively shield the bare charge from a radius of approximately one 

Compton radius C inwards towards the centre. When an electron (for example) is created in 

some interaction the full bare charge is exposed for an infinitesimal time. Instantaneously 

after its creation, shielding due to polarization of the vacuum builds progressively outward 

from the centre of its creation at the velocity of light.   
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For radii ≥ 
C

we measure the usual fundamental charge e . There are similar but more 

complicated processes that occur to the colour charge. Camouflage is the dominant one where 

the colour charge grows with radius as the emitted gluons themselves have color charge. At 

the instant of their birth the preons are bare and at this time 0t   say, all the zero point vector 

fields can act on these bare colour and electric charges as there is simply no time for 

shielding and other effects to build. The primary coupling constants that we use must 

consequently be the same for all values of k in complete contrast to those for secondary 

interactions. We don’t know what this primary electromagnetic coupling constant is so we 

will just call it
EMP

 . Also we will find that to get any sense out of our equations the primary 

colour coupling has to be very close to 1. A coupling of 1 is a natural number and simply 

reflects certainty of coupling. Provided the secondary colour coupling can be in line with the 

Standard Model and there does not seem to be any other good reason to pick a number less 

than 1, we will make the (apparently arbitrary) assumption that the bare primary colour 

coupling is exactly 1. (In section 4.1.1 we will find that this seems to be consistent with the 

Standard Model.) 

2.2.3 Primary interactions also behave differently 

Let us define a frame in which the central origin of the wavefunctions 
k

 of our infinite 

superposition is at rest: The laboratory or rest frame we will refer to as the LF. The preons 

that build each k
 are born from a Higg’s type scalar field with zero momentum in this 

frame. This has very relevant consequences as their wavelength is infinite in this rest frame at 

time 0t  , and after they become wavefunction k
 their wavelength is of the order1/ k  for 

times 0 / 2t E  .  This implies that there could possibly be significant differences in the 

way amplitudes are handled between primary and secondary interactions. 

Let us consider secondary interactions first with an electron and positron for example located 

approximately distance r  apart. For photon wavelengths r  both the electron and the 

positron each emit virtual photons with probabilities proportional to  , but for wavelengths 

r  their amplitudes cancel. Returning to primary interactions, zero momentum preons must 

always have an infinite wavelength which is greater than the wavelengths (or1/ k values) of 

the zero point quanta they interact with, for all 0.k  This implies that we cannot simply add 

or subtract amplitudes algebraically as the charged preons can be always further apart than 

the wavelength of the interacting quanta (except when 0,k   but we will see there is always a 

minimum k value, ie min
0k   in sections 5 & 6). In fact if algebraic addition of amplitudes 

did apply in primary interactions, infinite superpositions for colourless and electrically 

neutral neutrinos would be impossible. So how can infinitely far apart preons of differing 

charge generate wavefunctions of all dimensions down to Planck scale? This can happen only 

if the amplitudes of all 8 preons are somehow linked over infinite space, all at the same time

0t   contributing to generating the wavefunction k
 . This non-local behaviour is not new. 
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Recent experiments have confirmed that what Einstein struggled to come to terms with is in 

fact true; he called it “spooky action at a distance”.  While these experiments are so far 

limited in the distance over which they demonstrate entanglement, there is now wide 

acceptance that it can reach across the Universe. In the same manner wavefunctions covering 

all space can instantly collapse. We want to suggest that this same non-locality applies in 

primary interactions: our 8 virtual preons all unite instantaneously at time 0t   across 

infinite space in generating each
k

 . Also the vector potential squared equations that they 

generate must always be the same for all the preon combinations in Table 2.2. 1. This can 

happen only if the amplitudes of all 8 are added regardless of charge sign for primary 

interactions. This applies to both colour and electric charge.  

The opposite is true for the secondary interactions. At time 0t   all 8 preons instantaneously 

collapse into some sort of virtual composite particle that for times 0 / 2t E  obeys 

wavefunction k
 . The dimensions of k

 are of the same order as the wavelength of the 

interacting quanta, and the usual algebraic total electric charge and nett colour charge must 

now apply as in the group charges in Table 2.2. 1. All of this may seem contrary to current 

thinking which has gradually been built up over several centuries of secondary interaction 

experiments; however it may not be so out of place when viewed in the context of the counter 

intuitive results of entanglement experiments. The key point to bear in mind is that the 

predictions of this paper must agree or at least be able to fit the Standard Model, or 

secondary interaction experiments; as we may never be able to look into virtual primary 

interactions, but only observe their effects.   

Amplitudes to interact are complex numbers which we can draw as a vector. This applies to 

both colour and electric coupling, where these two vectors can be at the same complex angle 

or at different angles. The simplest case is if they are in line and we will assume this is true 

for both colour and electromagnetic primary interactions which are both spin 1. This seems to 

work and when we later include gravity, a spin 2 interaction, we find that the spin 2 vector 

only works if it is at right angles to the two in line spin 1 vectors. Let us start in a zero 

gravity world by simply adding the 8 preon colour vectors of amplitude 1 and the eight 

primary electromagnetic vectors of amplitude
EMP

  together, as all this only works if they 

are all in line.         
   

         The total colour plus electromagnetic primary amplitude is   8 8
EMP

       

                    

           (2.2. 1) 

This equation is always true regardless of signs as in section 2.2.3  

         
2

The colour plus electromagnetic primary coupling constant is        8 8  
EMP

    (2.2. 2) 

Inserting this into Eq. (2.1. 4) we get                                       
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2

2 2 2 4 2
8 8

.
3

EMP dk
Q A k r

sN

s kN





           
  

  

                 (2.2. 3) 

 

Again we interpret this just as we did in section 2.1.2 and Eq. (2.1. 4) as a vector potential 

squared term  

                

2

2 2 2 4 2
 occurring with probability

8

3
 

8
   

EMP dk
Q A

s
k r

k

N

sN





   
   

  (2.2. 4) 

 

     

                       

                     

  

Where Q  is a symbol representing the entire 8 colour and 8 electric amplitudes combined, 

with s the spin and 1N   for massive superpositions, but 2N   for infinitesimal mass 

superpositions. (Table 4.3. 1, section 6 and its subsections cover this more fully.) 

 

2.3 Virtual Wavefunctions that form Infinite Superpositions  

 

2.3.1 Infinite families of similar virtual wavefunctions 

Consider the family of wave functions where ignoring time:   

                                               

                                                          
2 2 2

( ) ( )

( ) exp( /18)

nk

l

nk

U nrk Y

U nrk C r n k r

 

 
  

                             

                                 (2.3. 1) 

    

 U nrk  is the radial part of n k
 ,  Y  the angular part, nk

C a normalizing constant, and we 

will find that l  is the usual angular momentum quantum number. There is an infinite family 

of nk
 , one for each value k  where 0 k   in a zero gravity world.    

  

                                      
1 2 2 2

( ) ( ) exp( /Now put 18 )
l

nk
R nrk rU nrk C r n k r


                         (2.3. 2) 

 

As we are dealing with zero spin preons we use Klein-Gordon equations [9]. The Klein-

Gordon equation is based on the relativistic equation 2 2 2 2 2

0
/E c m c p  and in a squared 

vector potential the Time Independent Klein Gordon Equation is 

 

                                         

2

2 2 2 2 2 2 2

02
ˆ E
P Q A m c

c
   

 
      

 
                                      

 

(2.3. 3) 
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Using                                   
2 2

2 2

1 ( 1)R l l

R r r





  
 


        we get the Time Independent  

                

2 2 2 2

2 2 2 2

02 2 2
Radial Klein Gordon Equation   

(
 

1)R l l E
Q A m c

R r r c

  
    

  
  

    

   (2.3. 4) 

    

For each 
nk

 the energy is
nk

E a function of &n k , and we will label the rest mass as
0snk

m
 
a 

function of spin s , & ,n k  but also a function of the particle rest mass
0

m  and this becomes  

 

                                              

2

2 4

02

2 2

2 2 2

2 2

( 1)
nk

snk
Q A

E
m

r
c

R l

R r c

l 






 

 
   

    

                  (2.3. 5) 

 

Differentiating ( )R nrk ( )rU nrk

2 2 2

1
exp( )

18

l

nk

n k r
C r

 
  twice with respect to r , multiplying 

by 2 and dividing by R            

                                                  

42 2 2

2 2

2 2 2 24 2
(

81

)

9

1 (2 3)nR l l

R r

lr k

r

nk  
  


                        

 

 (2.3. 6) 

 

Comparing Eq’s. (2.3. 5) & (2.3. 6) we see that l  is the usual angular momentum quantum 

number and the vector potential squared required to generate these wavefunctions is      

                                                               

                                                                   

44 2 4 2

2 2 2 4 2

81 3

n k r n
Q A k r

 
   

 
  

                             

 (2.3. 7) 

   
2 2 2 2

2 2 2

02
The momentum squared i   

( 3)

9
s

2
 nk

nk snk

E l n k
m c

c


  p                     

 

(2.3. 8) 

 

2 2 2 2
For  3 wavefunctions this beco &   me  s

nk nk
n k nl k  p p   

 

(2.3. 9) 

 

2.3.2 Eigenvalues of these virtual wavefunctions and parallel momentum vectors 

From Eq.’s (2.3. 8) & (2.3. 9) as k  , the energy squared
2 2 2

nk nk
E c p 2 2 2

n  and thus 

 

  energy  considering onlyIf  3  the positive soluti when  on . 
nk

l k E n          (2.3. 10)         
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This suggests that n must be integral. If it is integral when k   we will conjecture that it 

must be integral for all values of k. (This is a virtual process where the energy exchanged 

does not need to obey
2 2 4 2 2

0X X X
E m c c  p and 

2 2 2

X nk
E c p  or 2 2 2 2

X
E n  when k  .) We 

can also perhaps think of Eq.(2.3. 9) as integral n  parallel momentum vector kp  quanta, 

transferring total momentum
nk

n kp and energy
X

E n   from the zero point fields
 
to 

generate the virtual wavefunction .
nk

  Thus provided 2 2 4 2 4 2
( / 3)Q A n k r  as in Eq. (2.3. 7) 

the operator 2 2 2 2 2ˆ ( )P Q A     applied to the virtual wavefunction  
3 2 2 2
exp( /18) ( )

nk nk
C r n k r Y    produces 2 2 22 2 2 2 2ˆ

nk nk nk nk
P Q A n k       , 

where n is integral but k is continuous as for free particles. Thus we conjecture that: 

 

                      

3 2 2 2

2 2 2 2
Eigenvalues  

exp( /18) ( ) are Eigenfunctions with

 with continuous  but integral  .  

nk nk

nk

C r n k r Y

n k k n

  

p
                  

            (2.3. 11) 

Also there are no scalar potentials involved, only squared vector potentials, so this is a 

magnetic or vector type interaction. Particles in classical magnetic fields have a constant 

magnitude of linear momentum which is consistent with the squared momentum Eigenvalues 

of Eq. (2.3. 11).This also implies that each nk
 is formed from quanta of wave number k  only 

and that secondary interactions with nk
 emit or absorb k virtual quanta if n changes by 1.  

The wavefunction nk
 is virtual and in this sense both the energy nk

E and rest mass 0snk
m  in 

Eq. (2.3. 8) are also virtual quantities borrowed from zero point vector fields and a scalar 

Higgs type field. We use these virtual quantities to calculate the amplitude that nk
 is in an m

state of angular momentum in section 3.1, and in section 3.2 to calculate the total angular 

momentum and rest mass. As in section 2.3.2 above, we can think of
nk

n kp  as n  parallel 

momentum vectors kp . As spin 3 (or 3l  ) needs at least 3 spin 1 quanta to build it n  

must be at least 3. When 3n   we can think of this as 3 of the 8 preons each absorbing 

quanta k  at time 0.t   We will find that a spin ½ state has a dominant 6n   Eigenfunction 

where 6 of the 8 preons each absorb quanta k . It needs at least two smaller side 

Eigenfunctions 5n   & 7n   with either 5 or 7 of the 8 preons each absorbing quanta k  

respectively at 0t  . (Figure 3.1. 4 illustrates the three n modes of a positron superposition.) 

From Eq. (2.3. 7)  
2 2

Q A 

4

2 4 2

3

n
k r

 
 
 

 2 4 2
16 k r  for this dominant 6n   mode. 

Thus using Eq.  (2.2. 4) 

2

2 2 2 4 2
8 8

3

EMP

s
Q A k r

N





 
 

 2 4 2
16 k r for an 6n  mode. 

Now 1/ 2 & 1s N   for spin ½ fermions and 

2

2 8 8
16

3

EMP




 
 

  if we have only an 6n   

mode. 



21 

 

Thus 8 8 24
EMP

     and
1

EMP
 

137.1, but this is true for an 6n   Eigenfunction only, 

and we have a superposition where the amplitudes of the smaller side Eigenfunctions 5n   & 

7n   determine the ratio between the primary to secondary (colour and electromagnetic) 

coupling amplitudes or the value of 
1

3
@

cutoff
k 

 (Section 3.3).  The 2 2
Q A required to produce 

this superposition with amplitudes n
c is, using Eq. (2.3. 7) 

 

                                                                         

5,6,7

4 2 4 2

2 2
*

81
n

n

n

n k r
Q A c c



   

                                         (2.3. 12)                                                                               

Repeating the same procedure as above for three member superpositions using Eq. (2.3. 12) 

we find the strength of EMP
  required increases considerably (see section 4.1 & Table 4.1. 1.)  

As the secondary electromagnetic coupling 
1

@
EMS cutoff

k 
must be constant for all spin ½ 

leptons and quarks the amplitudes of the smaller side Eigenfunctions 5n   & 7n   that 

determine this must also be constant for all the fermions, implying that Eq. (2.3. 12) must be 

the same for all fermions. The same arguments apply to the other groups of fundamental 

particles but we return to this in sections 3.3 where we see that the same also applies with 

graviton emission. 

 

3 Properties of Infinite Superpositions 

3.1 What is the Amplitude that nk
  is in an m state?  

3.1.1 Four vector transformations 

The rules of quantum mechanics tell us that if we carry out any measurement on a real 

spherically symmetric 3l   wavefunction it will immediately fall into one of the seven 

possible states 3, 0, 1, 2, 3l m     [10]. But nk
 is a virtual 3l   wave function so we 

cannot measure its angular momentum. During its brief existence it must always remain in 

some virtual superposition of the above seven possible states and we can describe only the 

amplitudes of these. So is there any way to calculate these amplitudes as they must relate to 

the amplitudes of the angular momentum states of the spin 1 quanta it absorbs from the zero 

point vector fields? First consider the 4 vector wavefunction of a spin 1 particle and start with 

a time polarized state which has equal probability of polarization directions. It is thus 

spherically symmetric, which we will label as ss .  Using 4 vector (t, x, y, z) notation: 

 

                  In frame A, a time polarized or ss  spin 1 state is (1,0,0,0). 

Let frame B move along the z  axis at velocity /v c   in the z direction. 
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                  In frame B the polarization state transforms to ( ,0,0, ).   

But this is 
2

 time polarized ( ss states) minus 
2 2   z  polarized ( 0m   states).      

                  In frame B there are 
2

 ss  states 
2 2

0m     states.  

Now 
2 2 2 2 2

(1 ) 1         is an invariant probability in all frames and in removing 
2 2  ( 0)m   states from 

2
 ss  states, the new ratio of spherical symmetry is 

2 2 2 2 2
( ) / 1       . Thus a spherically symmetric state is transformed from probability 

1 in frame A, to 
2

1   in frame B. Also removing 0m   states from spherically symmetric 

states leaves a surplus of 1m   states, as spherically symmetric states are equal 

superpositions of 1,m    0,m  & 1m   states.  

 

2 2
Thus in Frame B the probabilities ar (1 )  states 1 ste a tes.ss m             (3.1. 1) 

  

We can describe this as a virtual supe
1

(rp , 1) states.osition of ss m

       

                                                                 

(3.1. 2) 

As 
2

1   we have transverse polarized states, the same as real photons. Now transverse 

polarized spin 1 states can be either left ( 1),m   or right ( 1)m    circular polarization, or 

equal superpositions of (1/ 2) (1/ 2)L R  as in &x y  polarization.  If we think of 

individual spin zero preons absorbing these spin 1 quanta at 0t   they must also have this 

same
2 probability of transversely polarized spin 1 states.  If they then merge into some 

composite 3l  particle (as in Figure 3.1. 4) for time 0 / 2 ,t E   the probability of it being 

in some particular state ( 3, 0),l m  ( 3, 1),l m   ( 3, 2)l m   or ( 3, 3)l m   , must be 

the same
2 . If we look at Eq.’s (1.1. 1) we can see what is behind them. We initially write 

the amplitudes in these three equations in terms of nk
  & nk

 as this is the most convenient 

way to express them. Velocity operators are momentum operators over relativistic masses. 

Our Eigenvalues are 
2 2 2 2

nk
n kp for each &n k , and this allows the velocity operators to 

give constant
2

.
nk

  Later in Eq’s. (3.1. 11) &  (3.1. 12) we write nk
 & nk

 in momentum 

terms. Even though the mass in these operators is virtual, we can still use it to calculate
nk

 . 

For each k  and integral n  there will be a constant 
nk

  and 
2 1/2

(1 ) .
nk nk

 


    As we will 

see, nk
  can be thought of as the magnitude of the velocity of an imaginary centre of 

momentum frame in which these interactions take place. We will also draw our Feynman 

diagrams of these interactions in terms of &
nk nk

  for convenience, even though this is 

unconventional. To proceed from here we define two frames as follows: 

 

1) The Laboratory Frame (LF) or Fixed Frame as in section 2.2.3 

The infinite superposition has rest mass 0
m and zero nett momentum in this frame. Each nk

 is 

centered here with magnitude of momentum nk
n kp . Even though we have no idea of the 
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direction of this momentum vector we will define it as the z  direction. The eight preons are 

born in this frame with zero momentum, and can thus be considered here as being at rest or 

with zero velocity and infinite wavelength at their birth. The Feynman diagram of the 

interaction in this frame that builds nk
  is illustrated in Figure 3.1. 3.  

 

2)  The Center of Momentum Frame (CMF)  

This (imaginary) frame is the center of momentum of the interaction that builds nk
 . The 

CMF moves at velocity nk
 relative to the laboratory frame in the z  direction or parallel to 

the unknown momentum vector direction .
nk

p  In this CMF the momenta and velocities of the 

preons at birth and after the interaction are equal and opposite. This is illustrated in Figure 

3.1. 2  again in terms of 0
, , &

nk nk
m   . In the LF the velocity of the preons at birth is zero, in 

the CMF this is nk
 and after the interaction nk

  , where both nk
 and nk

  are in the 

unknown z direction. In the LF the particle velocity ( )
nk nkp

particle   is the simple 

relativistic addition of the two equal velocities nk
  as in Figure 3.1. 1. 

 

                                                               Figure 3.1. 1 

 

3.1.2 Feynman diagrams of primary interactions 

Let us start with   

          
2 1/2 2 2

2

2
( )  and (1 ) (1 )

1

nk

nk nkP nkP nkp nk nk

nk

Particle


     



     


  

(3.1. 3) 

 

If the particle rest mass is 0
m let each preon have a virtual rest mass 

0
/ (8 2 ).

nk
m s   

         

0

0
The eight preons are effectively a virtual particle of rest m s  

2
as

snk

nk

m
m

s
   

 

             (3.1. 4) 

 

The particle momentum in the LF is zero at birth. After the interaction using these equations 

  

    

Laboratory Frame Centre of Momentum Frame Virtual Particle 
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nk

n kp  0snk nkP nkP
m c  0

2
nk

m

s

 
  
 

2
1

2

nk

nk









 
 

2 2
(1 )

nnk k
c 

 
 

   

0The particle momentum after the interaction in the F 
2

2
L nk nk

nk

m c
n k

s

 
 p   

   (3.1. 5) 

 

Using Eq. (3.1. 4), in the LF the particle energy at birth is 

                                                               

2

2 0

0
2

snk

nk

m c
m c

s
   

                                                             

(3.1. 6) 

 

In the LF the particle energy after the interaction is using Eq’s. (3.1. 3)  

2 2 2 2 2 20 0

0
(1 ) (1 )

2 2

nk

snk pnk nk nk nk

nk

m m
m c c c

s s


   


     

 

             (3.1. 7) 

 

In the CMF the momentum at birth is using Eq. (3.1. 4)                              

                                                                   0

0
2

nk

snk nk nk

m
m

s


 


                       (3.1. 8) 

 

In the CMF the momentum after the interaction is equal but in the opposite direction                            

                                                                                    0      
2

nk
m

s


   

                   (3.1. 9) 

 

In the CMF the energy at birth, and after the interaction is 

                                                                      
2

2 0

0
2

snk nk

m c
m c

s
   

                      (3.1. 10) 

                                                                                               

These values are all summarized in Figure 3.1. 2 and Figure 3.1. 3 but with 1c  .  

From  Eq. (3.1. 5)      nk
n kp 0

2

2

nk nk
m c

s

 
   and   nk nk

 
0

22

2 2

C
nk sn k s

m c
    

(where C is the Compton wavelength). We can now express &
nk nk

  in momentum terms:   

  

                     
0

22
Let  

2 2

C

nk nk nk

nk sn k s
K

m c
     

             (3.1. 11)    

 

                          
2

2 2 2

2
:     and  In 1terms of 

1

nk

nk nk nk nk

nk

K
K K

K
   


 

             (3.1. 12) 

 

Each infinite superposition has fixed .
C  Each wavefunction nk

 of this infinite superposition 

has fixed &n s , thus nk
K k .  



25 

 

                                    For example we can put    nk

nk

dK dk

K k
   

              (3.1. 13) 

 

 

These simple expressions and what follows are not possible if
0 0

/ 2
snk nk

m m s , and when 

we include gravity we find
0 0

/ ( 2 )
snk nk

m m s is essential (section 4.2).  

 

 

 

Figure 3.1. 2  Feynman diagram in an imaginary centre of momentum frame. 

 

 

Figure 3.1. 3  Feynman diagram in the laboratory frame. 

The interaction in the Feynman diagrams above is with spin 1 quanta. The Feynman 

transition amplitude of this interaction tells us that the polarization states of these exchanged 

quanta is determined by the sum of the components of the initial, plus final 4 momentum

( )
i f

p p


 . Ignoring all other common factors this tells us that the space polarized 

component is the sum of the momentum terms ( )
i f
p p and the time polarized component is 

the sum of the energy terms
0

( )
i f

p p .  We have defined our momentum as in an unknown z

direction:  

           

 8 preons at birth:   

After merging:  

     After merging:  

 8 preons at birth:  
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0
The ratio of   polarization to time polarization amplitudes i

( )
s 

)
 
(

f

z

i f

i
p

z
p p

p




    

        (3.1. 14) 

 

 

In the CMF ( ) 0
z

i f
p p  , thus an interaction in the CMF exchanges only time polarized, or 

spherically symmetric 1l   states.  In the LF the ratio of z (or 0)m   polarization, to time 

polarization in the LF is
2

,
nk

             

                                      where    0

0

0

( ) 2

( ) 2
f

z

i f nk nk

nk

i nk

p p m

p p m

 





 


 

                                   
(3.1. 15) 

 
 

From section 3.1.1 these are probabilities of  
2

nk
 ss  

2 2

nk nk
   ( 0)m  states, or 

2
(1 )

nk
  

ss  +
2

nk
  ( 1, 1)l m     states.  

            

In the LF this is a virtual superposi
1

( , 1) statetion of  s.
nk

nk

ss m


              

                

               (3.1. 16) 

 

From section 3.1.1 as these quanta from the scalar and vector zero point fields build each nk


this implies that: 

          

In the LF  has virtual superposition amplitude
1

( ,  statess  )
nk

nk

nk
ss m


   

    

  
(3.1. 17) 

 

From section 3.1.1 appropriate 1, 1l m    superpositions can build any 3,   state.l m

Figure 3.1. 4 is an example of such a nk
 for 5,6,&7n  ( 3, 2)l m    states. 

 

3.1.3 Different ways to express superpositions 

We have expressed all superpositions here in terms of spherically symmetric and m states for 

convenience and simplicity. We could have expressed them in the form: 

    

  

 
1

( 3), ( 2), ( 1), ( 0), ( 1), 2), ( 3) ( 2)
7

nk

nk

m m m m m m m m


               

 

This is equivalent to (ignoring complex number amplitude factors for clarity)   

                  

1
, ( 2) where we have put m 2 for example.

nk nk

nk

ss m 


         

Because all these wavefunctions are virtual they cannot be measured in the normal way that 

collapses them into any of these Eigenstates, it is more convenient to use the method adopted 

here which is similar to QED virtual photons superpositions. 
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Figure 3.1. 4  Eight preons forming 2m    states as part of a positron superposition. 

There is no significance in which preons absorb quanta in the above. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 Any colour & 

 

 

 
0p  



28 

 

3.2 Mass and Total Angular Momentum of Infinite Superpositions 

 

3.2.1 Total mass of massive infinite superpositions 

We will consider first the total mass of an infinite superposition, and to help illustrate, 

consider only one integral n Eigenfunction nk
  at a time; temporarily assuming that the 

amplitude n
c of each nk

 has magnitude 1
n

c  . Each time nk
  is born it borrows virtual mass 

from a scalar Higgs field and virtual energy from vector zero point fields. Each time nk
  is 

born the virtual mass that it borrows is exactly cancelled by an equal debt in the Higgs scalar 

field so this should sum to zero for all k. But what about the momenta borrowed from the 

zero point fields, do these momenta also leave momentum debts in the vacuum? From section 

2.3.2 as k  , 
2 2 2

nk nk
E c p 2 2 2

n   or nk
E n   and n  quanta of energy   and 

momentum k  are absorbed.  We know that in some unknown direction ,
nk

np k which 

implies these n  absorbed quanta must leave a cancelling debt in the opposite direction of 

( )
nk

debt n p k in the vacuum. But this is true only as k   &
2

1
nk

   and the virtual 

quanta energy transferred X
E  . So what happens when

2
1?

nk
   Our wavefunctions 

nk
  are generated from a vector potential squared term 2

A  derived in section 2.1.2 which in 

turn came from a 2
B  type term as in section 2.1.1. As discussed in section 2.3.2  the

 
Eigenvalues 

2 2 2 2

nk
n kp  confirm the constant momentum squared feature of magnetic type 

interactions. Also in section 2.1.1 the scalar virtual photon emission probability is directly 

related to the force squared term 2 2 2
.F E  Magnetic type coupling probabilities are related 

to a magnetic type force squared term 
2 2 2 2 2 2 2 2

/F B c E     , where from section 3.1.2 

and Eq’s. (3.1. 14) & (3.1. 15) the ratio of this scalar to magnetic coupling is
2

.
nk

  Thus when 

k   and the exchanged energy X
E  , 

2

nk
n  quanta k are absorbed from the vacuum 

and:       

                  
2

  We can expect a momentum debt of ) (
nk nk

debt n p k   (3.2. 1) 

 

We could sum 2

nkp & 2
( )

nk
debtp  but both vectors nk

p and ( )
nk

debtp are antiparallel in 

the same unknown direction. We can pair them together giving a nett momentum per pair of:   

 

             
2

2 2
( ) ( ) ( at wavenumb . r ) e1 nk

nk nk nk nk

nk nk

n
nett debt n k

 
     

pk
p p p k  

(3.2. 2) 

 

We have said above that the mass of each virtual particle is cancelled by an equal and 

opposite debt in the Higgs scalar field so we can now use the relativistic energy expression  

             
2 2 2

0

( )
k

n nk

k

E nett c




p times the probability of each pair at each wavenumber k.  

We will initially look at only 1N   massive infinite superpositions in Eq. (2.2. 4).  
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Thus using probability / /sN dk k s dk k   , also Eq’s. (3.1. 11), (3.1. 12),(3.1. 13),&(3.2. 2). 

 

            

2 2 2

0

( )

k

n nk

k

s dk
E c nett

k






  p

2 2 2

2

4

0 nk

n k s dk
c

k




 
2

2 4

0 2 2

0

4
(1 ) 2

nk nk

nk nk

K dK
m c

K K




  

                                          
2 2 4 2 4 2

0 0 02

0

1
 or  

1
n n

nk

E m c m c E m c
K



 
    

 
  

 

                (3.2. 3) 

 

This energy is due to summing momenta squared and it must be real, with a mass 0
m  for 

infinite superpositions of Eigenfunctions .
nk

  These superpositions can form all the non 

infinitesimal mass fundamental particles.  The equations do not work if the mass 0
m  is zero. 

(We will look at infinitesimal masses in section 6.2.)  Negative mass solutions in Eq. (3.2. 3) 

must be handled in the usual Feynman manner, and treated as antiparticles with positive 

energy going backwards in time. If they are spin ½ this also determines how they interact 

with the weak force.  

3.2.2 Angular momentum of massive infinite superpositions 

We will use the same procedure for the total angular momentum of 1N   type infinite 

superpositions with non infinitesimal mass in Eq. (2.2. 4).  

Wavefunctions nk
 3 2 2 2

exp( /18) ( , )
nk

C r n k r Y     have angular momentum squared 

Eigenvalues 2 2
12L and the various m  states have angular momentum Eigenvalues

z
mL . We will treat both angular momentum and angular momentum debts as real just as 

we did for linear momentum. Even though m  state wavefunctions are part of superpositions 

they still have probabilities just as the linear momenta squared above and it seemed to work. 

Using exactly the same arguments as in section 3.2.1 , if nk
  is in a state of angular 

momentum zk
mL , then it must leave an angular momentum debt in the vacuum of

 
2

( )
zk nk

debt m L  (or as in section 3.2.1) ( ) ( )
zk zk zk

nett debt L L L .  

   

     
2 2

2
( ) (1 ) (1 )   (if  is in state )zk

zk nk nk zk zk

nk

nett m m 


    
L

L L L   
     (3.2. 4) 

 

But from Eq. (3.1. 17) the probability that zk
L is in an m  state is also

2

nk
 so that  

 
2

2

2
Including this extra probability term: ( )  at wavenumber .nk

nk zk

nk

nett m k





L   
   (3.2. 5)                                    

For an 1N   type infinite superposition
0

( ) ( )

k

z zk

k

s dk
Total nett

k






 L L .  

2

2

0
2

nk

nk

dk
sm

k







   

Using Eq’s. (3.1. 11) to (3.1. 13) 
2

2 2

0

( )
(1 )

nk nk

z

nk nk

K dK
Total sm

K K




L  

2

0

1

2 1
nk

sm

K
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                                          ( )       or    
2 2

z

sm s
Total m m m   L  

                 (3.2. 6)  

                     

Where m  is the angular momentum state of the infinite superposition and m  the state of nk
 .  

Thus for spin ½ particles with s 
 
½ in Eq.(3.2. 6) / 4m m   but mcan be only   ½, 

implying the m  state of nk
 that generates spin ½ must be 2m   . An 1N   massive spin 1 

particle has 1s   with / 2m m  . ( 2N   is covered in section 6.2.) This is summarized in 

the following three member infinite superpositions ignoring complex number factors. 

 

  
1/2, 1/2 2

5,6,7

1
2 , , ,

0

1 1
Massive ( 1) Spin ,  ( ) ( )

2

k

n nk ss nk nk

kn nk

N c dk
k

   








 


 

   
 

    
  (3.2. 7) 

 

       
1, 2

4,5,

,

6

, ,

0

1 1
Massive ( 1) Spin 1,   ( ) ( )

k

n nk ss nk nk

nkk

m m

n

N c dk
k

   








 
   

 
    

  (3.2. 8) 

 

The spin vectors of each nk
 with 2 3L , and their spin vector debts in the zero point 

vector fields, have to be aligned such that the sum in each case is the correct value: 

3 / 2L  , 2L or 6L  for spins ½ , 1 & 2 respectively. Gravity (the   term) is 

included in Eq. (1.1. 1) in our summary also spin 1 in Eq. (3.2. 8) is for 1N  . 

Spherically symmetric massive 1N   spin 1 states are superpositions of the three states 

1 1 1
( 1), ( 0), ( 1),

3 3 3
m m m        and using Eq. (3.2. 8) can be formed as follows 

,1, , ,

4,5,6 0

,1, , ,

4,5,6 0

,1, , ,

4,5,6

1 2

0 0

1

1 1 1 1
 ( ) ( )

3 3

1 1 1 1
Massive spin 1  ( ) ( )

3 3

1 1 1
( ) (

3 3

m m

m m

m

k

n nk ss nk nk

n nkk

k

n nk ss nk nk

n nkk

n nk ss nk nk

k

m

n n

c dk
k

c dk
k

c

   


   


   


 







 





 





 



 
  

 

 
   

 

  

 

 

 2

0

1
)

k

k

dk
k









 
 
 
 
 
 
 

  
  
  



     

 

 

 (3.2. 9) 

3.2.3 Mass and angular momentum of multiple integer n superpositions  

In sections 3.2.1 & 3.2.2 for simplicity we looked at single integer n superpositions nk
 . For 

superpositions 
k n nk

n

c  , we replace 
2

nk
K with

2

k
K . Equation (2.3. 9) appears to suggest 

2 2 2 2 2 2 2
*

k n n

n

c c n k n k p  and 
2

k
k np . In section (3.5.1) we discuss why

2

k
k np but *

k n n

n

k c c n k n  p . Thus using Eq. (3.1. 11) 

         

2 2 2 2
2 2 2 22

  &  but   
2 2 2

C C C

k k k

k s k s k s
K n K n K n     

(3.2. 10)  
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Replacing
2

nk
K with

2 22 2
/ 2

k C
K k s n  in the key equations (3.2. 3) & (3.2. 6)  does not 

change the final results. The laws of quantum mechanics tell us the total angular momentum 

is precisely integral  or half integral / 2 .  Looking at the above integrals used to derive 

total angular momentum we see that N must be 1 (we discuss N=2 in section 6.2) also s  must 

be exactly ½ or 1 for spin ½ & spin 1 massive particles respectively, in Eq.  (2.2. 4) our 

probability formula. Also these integrals are infinite sums of positive and negative integral  

that are virtual and cannot be observed. If an infinite superposition for an electron is in a spin 

up state and flips to spin down in a magnetic field, a real 1m    photon is emitted carrying 

away the change in angular momentum.  This is the only real effect observed from this 

infinity of ( 3, 2)l m    virtual wavefunctions all flipping to ( 3, 2)l m   states, plus an 

infinite flipping of the virtual zero point vector debts. Also Eq’s. (3.2. 3) & (3.2. 6) are true 

only if our high energy cutoff is at infinity and the low frequency cutoff is at zero. We look at 

high frequency Planck scale cutoffs in section 4.2 and in section 6.1 low frequency cutoffs 

near the radius of the causally connected horizon.  

3.3 Ratios between Primary and Secondary Coupling 

3.3.1 Initial simplifying assumptions 

Section 3.3 is long and can be skipped if preferred. The key equations especially Eq’s.(3.3. 

19), (3.3. 21) & (3.3. 22) and the paragraph following can be referred back to later. It is based 

on a special case thought experiment to try and illustrate as simply as possible how 

superpositions interact with one another, in the same way as virtual photons interact with 

electrons for example. It is also important to remember here that because primary coupling 

constants are to bare charges (section 2.2.2), and thus fixed for all k, while secondary 

coupling constants run with k, that the coupling ratios can be defined only at the cutoff value 

of k applying to the bare charge (sections 4.1.1 & 4.2.2). From Table 2.2. 1 there are 6 

fundamental primary charges for electrons and positrons. But electrons and positrons are 

defined as fundamental charges. In other words what we define as a fundamental electric 

charge is in reality 6 primary charges. Of course we can never in reality measure 6 as their 

effect is reduced by the ratio between primary and secondary coupling. Because 

electromagnetic and colour coupling are both via spin one bosons their coupling ratios are 

fundamentally the same but because of the above they are related simply as 2
6 36:1 .   

      

                                                   
1 36

          =      
Colour EM

 
  

                (3.3. 1) 

               

 

We define the colour and electromagnetic ratios as follows (leaving gravity till section 6.2.6) 
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(Secondary) (Secondary)3

(Primary) 3 (Primary)

1 1
         and       

Colour EMS EMS

Colour Colour P EM EM EMP

  

     
      

  (3.3. 2) 

 

 

 

The secondary coupling constants 3
 &  

EMS S
 

 
are the bare charge values, both at the 

fermion interaction cutoff near the Planck length Eq. (4.2. 11). Also we assumed in section 

2.2.2  that 3
1;

P
   thus from Eq.(3.3. 2)  

 

                                       
1 1 18

3 3
@ 2.029 10

C S cutoff
k GeV   

            (3.3. 3) 

 

In other words provided 3
1,

P
   the ratio C

 (or )
Colour


 is also the inverse of the colour 

coupling constant 3
  at the high energy interaction cutoff near the Planck length. In this 

respect C
 or Colour

  is the fundamental ratio we will use mainly from here on. 

From the above paragraphs to find the coupling ratios we need secondary interactions that are 

between bare charges. But this implies extremely close spacing where the effects of spin 

dominate. If the spacing is sufficiently large the effects of spin can be ignored but then we are 

not looking at bare charges. However we can ignore the effects of shielding due to virtual 

charged pairs by imagining as a simple thought experiment, an interaction between bare 

charges even at such large spacing.  We can also simplify things further by considering only 

scalar or coulomb type interactions at this large spacing. We are also going to temporarily 

ignore Eq. (3.3. 2) and imagine that we have only one primary electric and or one colour 

charge. Consider two superpositions and (due to the above simplifying assumptions) imagine 

them as spin zero charges. QED considers the interaction between them as a single covariant 

combination of two separate and opposite direction non-covariant interactions (a) plus (b) as 

in the Feynman diagram of Figure 3.3. 1 below. The Feynman transition amplitude is 

invariant in all frames [9]. So let us consider a special simple case in a CM frame where we 

have identical particles on a head on collision path with spatial momenta:   

                                        

                                                        a a b b
      p p p p          (3.3. 4) 

     

From Eq. (3.3. 4) the initial and final spatial momenta are reversed with mirror images of 

each other at each vertex. Also in this simple special scalar case the transferred four 

momentum squared is simply the transferred three momentum squared.
  

    
  

                                         
2 2 2 2 2

( ) ( ) 4 4 .
a a b b a b

q p p p p      p p   
           (3.3. 5)  



33 

 

 

Figure 3.3. 1 Feynman diagram of virtual photon exchange between two spin zero particles 

of charge e .   

Figure 3.3. 2  All Eigenfunctions nk
 in the groups of three overlap at a fixed wavenumber k.  

If we look at Figure 3.3. 2 we see that at any fixed value of k, all modes nk
  in the groups of  

three overlapping superpositions for the various spins ½, 1 & 2 occupy very similar regions 

of space (provided they are all on the same centre.) The directions of their linear momenta are 

unknown but let us imagine some particular vector k  that is parallel to the above vectors

a b
p p . As we are considering only scalar interactions, all these modes must be spherically 

symmetric (as in section 3.2.2 for spins 1 & 2, and for spin ½ provided  or in turn 
nk

k  is small 

enough the probability that it is not spherically symmetric can be extremely low) and at a 

fixed value of k  they have momenta n k . Also as they overlap each other we can imagine 

units of  k quanta somehow transferring between these superpositions so that the values of 

n  in each mode can change temporarily by 1  for times /T E   . The directions of these 

 

  

  

(a) (b) 

The Feynman diagram is drawn with 

a vertical photon line representing 

the superposition of two opposite 

direction and non covariant 

processes  (a)  plus  (b).  

The exchanged 4 momentum is:    

    . 

 

  

  

 
Spin ½ Fermion  

superpositions 

  

Infinitesimal mass 

spins 1 & 2  

Boson superpositions 

  

   

 
  

 

 

  

3
( 3)

k
n    

Massive spin 1  

Boson superpositions 
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momentum transfers causing either repulsion or attraction depending on the charge signs of 

the superpositions at each vertex, whether the same or opposite. 

 

3.3.2 Restrictions on possible Eigenvalue changes 

Before we look at changing these Eigenvalues by 1n    we need to consider what 

restrictions there are on these changes.  

From Eq. (2.3. 12) superposition k
  requires 

2 2
Q A

4 2 4 2

*
81

n n

n

n k r
c c  and Eq. (2.2. 4) tells 

us the available   

2

2 2 2 4 2
8 8

3

EMP

s
Q A k r

N





 
 

     occurs with probability   
k

sN dk
 .  

For very brief periods the required value of 
2 2

Q A  can fluctuate, such as during these changes  

of momentum, but if its average value changes over the entire process then Eq.  (2.2. 4) tells 

us that probability /sN dk k changes also, and we have shown in section 3.2.1 that this is not 

allowed. For example in a spin ½ superposition 5 6 7
, , ,

k k k
   the average values of

5
c ,

6
c &

7
c  must each remain constant. This can happen only if n  remains within its pre-existing 

boundaries of (5 7)n  . For example if 7
 adds k , it can create 8

 , but
8

c  must average 

zero, which it can do only if it fluctuates either side of zero, and
n

c  cannot be negative. 

Similarly
4

c  must average zero, thus 4
  & 8

  are forbidden states. Keeping the average 

values of
n

c  constant is also equivalent to a constant internal average particle energy (we 

have shown in section 3.2.1 that rest mass is a function of
2

* .
n n nk

c c p ). By changing these 

Eigenvalues by 1n    there are only four possibilities; 6
 & 7

  can both reduce by  k

quanta, 6
 & 5

  can both increase by k quanta. If 6
  becomes 7

 , 
7

c  also increases and

6
c decreases, but then 7

 has to drop back becoming 6
,  with

7
c  decreasing back down and

6
c increasing back up in exact balance. If we view this as one overall process the average 

values of both
6

c and
7

c remain constant but fluctuate continuously. We can use exactly the 

same argument if 5
  increases which has to be followed by 6

  dropping, where if we view 

this as one process again, the average values of both
5

c and
6

c  remain constant. This is 

similar to a particle not being able to absorb a photon in a covariant manner, it has to reemit 

within time / .T E   With spherical symmetry the momentum .n p k  If we change n  

by 1  the sign of n p k determines the direction of the momentum transfer .p  In the 

above if 5 6k k
 

 
then returns 6 5

,
k k

  and n p k  keeps the same sign during this 

process, there is no nett momentum transfer and there is a probability of this, but it is not the 

probability we need. However consider the process as in Figure 3.3. 3.   

To get a net momentum transfer the momenta have to be in opposite directions for each half 

of this process. (Conservation of momentum allows this only if there is an equal and opposite 

transfer of momentum at the other vertex of the interaction.) The problem with this is that a 
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total transfer of 2  p k implies superpositions k
 interact with virtual 2k photons. Section 

3.5 shows that interactions only with virtual k photons give the correct Dirac spin ½ magnetic 

energy. However just as transversely polarized photons are equal left and right polarization  

superpositions / 2 / 2,L R
 
we can perhaps regard the Figure 3.3. 3 process as a  

similar equal superposition / 2 2.a b     

 

6

 

5

  a







k

k
 produces  p k , but there is another  p k  if returning via 

5

    

6

  b

 



 

k

k

 

Figure 3.3. 3 

 

The figure 3.3.3 process becomes the superposition 
2 2 2 2

a b  
  

k k
  

    (3.3. 6) 

 

 

We have two equal 50% probabilities of states a & b producing the required total .  p k  

Also as from the above paragraphs the average values of
5

c and
6

c remain constant:   

 

        5 6
The probability of transitions  must be the same in either direction.              (3.3. 7) 

 

As spherically symmetric states have momentum n p k :       

We can also think of  as a superposition / 2 / 2.n n n    p k p k k         (3.3. 8) 

 

3.3.3 Looking at just one vertex of the interaction first 

In Table 4.3. 1 and section 6.2 we introduce infinitesimal rest mass photons and gluons as 

superpositions of 3 4 5
, ,

k k k
    where 2N   in Eq.  (2.2. 4). Consider just one vertex of an 

infinitesimal rest mass spin 1 photon superposition 3 4 5
, ,

k k k
   interacting with a spin ½ 

superposition 5 6 , 7
,

k k k
   at the same .k  Looking at one possibility first, 4  5  

&  
k k

  for spin 

1 and 6  7  
&  

k k
  for spin ½, we can apply the Figure 3.3. 3 process to get a nett momentum 

transfer. For this combination of Eigenfunctions there are four possible ways of getting the 

momentum transfer as in Figure 3.3. 4. In each of these 4 cases the amplitude for this to 

happen includes the factors 4 5 6 7
.c c c c  
 
Let us temporarily imagine 4 5 6 7

. 1.c c c c    Then 

n p k as in a of Figure 3.3. 3 with an amplitude of 1 / 2  from Eq. (3.3. 8) transfers 

 p k also with an amplitude of 1 / 2 , which is the required first half of our 

superposition Eq.(3.3. 6)
 

/ 2 / 2.a b
 
Similarly n p k as in b  of Figure 3.3. 3 

gives the second half. It would thus seem that our amplitude is simply 5 6 6 7
.c c c c  
 
However 
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from Eq. (3.3. 7) there is a 50% probability of the transitions 5 6
   in either direction, or 

an extra 1 / 2  amplitude factor for 5 6
   in either direction, similarly an extra 1 / 2  

amplitude factor for 6 7
.   These two extra 1 / 2  factors reduce the amplitude 

4 5 6 7
 toc c c c  

4 5 6 7
 / ( 2 2)c c c c    4 5 6 7

/ 2.c c c c     Thus adding the four cases in 

Figure 3.3. 4 together and treating all other factors as 1: 

 

      Figure 3.3. 4 process amplitude factor is 4 5 6 7 4 5 6 7
 4 ( ) / 2 2c c c c c c c c              (3.3. 9) 

 

 

Figure 3.3. 4 

The four possibilities in Figure 3.3. 4 are all between the same sets of Eigenfunctions  

4 5
&

k k
  for spin 1, 6 7

&
k k

  for spin ½. But there are also four different sets of these A, B, 

C & D, between groups of four Eigenfunctions as in Figure 3.3. 5; with their amplitudes from 

Eq. (3.3. 9) below each relevant box, which we also label as A, B, C & D. (Subscripts a refer 

to spin ½ and b to spin 1.) 

 

 

                                  A                           B                         C                           D 

 

                

           

     

Amplitudes:  4 5 6 7
2 ,

b b a a
A c c c c  3 4 6 5

2 ,
b b a a

B c c c c
 4 5 6 5

2 ,
b b a a

C c c c c
  3 4 6 7

2 .
b b a a

D c c c c
  
 

Figure 3.3. 5 
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  with  
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   with   
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4 goes to 5 

 with  
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  with     
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 with    
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  with   

    Spin 1                       

5 goes to 4 

  with  

4 returns to 5 

  with  

    Spin 1                       
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  with      

4 returns to 5 

   with    

    Spin 1/2                       

7 goes to 6 

  with   

6 returns to 7 

  with  
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6 goes to 7 
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   with  

Spin 1   Spin ½  
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   4           6 
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Spin 1   Spin ½  

   5           7 

    

   4           6 
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   5           7 

    

   4           6 
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   5           7 

    

   4           6 
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3.3.4 Assumptions when looking at both vertexes of the interaction  

Because we are looking at an interaction between identical spin ½ fermions each vertex has 

the same groups of Eigenfunctions A,B,C&D as in Figure 3.3. 5. From section 2.2.2 and 

Figure 3.1. 4 the three Eigenfunctions forming each of the interacting particles are born 

simultaneously. It would thus seem reasonable to assume that the amplitudes of each group of 

three Eigenfunctions have the same complex phase angle. The two fermions and one boson 

can be at different complex phase angles to each other but each one individually is a 

superposition of three Eigenfunctions at the same complex phase angle. Thus the four 

amplitudes A,B,C&D from Figure 3.3. 5 (A,B,C &D each comprising two fermion amplitudes 

and two boson amplitudes) must all have the same complex phase angle. Similarly the four 

amplitudes , , &A B C D    of vertex 2 in Figure 3.3. 6  also have a common phase angle.  

 

Eigenfunction 

Groups 

           A            B            C           D 

    Vertex 1  Amplitude  A   Amplitude  B  Amplitude  C  Amplitude  D 

    Vertex 2  Amplitude A     Amplitude B    Amplitude C     Amplitude D   

Figure 3.3. 6 

We are also going to assume that Eigenfunctions A of vertex 1 interact only with 

Eigenfunctions A of vertex 2 and Eigenfunctions B of vertex 1 interact only with 

Eigenfunctions B of vertex 2 etc. Eigenfunctions A of vertex 1 do not interact with 

Eigenfunctions B of vertex 2 etc. Thus if all other amplitude factors are 1: 

  

                     The total interaction amplitude AA BB CC DD           (3.3. 10) 

 

Apart from a different complex phase angle this is equivalent to: ( & , &A A B B   etc. all 

differ by the same complex phase angle.)   

  

                          
2 2 2 2

Total interaction amplitude A B C D        (3.3. 11) 

 

 

 
2 2 2 2 2 2 2 2

Interaction probability ( )* ( )A B C D A B C D        

  

    (3.3. 12) 

 

Using 
2 2

( * ) ( * )( * ) etc. this is equivalent toA A A A A A   

 

                                
2

Interaction probability ( * * * * )A A B B C C D D       (3.3. 13) 
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From Figure 3.3. 5 4 5 6 7
2 ,

b b a a
A c c c c  3 4 6 5

2 ,
b b a a

B c c c c
 4 5 6 5

2 ,
b b a a

C c c c c
  3 4 6 7

2 .
b b a a

D c c c c  

 

 

5 5 5 4

22

4 5 6 7 3 4

4 4 4

6

5 6 7

5 4 5 6 5 3 4 6 7

Putting   etc. &  etc.   this is equivalent to

( * * * * ) 16

                

* , *

                        

* 4

 

b b a a b b a a b b a a

a a

b

a b b b b b a

b a

a

a
A A B B C C D D P P P P P P P P P P P

P c c P c c A A P P P P

P P P P P   





 

 

   
2 2

4 3 5 6 5 7
         = 16 ( ) ( )

b b b a a a
P P P P P P 

 

Then using 3 3 4 4 5 5 5 5 6 6 6 6
* * * * * * 1

b b b b b b a a a a a a
c c c c c c c c c c c c       the interaction probability is 

                                      
 

      
2

4 4 4 4

4

6

2 2

6 6 6
* (1 * (1*( * * * * ) 2 )) *

b b b b a a a a
A A B B C C c c c c cc c cD D      (3.3. 14)               

We have assumed to here that all other amplitude factors are 1. However at each vertex there 

are both fermion and boson superposition probabilities from Eq.  (2.2. 4). Writing the 

superposition probability at each vertex /sN dk k  as 1/2 1
/ ,s N dk k  1 2

/s N dk k  for clarity 

where 1 1 
spin 1 ,  1 is etc.s N N   Including these factors (if all other factors are one) in Eq. 

(3.3. 14) our overall probability at wavenumber k is  

 
2

1/2 1 6

2

1 2 4 4 46 6 46
2 * (1 * 2 (1) * * )

b b ba ba a a
s N c c c c s N c c c c

kk

 


 









 

 

   
22

1/2 1 6 1 2 4 4 4 46 6

4

6
2 *2 * (

.
(

(1 )1 * ) *

)

a a a b ba b b
ss N c c c c N c c c c

k


  

 

The momentum per transfer is a total of  k and using Eq’s.   (3.3. 5), (3.3. 6) & Figure 3.3. 3 

we have 
4 4

( ) q k  (then putting 1 ) the interaction probability:  

 

 

 
   

2

1/2 1 6

2

1 2 4 4 46 6 4

4

6
2 *2 * ( )1 () 1* *

a a b b ba a b
s N c cs N c

q

c c cc c


 
  

    (3.3. 15)
 

  

This is the scalar interaction probability between two spin ½ fermions exchanging 

infinitesimal rest mass spin 1 bosons at very large spacings, where the fermions  are 

effectively spin zero, imagining them as bare charges and all other factors being one. Going 

through exactly the same procedure but similarly exchanging spin 2 infinitesimal rest mass 

scalar gravitons (with 2
2N N  for clarity) the gravitational interaction probability 

between fermions becomes (using subscript c for spin 2) if all other amplitude factors are 1:  
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2

2 2 4 4

2

1/2 1 6 6 6 4 46

4

2 *
 for fermion

2 *
s.

1 * *( (1) )
a a c c c ca a

s N c c s N c c cc c c

q





  

  (3.3. 16) 

 

 

And if for example two spin 1 photons exchange spin 2 gravitons (all infinitesimal rest mass  

with 2
2N N  ) the interaction probability becomes if all other amplitude factors are 1:

 
      

       
   

2

1 2 4

2

2 24 4 4 44 4

4

4
2 *

 for 2 pho
(12 *

tons.
( )* 1 * )

b b b b c c c c
s N c cs N c c c c c c

q
N


   

(3.3. 17) 

 

 

If two massive 1N   photons (as in Figure 3.3. 2) exchange spin 2 gravitons the interaction 

probability becomes if all other factors are 1: 

 

 

        
   

2

1 1 5

2

2 25 4 4 45 4

4

5
2 *

 for 1 pho
(12 *

tons.
( )* 1 * )

b b b b c c c c
s N c cs N c c c c c c

q
N


  

 

(3.3. 18) 

 

 

General Relativity (section 1.1.1) tells us the emission of gravitons is identical for both mass 

and energy. Keeping all other factors (such as mass/energy) in Eq’s. (3.3. 16), (3.3. 17) & 

(3.3. 18) constant, the exchange probabilities must be the same in each. We can thus put them 

equal to each other and cancel out the red terms:

   

       

1 2 4 4 4 4 1 1 5 5 1/2 1 65 5

5 5 5 5

6 6

4

6

4 4 4

 

                                                    or

   

                   

2 * (1 * )

2 * (1

2 * (1 * )

        4 *

2 * (1 * ) 

(1 * )  * ) 

b b b b

b b b b

a a a ab b b b

b b b b

s N c c c c

c c c c

s N c c cs N c c c c

c c c

c

c





 

6 6 6 6
       

                        

   

         1  S         pin 1 

* (1 * )

1  Sp    in    2  Spin         1 1/2     

a a a a
c c

NN

c c

N



 





 

 

(3.3. 19) 

 

 

Now assume that all other factors (other than coupling constants) are 1, and remember that 

we are simplifying with a thought experiment by looking at spin ½ superpositions sufficiently 

far apart so we can treat them as approximately spherically symmetric or effectively spin zero 

even if they are supposed to be bare charges with spin. Under these same scalar exchange 

conditions QED tells us that with electrons for example:  

  

            The probability of scalar or coulomb exchange in Eq (3.3. 15). 
2

4

4
= .   

q


  

  (3.3. 20) 
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Let us temporarily ignore the fact that gluons have limited range, and imagine our thought 

experiment applying to colour charges exchanging gluons. The   of Eq. (3.3. 20) becomes 

the usual colour coupling 3
 . To get the fundamental coupling ratio labelled as C

 1

3
 

  

@
cutoff

k we substitute the  of Eq.  (3.3. 20) with
1

C
 


 as we have assumed 

3
(Primary) 1.    

Also substitute 1/2 1
2 1,  2 2,s s 

 1 2
1 & 2N N   and equate Eq’s. (3.3. 15) &  (3.3. 20) 

    

                        

   

  

1 2

4

2

6 6 6 6

2

4 4 4 4

4 4 46 6 6 46

4

1

4 * (1 * )

4 * (1 *or  2

* ( 4( )1 * )

* ( * ) )1

b b b b

b b b b

a a a a

a

C

Ca a a

q

c c c c

c c c c

c c c c

c c c c

q









 






  

 

(3.3. 21) 

 

 

But from Eq. (3.3. 19) the blue and green terms are equal (also the magenta terms) and we 

can solve for the fundamental coupling ratio by combining Eq’s. (3.3. 19) & (3.3. 21).  

 

      

4 4 6 6 6 65 5 54 4 5

1  Spin 1 

Massive Phot

1  Spin 1/2

                  

                                    2  Spin 1

Ph Fermiootons or Gluons         

 

ons 

2 * (1 * )

ns

* (14 * (1 * ) * )
b a ab ab b bb bb a

N

c c c

N N

cc c c cc cc c



 








1

2

                                                                                                            

C
 

 

(3.3. 22) 

 

The coupling ratio is fundamentally the same for colour and electromagnetism apart from the 

six primary electric charges of Eq. (3.3. 1) because of the way electric charge is defined. 

Equations (3.3. 19), (3.3. 21) & (3.3. 22) tell us that for any interactions between two 

superpositions, the inverse coupling ratio always involves the product of the central 

superposition member probability by the probability of the other two members combined

N spin   of the first superposition, times the equivalent product for the other superposition.  

In section 4 we introduce gravity and solve these ratios. Despite all the simplifications the 

above equations are surprisingly consistent with the Standard Model provided there are only 

three families of fermions. Even though we used gravity to derive Eq.(3.3. 19) we leave 

discussing the gravity coupling ratio till section 6.2.6.  

 

3.4 Electrostatic Energy between two Infinite Superpositions 

3.4.1 Using a simple quantum mechanics early QED approach 

In section 3.3 we have shown that fermion superpositions can exchange boson superpositions 

in the same way as electrons can exchange virtual photons for example. Providing the 

superposition amplitudes are appropriate, the coupling constants can be just as in QED, 

though we will look further at this in section 4.1.1. So it might seem that evaluating 

electrostatic energy between superpositions is unnecessary. However when we look at gravity 
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we find that the spacetime warping around mass concentrations appears to be strongly related 

to cosmic wavelength virtual graviton probability densities. Now QED looks at particle 

scattering crossections due to virtual particle exchange probabilities, but as we later focus on 

virtual graviton probability densities we will use a simple, but only approximate, quantum 

mechanical method based on virtual photon probability densities to find the scalar potentials 

between two charges (or infinite superpositions) that also allows a simple solution to 

magnetic energy between superpositions in Section 3.5 where we modify relevant equations 

in a simple manner. We also use some of these same equations when looking at why 

borrowing energy and mass from zero point fields requires the universe to expand after the 

Big Bang and distort spacetime around mass concentrations.  

We assume spherically symmetric 3l   superpositions emit virtual scalar photons in this 

section and 3, 2l m    superpositions emit virtual 1m    photons in section 3.5. As 

section 3.3 has shown that we can achieve the same electromagnetic coupling constant   we 

can use the scalar photon emission probability (2 / )( / )dk k  covered in section 2.1.1. From 

section 3.3 we can also see that the effective average emission point has to be the center of 

superpositions. The probability of finding this interacting virtual photon (or spin 1 

superposition) decays exponentially with radial distance travelled. The normalized 

wavefunction   for such a virtual scalar photon of wave number k emitted at 0r   is:  

 
( )

2 2
 @ time 0.

4 4

kr i kr t kr ikr
k e e k e e

t
r r




 

    

    

 

                          kr  

Figure 3.4. 1 Radial probability of 6k
 and the exponential decay with radius of its interacting 

virtual boson 2
* 2 .

kr
R R ke


 These curves are the same for all k , applying equally to virtual 

photons, gravitons and to large k  value gluons etc.  

 

4 *R R

k




  
Dominant fermion wavefunction 6k

   

Interacting boson 
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Wavefunction   is spherically symmetric as scalar photons are time polarized. Figure 3.4. 1 

plots the radial probabilities of the exponential range of the virtual photon and the dominant  

6n   mode of its relating superposition .
k

  The effective range of the interacting photon is  

of a similar order to the radial probability dimensions of 6
.

k
  For simplicity in what follows 

we locate two superpositions (which we refer to as sources) in cavities that are small in 

relation to the distance between them. The accuracy of our results depends on how far apart 

they are in relation to the cavity size. Consider two spherically symmetric sources distance 

2C  apart emitting virtual scalar photons as in Figure 3.4. 2 where point P is 1r  from source 

1, & 2r  from source 2. Let 1  be the amplitude from source 1, and 2  be the amplitude from 

source 2 and for simplicity and clarity let 0t  .  

 

                  
1 1 2 2

1 2

1 2

2 2
Thus            &   

4 4

kr ikr kr ikr
k e k e

r r
 

 

   

    
  (3.4. 1) 

 

 

Consider    1(  2 ) * 1(  2 )    1 1 1 2 2 1 2 2* * * *             

Now 1 1*    &   2 2*    are just the normal probability densities around sources 1 & 2 as 

though they are infinitely far apart but the work done per pair of superpositions k  on 

bringing 2 sources closer together is in the interaction term: 1 2 2 1* *    .   

  

1 2 1 2

1 2

1 2

2
*

4

kr kr ikr ikrk
e e e e

r r
 



   
  1 2 1 2

( ) ( )
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2

4

k r r ik r rk
e e
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1 2 2 1* *     1 2 1 2 1 2
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1 2

2

4
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e e e
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1 2
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cos ( )

4
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e k r r
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     1 2 1 2 1 2 2 1

1 2

4
Now put ( , )     &     * * cos( )

4

Akk
A r r B r r e kB

r r
   




        

  (3.4. 2) 

  

Real work is done when bringing superpositions together and we can treat these interacting 

virtual photons as having real energy kc  .  Using virtual photon emission probability

(2 / )( / )dk k   from section 2.1.1   

                                

2
Energy per virtual photon Probabil   Probability 

2
ity

dk
kc

c
d

k
k









 
  


 


  

  

(3.4. 3) 



43 

 

 

 

Figure 3.4. 2 

Including Eq.(3.4. 3) the interaction energy @ k  is thus ( 1 2 2 1* *     )
2 c

dk




 
 
 

 and 

using Eq. (3.4. 2) the interaction energy @ k  is 
2 c

dk
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4
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4
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e kB
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.  

The total interaction energy density due to 1 2 2 1* *     for all k  is   

 

                                                    
1 2 0

2 4
cos( )

4

Akc
ke Bk dk

r r



 




   
   (3.4. 4) 
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     (3.4. 5) 

 

Where               
2 2 2 2

1 2 1 1 2 2( ) 2A r r r r r r       &  
2 2 2 2

1 2 1 1 2 2( ) 2B r r r r r r    
 

  

                     
2 2 2 2 2 2 2 2

1 2 1 1 2 2 1 2Thus      ( ) 2   & 2( )A r r r r r r A B r r             (3.4. 6) 

 

                                            
2 2

2( )r C   as cos(180 ) cos      

                                                   
2 2 2 2

and    4( )A B r C      (3.4. 7) 

 
 

 

 

Putting Eq’s. (3.4. 4), (3.4. 5),  (3.4. 6) &  (3.4. 7) together 
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   (3.4. 8) 

 

 

This is the total interaction energy density of time polarized virtual photons at point P  due to 

1 2 2 1* *     for all k  and there are no directional vectors to take into account. We will 

use similar equations for the vector potential ( 1m   ) photons for magnetic energies but will 

then need directional vectors. Equation  (3.4. 8) is the energy due to the interaction of 

amplitudes at any radius r  from the centre of the pair. It is independent of ,  and to get the 

total energy of interaction we multiply by 
2

4 r dr for layer dr  and integrate from 0 .r    

  

The total interaction energy is        1 2 2 1

0 0

2
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                              The interaction or potential energy is  
2

  
c c

C R

 
   

 

  (3.4. 9) 

 

 

If 2R C  is the distance between the centres of our assemblies, this is the classical potential. 

The procedure used here with small changes, simplifies the derivation of the magnetic 

moment; we reuse some equations, but in a slightly modified form taking polarization vectors 

into account. We also reuse some of these simple but approximate derivations when looking 

at gravity in Section 5. 
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3.5 Magnetic Energy between two spin aligned Infinite Superpositions 

In this section we are going to consider two infinite superpositions that form Dirac spin ½ 

states.  We will look at the magnetic energy between them when they are both in a spin up 

state say along some z axis as in Figure 3.5. 1. We are not looking at the magnetic energy 

here when they are both coupled in a spin 0 or spin 1 state. That is, both Dirac spin ½ states 

have their 3 / 2  spin vectors randomly oriented around the z axis with / 2  components 

aligned along this z axis. Also in this section we will be dealing with transversely polarized 

virtual photons and must take account of polarization vectors. In section 3.2.2 and Eq. (3.2. 7) 

spin ½ states are generated only from 3, 2l m   states and as transversely polarized photons 

are superpositions of 1m   photons they can only be emitted from these 3, 2l m   states, 

the remaining states are spherically symmetric and cannot emit transversely polarized 

photons. We don’t yet know the value of amplitudes nc  so we will derive the magnetic 

energy in terms of these. We will then equate this energy to the Dirac values assuming a g  

value of 2 before QED corrections; this allows us to evaluate in section 4.3  the amplitudes

nc  in terms of the ratio EM
 between primary and secondary electromagnetic coupling. We 

can then evaluate in section 4.1  the primary electromagnetic coupling constant EMP
 in terms 

of the ratio EM
 . (Section 3.5 uses the same format as Chapter 18, “The Feynman Lectures on 

Physics” Volume 3, Quantum Mechanics [11].)   

 

 

 

 

 

 

 

 

 

                                                     Figure 3.5. 1 

An 3, 2l m   state can emit a right hand circularly (R.H.C.) polarized ( 1)m    photon in 

the z  direction. Let the amplitude for this be temporarily R . 

An 3, 2l m    state can emit a left hand circularly (L.H.C.) polarized ( 1)m    photon in 

the z  direction. Let the amplitude for this also be temporarily L . 

First rotate the z axis about the y  axis by angle   (call this operation S R ) then use

(1/ 2)x R L       and multiply on the right by operation S R . 
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The amplitude to emit a transversely polarized photon in the x  direction is thus 

                                  
1

2
x S R R S R L S R                                            

Where 2 2
3, 2 3, 2 (1 / 4) 2 2 cos 4sin 3sin cosR S R S            

 
is the 

amplitude  an 3, 2l m   state remains in an 3, 2l m   state after rotation by angle  .   

Also   2 2
3, 2 3, 2 (1 / 4) 2 2 cos 4sin 3sin cosL S R S             

 
is minus the 

amplitude that an 3, 2l m   state is in an 3, 2l m    state after rotation by .  

 

 Putting this together                     
2

1 2 sin cos 2

2 2
x S R

 
                                                 

  (3.5. 1) 

 

An 3, 2l m   state can also emit an ( 1)m    photon in the z  direction but it will now be 

left hand circularly polarized. Let this amplitude be temporarily: L . 

Similarly an 3, 2l m    state can emit an ( 1)m    photon in the z  direction which is right 

hand circularly polarized. Let this amplitude be temporarily: R . 

 

 We can go through the same procedure as above to get
cos 2

2
x S L


                       

           (3.5. 2) 

 

This amplitude Eq. (3.5. 2) is for a photon emitted in the opposite direction to amplitude Eq. 

(3.5. 1) but cos2 cos2(180 )    and we can simply add these two amplitudes. Let us 

assume however that an 3, 2l m   state has equal amplitudes to emit in the z  & z  

directions of / 2R  and / 2L .  

 

With these amplitudes; 
1 cos 2 cos 2

2 22
x S R x S L

 
        cos 2              

       (3.5. 3) 

 

 

Eqation (3.5. 3) is the angular component of the amplitude for a transverse x  polarization in 

the new z direction where x x & z z   . When 0   or 180 the on axis amplitude 

for transverse polarization is one as expected ignoring other factors. Using the same 

normalization factors (we check the validity of this in section 3.5.2 we can still use the 

amplitudes and phasing of our original time mode photons Eq’s.  (3.4. 1) but instead of 

including polarization vectors we will for simplicity just use the cosine of the angle ( )   

between them (as in Figure 3.5. 2 ) as a multiplying factor. Including the angular factor Eq. 

(3.5. 3) in our earlier scalar amplitudes Eq’s.  (3.4. 1)  we have for our new wavefunctions:                                             
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1 1 2 2

1 2

1 2

2 2
cos 2    &  cos 2

4 4

kr ikr kr ikr
k e k e

r r
   

 

   

    
  (3.5. 4) 

 

 

The transverse polarized photons from sources (1) & (2) have polarization vectors 1x  and 

2x  at angle to each other ( )  , (Figure 3.5. 2) and the complex product becomes: 

 

         1(  2 ) * 1(  2 )    1 1 1 2 2 1 2 2* ( * * )(cos( ) *                 

 

Where the interaction term is now: 1 2 2 1( * * ) cos( )        and as in the scalar case 

(section 3.4.1) but now using Eq’s. (3.5. 4)    

1 2 1 2
( ) ( )

1 2

1 2

2
* cos( ) cos 2 cos 2 cos( )

4

k r r ik r rk
e e

r r
       



   
    

1 2 1 2
( ) ( )

2 1

1 2

2
* cos( ) cos 2 cos 2 cos( )

4

k r r ik r rk
e e

r r
       



   
  

               

 

         1 2 2 1

1 2

4
( * * ) cos( ) cos 2 cos 2 cos( )

4

Akk
e kB

r r
       




   cos( )         

  (3.5. 5) 

 

                         (Where as in section 3.4.1, Eq. (3.4. 2) 1 2 1 2&A r r B r r    . )  

 

 

 

 

 

 

 

 

 

Figure 3.5. 2  Two sources 2C apart, both with 
2

( 2)nk m     states along the joining line, 

&   are the respective angles to P ,  1
r  & 2r  are the respective distances to point P. 

 

3.5.1 Amplitudes of transversely polarized virtual emmited photons 

In the laboratory frame nk
  has amplitude nk to be in an 2m    state (section 3.1). For a 

multiple integer n superposition k n nk

n

c  . At each fixed wavenumber k we cannot 

C C 

 
 

  

 

  

Source 1 Source 2 

Point  
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distinguish which integer n a virtual photon comes from, so we must add amplitudes from 

each individual integer n superposition. To keep integrals simple we will assume that

1nk   or that spacing 2C is very large, and our interacting k  values are very small. 

(We can make a comparison with the Dirac values at any large spacing so accuracy need not 

be affected.) Thus if 1nk  & 1nk  , we can approximate Eq. (3.1. 11) as   

 

0 0

2 22
 

2 2 2 2

nk c c

nk nk nk nk

s nk s nkn k s
K

m c m c
       

p
 for spin ½ fermions. 

                Adding amplitudes for multiple integer  superpositions
2

c

k

n k
n    

  (3.5. 6) 

 

(When deriving Eq. (3.2. 10) we said
2

   
k k

k n and not k n p p . How do we 

justify this? When 1nk   as above nk n k  
nk

p  So adding ampitudes nk to get
k

  

is equivalent to adding nk
p  to get 

k
p  and not adding 

2 2 2 2

nk
n kp to get

2
.

k
k np  If 

this is true when 1nk   it must be true for 0 1.)nk    

 

3.5.2 Checking our normalization factors 

Let us pause and check the reasonableness of all this and our normalization factors. From 

Eq’s.  (3.4. 1) for scalar photons 
2

2

2
*

4

kr
k e

r
 



 
 

 

   (emission probability
2 dk

k




) gives a  

            Scalar k
 emission probability density

2

2

2 22
*

4

kr
k e

r

dk dk

k k
 



 

 


   

   
   

.  

 

The transversely polarized probability density, using Eq’s. (3.5. 4) &   (3.5. 7) plus
2

k  is                               

 

Transverse emission probability density 
2

2

2

2 2 2
* cos 2

4

2 2
nk

r

nk

k
k e

r

dk dk

k k

 
 


 

 

 
  

 

  

 

(Where 1 2
2 2 & .r r   ) If we now consider the on axis 0   case the transverse polarized 

on axis emission probability density at k  is: 

 

2

2

2 22

4

kr

k

k dk

k

e

r




 

 
 
 

2

k  
2

*
dk

k




   

Just as in QED the factor
2

k is the factor we need for this on axis emission probability 

density ratio between transverse and scalar polarization. This justifies using the same 
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normalization constant 2 / 4k  for both the scalar and magnetic wavefunctions. We seem to 

be on the right track and using the same virtual photon emission probability and energy kc  

as in Eq. (3.4. 3) for both the scalar and transverse polarization cases ie 

 

  
2

Energy per transverse photon Probability   Probability 
2dk

kc
c

k
k

d








 
  


 


 
  (3.5. 7) 

 

 

Multiplying Eq. (3.5. 5) by Eq. (3.5. 6) squared, and Eq. (3.5. 7) we get the transverse 

interaction energy @ wavenumber k :  

                                    
2

1 2 2 1( * * ) cos( )k       
2 c

dk




 
 
 

                             

                                   

22 2

1 2

4
cos 2 cos 2 cos( )

4 4

C Akn k k
e kB

r r
 




 
 
  

cos( ) 
2 c

dk




 
 
 

 

Rearranging this:       
2

1 2 2 1( * * ) cos( )k       
2 c

dk




 
 
 

                    

                        =  

2 2
2 Cn c


1 2

cos 2 cos 2 cos( )

4 r r

   



 3
cos( )

Ak
k e kB dk

 
 

                  
    (3.5. 8) 

 

 

As in the scalar case we integrate over k  first but now with a 
3

k term due to the inclusion of 

the
2

k factor which is approximately proportional to
2

k from Eq. (3.5. 6).  

Using     1 2 1 2    &    A r r B r r        and    Eq’s.    (3.4. 6) & (3.5. 6) 

   

                                  
3

0

cos( )
Ak

k e kB dk


 

  =

2 2 2 2 2
1 2

2 2 4

2 ( )3

8 ( )

r r r C

r C

  
 

 

    

 And thus:                      
2

1 2 2 1

0

( * * ) cos( )k      



 
2 c

dk



           

          =   

2 2
2 Cn c


1 2

cos 2 cos 2 cos( )

4 r r

   




 

2 2 2 2 2
1 2

2 2 4

2 ( )3

8 ( )

r r r C

r C

  
 

 

           
    (3.5. 9) 

 

 

Equation (3.5. 9) is the magnetic interaction energy density at point P for all wave numbers .k    

Figure 3.5. 2 is a plane of symmetry that can be rotated through angle 2 around the axis of 

symmetry (the joining line along the axis of the 2 spin aligned sources).  To evaluate the total 

magnetic energy density over all space we just multiply by 2
4 sin .r d dr     
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We thus integrate Eq. (3.5. 9)   2
4 sin .r d dr   =    

           

       

2 2 /2 2 2 2 2 2

21 2

2 2 4

1 20 0

3 2 ( )cos 2 cos 2 cos( )
sin

4 )
 

(

C
n c r r r C

r d dr
r r r C

    
 




  
 

 
      

   

(3.5. 10) 

 

Now 
2

1 20 0

cos 2 cos 2 cos( )

r r



   



 

2 2 2 2 2
1 2

2 2 4

2 ( )

( )

r r r C

r C

  
 

 

2
sinr d dr  can be reduced to the  

single integral:   

1 2
2

3 3 2

0

1 (7 5 ) 1 14 16
1 ln

1 38

x x
x dx

xC x x

  
   

 
  which can be also expressed  

as an infinite series in p  (to not confuse with superposition value n ):  

3

1

8C 1

14 10 (2 1)!
.

2 3 2 1 2( 1)!( 1)!4

p

p
p

p

p p p p






  
 

    
    

3

1 (160 51 )
.

6 28C

 
                                                            

 

                                             
3

1 (160 51 )
(Putting 2  )    .

6 2
R C

R

 
    

  (3.5. 11) 

 

                       This infinite series is approximately  
3

1

54(1.0045062....)R


                 

  (3.5. 12) 

 

Putting Eq.(3.5. 12) into Eq.(3.5. 9) the total magnetic interaction energy over all frequencies 

and all space for 2 spin aligned infinite superpositions is:     

                                             

2 2
3

4

Cn c
U




 

3

1

54(1.0045062....)R

 
 
 

 

              
2 2

3
We will call this   superpositions

72 (1.0045062....)
 

Cn c
U

R

 
  
  

  

(3.5. 13) 

 

 

We can equate this magnetic energy to the classical value assuming the Dirac value of 2g   

for spin ½ (No QED corrections have been applied so it must be 2g  ). For the arrangement 

of spins as in Figure 3.5. 1 the Dirac magnetic energy between two spin ½ states is  

                                       

                                                         
2

2 3

2
Dira =

4
c

o

U
c R





 
  
 

 
(3.5. 14) 

 

 

Using the Dirac magnetic moment
0 02 2 2

Cece e c

m m c
      the Dirac magnetic energy is    
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2

3
(Dirac)

2

C c
U

R

 
   

 

    

The approximation used in deriving Eq. (3.5. 6) 
2 2 2

    for 
2

1   is true only when

CR  . This error in 
2  is of the order of 

2 2
/C R  and rapidly tends to zero with 

increasing R . There is no upper limit on the value of distance R we can choose. Thus 

comparing our estimate of the magnetic energy with Dirac’s value when CR  . 

  

             

2 2

3

2

3
(Superpositions) 

72 (1.0045062...
o(Dir r

.
c)

)
a

2

C Cc
U

c
U

R

n

R

  
 

 
 

 


 




  

(3.5. 15) 

 

 

                All symbols cancel except n  leaving:        
2

36(1.0045062.....)n   

 

The expectation value n  in our superposition is slightly more than 6n   our dominant 

mode. This is why we have used a three member superposition centred on this dominant 6n   

mode. The two side modes 5n   & 7n  are smaller so that:   

 

                         
5 7.,6,

( * ) 36(1.0045062...) 6.01350345n n

n

n c c n



         (3.5. 16) 

 

This is for Dirac spin ½ particles. This mean value of n creates a 2g   fermion which QED 

corrections (which are secondary interactions) increase slightly to the experimental value. In 

section 4.1 we solve the primary electromagnetic coupling constant in terms of ratio EM
  

using Eq. (3.5. 16). It is important to remember this magnetic energy derivation applies to 

two infinite assemblies (or particles) localized in small cavities in relation to their distance R  

apart. They must be both on the z axis with spins aligned (or anti aligned) along this z  axis 

as in Figure 3.5. 1 & Figure 3.5. 2. Also the agreement with Dirac and in what follows is 

possible if superposition k
  interacts only with virtual photons of the same wavenumber .k   

4 High Energy Superposition Cutoffs 

4.1 Electromagnetic Coupling to Spin ½ Infinite Superpositions 

Equation (3.5. 16) is the key requirement for spin ½ superpositions to behave as Dirac 

fermions, allowing us to solve 
1

EMP



 as a function of coupling ratio    using Eq. (3.5. 16).  

   

                                    
5 7.,6,

( * ) 36(1.0045062...) 6.01350345n n

n

n c c n
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5 5 6 6 7 7 5 5 6 6 7 7

7 7 5 5

6.01350345  

0.0

Thus  5 * 6 * 7 * but  6 * 6 * 6 * 6

 and                    1350345   * *

c c c c c c c c c c c c

c c c c

     

 
 

    

As 7 7 5 5 6 6
* * 1 *c c c c c c    we can now solve for 7 7 5 5

*   &   *c c c c  in terms of 6 6
*c c  

              6 6 6 6

7 7 5 5

* *
* 0.50675172    &     * 0.49324827

2 2

c c c c
c c c c             

       (4.1. 1) 

  

From Eq. (2.3. 12) the 
2 2

Q A required to produce this superposition with amplitudes n
c  is  

                                  
2 2

Q A 
5,

4 2 4 2

6,7

*
81

n n

n

n k r
c c



  and using Eq. (4.1. 1) 

                
5,6,7

4

5 5 6 6 7 7
*  625 * 1296 * 2401 *

n

n

n
c c n c c c c c c



    6 6
1524.991 217 *c c                          

Thus 
2 2

Q A 
5,

4 2 4 2

6,7

*
81

n n

n

n k r
c c



   2 4 2

6 6
18.82705 2.67901 *c c k r  is the required vector  

potential squared to produce this spin ½ superposition.  From Eq.  (2.2. 4) with s   ½ &

1N   for massive fermions 
2 2

Q A

2

2 4 2
2 8 8 )

3

EMP

k r




 
 

 is the available
2 2

Q A .  

Equating required and available:
2

2 8 8 )
EMP

 
   6 6

18.82705 2.6790 *3 1c c   

                                                        
2

1 )
EMP

 
   6 6

1.386256 0.197258 *c c                                           

                                                         
2

6 6
1.386256 0.197258 * 1

EMP
c c    

 
                          

  (4.1. 2) 

 

From Eq’s. (3.3. 1) & (3.3. 22), 
6 6 6 6
* (1 * ) 2 / 6 2 /

C EM
c c c c   

 
and we can solve for 

EMP
 as a function of either EM

 or .
C

  We then use Eq. (3.3. 22) again to get 
1

@ .
EMS cutoff

k 
 

Now both EM
 and C


 
are fundamentally the same ratio differing only by 36:1, because 

electron superpositions have six primary charges whereas we define them as one fundamental 

charge (section 3.3.1) and quarks have only one colour charge (Table 2.2. 1). Because 
1

3C
 


  at the cutoff near P

L
 
it is more convenient to work with.  From Eq. (3.3. 22) 

 

                     
6 6

1 1 2
* 1 4

2 2
C

c c


      and there are two solutions for each .
C

    

One has 6 6
*c c  dominant with two smaller 5 5

*c c  & 7 7
*c c side modes, the other is the reverse 

with 6 6
*c c the minor player and two larger 5 5

*c c  & 7 7
*c c  side modes. As the values for 

EMP
 with 6 6

*c c
 
dominant fit the Standard Model very closely, we include only these. (This 
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only applies to spin ½ fermions and in Table 4.3. 1 spins 1 & 2 boson superpositions have 

minor centre modes.) Table 4.1. 1 shows these dominant 6 6
*c c  mode results for 

1

3C
  


 
at 

various possible cutoffs in the range 50 51
C

   , as this range fits the Standard Model.  

Of course there can be only one solution for this cutoff.   

 

Coupling Ratio 
C

       6 6
*c c  

1

EMPrimary
 

  
1

Secondary
@

EM cutoff
k 

 

         50.00 0.723607  75.4414          104.7798  

         50.20 0.724497  75.5447          105.3429  

         50.40 0.725378  75.6472          105.9060  

        50.4053             0.725401   75.6499           105.9210   

         50.60 0.726250   75.7488           106.4692   

         50.80 0.727115  75.8497          107.0324  

         51.00 0.727970   75.9499           107.5956   

Table 4.1. 1  Possible 
1

coupling ratios  versus  in the range   = 50 51.
EMSecondaryC C

  
   The 

yellow row corresponds to the interaction cutoff energy in Figure 4.1. 2 & Eq. (4.2. 11).   

4.1.1 Comparing this with the Standard Model 

In the real world of Standard Model secondary interactions the electromagnetic force splits 

into two components 1 2
&   at energies greater than the mass/energy of the 0

Z  boson or 

91.1876 .GeV [12]. However we want to compare these Standard Model couplings with 

the values derived in Table 4.1. 1 at the 18
2.0288 10 .GeV   cutoff of Eq.    (4.2. 11). 

Assuming three families of fermions and one Higgs field the SM [13] predicts   

                                    

1

1

1

2

1

3

4.1
58.98 0.08 log

2 91.1876

19
29.60 0.04 log

6 2 91.1876

7
8.47 0.22 log

2 91.1876

e

e

e

Q

Q

Q
















  

  


  

 

       

       

 (4.1. 3) 

 

1 1 1

1 2

1 1 2 1 1 2

1 2  

5
The weak force split obeys              

3

3
Also   &  where is the Weinberg angle.

5

EM

EM W EM W W
Cos Sin

  

      

  

   

 

 

  

 

 (4.1. 4) 

  

Combining Eq’s. (4.1. 3) & (4.1. 4)        

 

                  1 1 1

1 2

5 11
127.90 0.173 log

3 3 2 91.1876
EM e

Q
  



  
    


 

                                                                                                       

  (4.1. 5) 

 

 

Figure 4.1. 1 plots these four inverse coupling constants. Figure 4.1. 2 plots the intersection 

of 
1

SecondaryEM
 

predicted in Table 4.1. 1 and the Standard Model prediction for 
1

EM



 in Eq.   

(4.1. 5). It would initially seem in Figure 4.1. 2 that there is an unusually large error band in 
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the predicted results. However
1 1

 / 2.8
EMSecondary

  
    is approximately constant in this 

table and the error band in the Standard Model colour coupling
1

3
 of 0.22


  in Eq’s (4.1. 3) 

translates into the larger error band for
1

EMSecondary
 

 of 0.22 2.8 0.62     in Figure 4.1. 2. 

 

 

 

Figure 4.1. 1 Standard Model based on three families of fermions and one Higgs field. 

 

 

Figure 4.1. 2  A close up of the intersecting region of the Standard Model Eq. (4.1. 5) and 

Table 4.1. 1 predictions. The fermion interaction cutoff seems to be consistent with the 

Standard Model. 
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1 18

3
50.405 0.22@ 2.029 10 .GeV 

      
1

1



  

1

2
 

  

 in .Q GeV    

Figure 4.1. 2 

is a close up  

of this region. 

Possible values for
1

(Secondary)
EMS




  

from Table 4.1. 1 

18
Fermion interaction cutoff 2.029 10 . Planck

E
GeV

n
    

 

Standard Model 

1 1 1

1 2

5

3
EM

    
   

Figure 4.1. 1 expanded 

 in .Q GeV    

 Planck Energy

n
  

1 1 1 18

1 2

5
105.934 0.173@ 2.029 10 .

3
EM

GeV    
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4.2 Introducing Gravity into our Equations 

4.2.1 Simple square superposition cutoffs    

In section 3.2 we looked at single integer n superpositions of nk
  initially for clarity, and 

later found multiple integer n superpositions gave the same results; we will do the same here. 

We also found in Eq’s. (3.2. 3) & (3.2. 6)  that the integrals for both angular momentum and 

rest masses are of similar form. They both ended up including the term 

 

    
2

0

1

1
nk

K



 
 
 

which if nk
K cutoff    becomes 

2

0

1

1

nkK cutoff

nk
K

 
 
 

and this is equal to  

   

 2

2 2 2

1 1 1
1

1 1 1 1 / ( ) 1

nk

nk nk nk

K cutoff

K cutoff K cutoff K cutoff 
   

   
  

            (4.2. 1) 

 

    

where using Eq. (3.1. 11) the infinitesimal 

2 2

0

2 2 2 2

21

( )
nk cutoff

m c

K cutoff n k s
    

            (4.2. 2) 

 

 

For integral or half integral angular momentum precision is required but Eq. (3.2. 6) now 

gives us ( )
z

TotalL
2

0

1 1

2 1 2 1

nkK cutoff

nk

sm sm

K 

 
  

  
 . So can the effect of gravity increase 

our probabilities from 
dk

sN
k

  to (1 )
dk

sN
k

  ?  We will initially address only massive 

infinite superpositions where 1N   in Eq. (2.2. 4).  

The first question we need to address is what is the effective preon mass to be used when 

coupling to gravity? In Eq. (3.1. 4) we said the preon rest mass is 
0

/ (8 2 )
nk

m s for each of 

the 8 preons that build a spin ½ particle of rest mass 0
m . Now gravity couples to the total 

mass including the kinetic energy. It also couples to other terms in Einstein’s energy-

momentum tensor, but we conjecture that in primary interactions such as this (section 1.1.2), 

gravitons only couple to the mass/energy, and the equations are consistent only if this is so. 

(Sections 6.2.1 & 6.2.2 also discuss this further.) 

At the start of the interaction each preon mass is 
0

/ (8 2 )
nk

m s and after the interaction 

(Figure 3.1. 3) it is 
2

0
(1 ) / (8 2 )

nk nk
m s  . Let us think semi classically again and see where 

it leads us. We have been using magnitudes of velocities as they are the most convenient way 

to express our equations even if not the conventional language of quantum mechanics. The 
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interaction with the zero point fields takes the momentum of each preon from zero to 

0
2 / (8 2 )

nk nk
m c s   (Figure 3.1. 3). While this happens as a quantum step change let us 

imagine it as a virtually infinite acceleration from zero velocity to 
2

2 / (1 )
nk nk

  , which is 

the relativistic velocity addition (see Figure 3.1. 1)  of 2 equal steps of .
nk


  

At the half way 

point after one step the velocity is nk
 (the velocity of the CMF, the preon mass has increased 

to
0

/ (8 2 ).m s  We can imagine this as being like the central point of a quantum interaction. 
 

We will conjecture this midway point preon mass
0

/ (8 2 )m s  is the mass value that gravity 

acts on and we will see that it is indeed the only value that fits all equations. Also it does not 

make sense to choose either of the end point masses. We can also get reassurance from the 

properties of the Feynman transition amplitude which tells us in Eq. (3.1. 15) 

0

0

0

( ) 2

( ) 2
f

z

i f nk nk

i nk

p p m

p p m

 







 nk

  and the ratio of space to time polarization in the LF is
2

.
nk

  

This centre of momentum velocity tells us the key properties of the interaction. We will thus 

assume we have 8 preons in each nk
  of effective gravitational mass 

0
/ (8 2 )m s  with 

effective total gravitational mass
0

/ 2m s . To put the gravitational constant in the same form 

as the other coupling constants we need to divide it by c . The gravitational coupling 

amplitude is thus 
0

/ (2 )
P

m G s c  to the gravitational zero point field, where P
G is the 

primary amplitude for a Planck mass to emit or absorb a graviton. Now this gravitational 

amplitude can be regarded as a complex vector just as colour and electromagnetism. We 

assumed for simplicity, as they are both spin 1 field particles, that colour and 

electromagnetism are parallel. Spin 2 gravity could be at a different complex angle to the 

other two. In fact the equations only have the correct properties if gravity is at right angles to 

colour and electromagnetism. Putting 
Primary G Secondary

G G   we conjecture that:    

   

0 0

0

/ (2 ) / (2 )
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plitude 

                                

is 

 / (2 )

P G S

G
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     (4.2. 3) 

 

Where we have put the secondary gravitational coupling constant to a bare Planck mass s
G  

in Eq. (4.2. 3) equal to the measured gravitational constant G and temporarily labelled the 

ratio between the primary the primary and secondary gravitational constants as G
  and return 

to this in section 6.2.6. So modifying Eq’s. (2.2. 1) to (2.2. 3) by adding Eq.  (4.2. 3)   
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Our previous wavefunctions k
 required
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EMP
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  from Eq. (2.2. 4). 

Thus primary graviton interaction can increase the probability of our previous wavefunctions

k
 by 1    as required to obtain precision in our integrals for / 2 &  if .

nk
K cutoff    

 

Using Eq.(4.2. 2) now put
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    (4.2. 5) 

For 1N   superpositions k n nk

n

c  , we can use the logic of section 3.5.1; replacing 
2

nk
K

with
2

,
k

K  and 
2

n  with 
2

n  in Eq. (4.2. 4), so that Eq.  (4.2. 5) becomes     
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  (4.2. 6) 

 

If we now go back to Eq’s. (2.3. 9) & (2.3. 10) as k   the energy squared
2 2 2

nk nk
E c p  

2 2 2
n  .  Again using the logic of section 3.5.1 for multiple integer n superpositions the  

expectation value for energy squared as k   is 
22 22 2 2 2

k k
E c n k c p thus  

 

        For multiple integer  superpositions as ,    
k k

n k E c n kc  p    (4.2. 7) 
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4.2.2 All N = 1 superpositions cutoff at Planck Energy but interactions at less 

It is reasonable to assume that the cutoff superposition energy cannot exceed the Planck                                            

energy Planck
E (at least for square cutoffs) and that this is true for all 1N   superpositions. 

(Section 6.2.1 discusses N = 2 superposition Planck
E cutoffs.) So for simple square cutoffs: 

 

( )
1 multiple integer  superpositions cutoff ener  gy

k cutoff cutoff Planck
N n E n k c E       (4.2. 8) 

                           This can be written as      cutoff Planck

Planck

c
n k c E

L
       

   For  1 multiple integer  superpositions
1

           & 1
cutoff cutoff P

Planck

n k n k Ln
L

N    
   (4.2. 9) 

  

 1 multiple integer  superposition interaction cutoff energy  Planck

cutoff

E
N n ck

n
   

 (4.2. 10) 

 

Using Eq.  (4.2. 10) with Planck energy 19
1.22 10 .GeV and 6.0135n  from Eq.(3.5. 16) for 

simple square cutoffs (also see Figure 4.1. 2). 

 

                
18

Interactions between 1 fermions cutoff @ 2.0288 10 .N GeV        (4.2. 11) 

 

From Table 4.3. 1 we see that all other particles such as photons, gluons and gravitons etc. 

have 6n   and thus higher interaction cutoff energies than fermions ie. 
18

2.03 10 .,GeV   

but < .
P

E   Putting 18
2.0288 10 .GeV  in the Standard Model equations (4.1. 3) & (4.1. 4). 
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........ 105.934 0.173................... 

 

 

 

   (4.2. 12) 

Real world high energy secondary interactions only involve 1 2 3
, &   , but spin zero primary 

interactions do not involve the weak force. Table 4.1. 1 can thus only predict 
1

105.921
EM

 
  

at the cutoff compared to the Standard Model combination of 
1 1

1 2
(5 / 3)  


1

EM



  

105.934 0.173   of Eq. (4.2. 12).  (See Figure 4.1. 1 & Figure 4.1. 2). Also using Eq’s. (3.3. 

3) & (4.2. 12) we get the primary to secondary fundamental coupling ratio C
 . 

 

      
1 18

3  
Coupling Ratio @ 50.405 0.22  (ie.@  2.0288 10 .)

C cutoff
k GeV  

     

 

   (4.2. 13) 
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If we now put Eq. (4.2. 9) into Eq. (4.2. 6) we get 
2

2

2 2

256(1 )
256(1 )

( )

EMP

G EMP

cutoff P
n k L


 


     

 

From Eq’s.(4.1. 2) and Table 4.3. 1 we find (1 ) 1.115
EMP

 
 
and Eq.(4.2. 6) becomes                                 

                                                    2
256(1.115) 318.3

G
       (4.2. 14) 

 

Using Eq. (4.2. 3) 318.3
G

    is the ratio between the primary graviton coupling to bare 

preons, and the normal measured gravitational constant (Big G). In other words the primary 

graviton coupling to preons is (Primary) (318.3) .
G

G    (Section 5.1.2, Eq. (5.1. 7)) defines 

the secondary graviton coupling between Planck masses G
  and section 5.3.2, Eq. (5.3. 14) 

finds contrary to expectations that 1/164
G

   so as in Eq.(6.2. 7) the primary to secondary 

graviton coupling ratio is 164
G

  and 318.3164 52, 000
G

     .) When 318.3
G

    in 

Eq.(4.2. 4) the contribution from gravity (the   in Eq.(4.2. 4)) cancels any deficit in primary 

interactions (the   in Eq.(4.2. 4)) if these superpositions cutoff at Planck energy, which we 

argue is true for all 1N   superpositions. (Sections 6.2 & 6.2.1 discuss 2N   superposition 

P
E  cutoffs.) To enable high energy interactions 2N   bosons must also cutoff at Planck 

energy just as 1N   superpositions do, or as in Eq.  (4.2. 10). Figure 4.2. 1 plots radial 

probabilities for all 3,4,5,6&7n   Planck Energy cutoff modes. They are identical as the 

radial probability 8 2 2 2
( / 9)

R
P r Exp n k r  , but from Eq. (4.2. 7) 1nk   in each Planck 

energy mode, so they all have radial probability 6 8 2
8.74 10 ( / 9)

R
P r Exp r


   . 

 

 

 

 

 

 

 

 

 

 

 

Despite each 3,4,5,6&7n   mode having Planck energy the probability in every case of 

being inside the Planck region is virtually zero at
7

8.9 10


  .  

 Radius in Planck units. R
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P
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b
ab
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Planck region 

     Figure 4.2. 1 

 

All Planck energy n modes look identical 
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4.3 Solving for spin ½, spin 1 and spin 2 superpositions 

Superpositions with 2N   are covered in section 6.2 but Eq.(4.2. 13) and Eq. (3.3. 22) 

extended by keeping N s  constant as in Eq. (4.4. 1) allow us to solve various combinations 

of spins ½, 1 or 2 and 1N   or 2N  . 
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   (4.4. 1) 

 

Starting with spin ½ we can solve this to get 6 6
* 0.7254c c   as the dominant value.  

Putting 6 6
* 0.7254c c   into Eq.(4.1. 2) or alternatively using Table 4.1. 1 

 1
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6 6
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EMP
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From Eq.  (2.2. 4) the available 
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where we ignore the infinitesimal factor of (1 )  due to gravitons. And from Eq. (2.3. 12)                                           
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in 2 1)    

                    170.95  for (spin 2, 2) by extension.

N
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   (4.4. 3) 

 

The same primary electromagnetic coupling EMP
  builds all fundamental particles, allowing 

Eq.(4.4. 3) to be true. Using Eq’s  (4.4. 1),(4.4. 3) & * 1
n nn

c c   we get Table 4.3. 1. We 

define the coupling ratio for gravitons 52, 000
G

   in Eq.(6.2. 7) section 6.2.6, where we 

also solve infinitesimal mass graviton superpositions. In Table 4.3. 1 three member 

superpositions fit the Standard Model best. In section 4.1 we solved spin ½ superpositions 

with a dominant centre mode 6 6
*c c that fitted the Standard Model. However when solving 

for spins 1 & 2 we must initially comply with Eq. (4.4. 1) which defines interaction 

probabilities (see Eq. (3.3. 22) and final paragraph section 3.3.4). We must also comply with 

Eq.(4.4. 3) which determines centre or side mode dominance. In this table we have also 

included a massive 1N   spin 2 graviton type Dark Matter possibility interacting only with 

2N   spin 2 gravitons. There are other possibilities which we have not included. To this 

point this paper has attempted to demonstrate that infinite superpositions can behave as the 
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Standard Model fundamental particles. The methods used may seem unconventional, but it is 

important to remember that primary interactions are very different to secondary interactions 

(see sections 7& 2.2.3).These methods are however based on simple quantum mechanics and 

relativity, and there is also surprising consistency with the Standard Model. If the principles 

behind the outcomes of these derivations are at least on the right track and fundamental 

particles can be built by borrowing energy and mass from zero point fields then, as we will 

see in what follows, this may possibly have some significant and profound consequences.  

 

  Mass Type Spin  N 3 3
*c c

 
4 4

*c c

  
5 5

*c c

 
6 6

*c c

 
7 7

*c c

 
 Infinitesimal mass gravitons    2  2 0.8346 

5
2.4 10




  

0.1653   

 Infinitesimal mass bosons    1  2 0.4847 0.0526 0.4627      

 Massive (dark matter?) gravitons     2  1 0.4847 0.0526 0.4627   

 Massive bosons    1  1  0.0134 0.8878 0.0988  

 Massive fermions    ½   1   0.1305 0.7254 0.1441 

 Table 4.3. 1  Approximate probabilities for various possible superpositions. 

5 The Expanding Universe and General Relativity 

5.1 Zero point energy densities are limited 

If the fundamental particles can be built from energy borrowed from zero point fields and as 

this energy source is limited, (particularly at cosmic wavelengths) there must be implications 

for the maximum possible densities of these particles. In section 2.2.3 we discussed how the 

preons that build fundamental particles are born from a Higg’s type scalar field with zero 

momentum in the laboratory rest frame. In this frame they have an infinite wavelength and 

can thus be borrowed from anywhere in the universe. This would suggest that there should be 

little effect on localized densities, but possibly on overall average densities in any or all of 

these universes. So which fundamental particle is there likely to be most of? Working in 

Planck, or natural units with 1G   we will temporarily assume the graviton coupling 

constant between Planck masses is one. (We will modify this later but it helps to illustrate the 

problem.) As an example there are approximately 
61

10M   Planck masses within the 

causally connected or observable universe. They have an average distance between them of 

approximately the radius 
OH

R  of this region. Thus there should be approximately
2 122

10M 

virtual gravitons with wavelengths of the order of radius 
OH

R  within this same volume. No 

other fundamental particle is likely to approach these values, for example the number of 

virtual photons of this extreme wavelength is much smaller. (Virtual particles emerging from 

the vacuum are covered in section 6.2.2.) If this density of virtual gravitons needs to borrow 

more energy from the zero point fields than what is available at these extreme wavelengths 

does this somehow control the maximum possible density of a causally connected universe?   
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5.1.1 Virtual Particles and Infinite Superpositions 

Looking carefully at Section 3.3 we showed there that, for all interactions between 

fundamental particles represented as infinite superpositions, the actual interaction is only 

between a single wavenumber k  superposition of each particle. We are going to conjecture 

that a virtual particle of wavenumber k  for example is just such a single member. Only if we 

actually measure the properties of real particles do we observe the properties of the full 

infinite superposition. The full properties do not exist until measurement, just as in so many 

other examples in quantum mechanics. We will use this conjectured virtual property below 

when looking at the probability density of virtual gravitons of the maximum possible 

wavelength. These virtual gravitons would be a superposition of 3,4,5n   modes of 

wavenumber k  as in Table 4.3. 1. 

5.1.2 Virtual graviton density at wavenumber k  in a causally connected Universe 

From here on we will work in natural or Planck units where 1c G   .  

General Relativity predicts nonlinear fields near black holes, but in the low average densities 

of typical universes we can assume approximate linearity. The majority of mass moves 

slowly relative to comoving coordinates so we can ignore momentum (i.e. 1)  , provided 

we limit this analyses to comoving coordinates. In these comoving coordinates the vast 

majority of virtual gravitons will thus be time polarized or spherically symmetric which we 

will for simplicity call scalar. We should also be able to simply apply the equations in 

sections 3.4  & 3.5 to spin 2 virtual graviton emissions, as they should apply equally to both 

spins 1 & 2. We will assume spherically symmetric 3l   wavefunctions emit both spin 1 & 2 

scalar virtual bosons, and 3, 2l m    states can emit both 1m    spin 1 bosons and 

2m    spin 2 gravitons. Section 3.4 derived the electrostatic energy between infinite 

superpositions. In flat space we looked at the amplitude that each equivalent point charge 

emits a virtual photon, and then focused on the interaction terms between them. Thus we can 

use the same scalar wavefunctions Eq’s.  (3.4. 1) for virtual scalar gravitons as we did for 

virtual scalar photons. Using 1 2( )  * 1(  2 ) 1 1 1 2 2 1 2 2* * * *          
 

we 

showed in section 3.4.1 that the interaction term for virtual photons is 

 

                                            1 2
( )

1 2 2 1 1 2

1 2

4
* * cos ( )

4

k r rk
e k r r

r r
   



 
    

  (5.1. 1) 

 

This equation is strictly true only in flat space but it is still approximately true if the 

curvature is small or when 2 / 1m r  , which we will assume applies almost everywhere 

throughout the universe except in the infinitesimal fraction of space close to black holes. In 

both sections 3.4 & 3.5, for simplicity and clarity, we delayed using coupling constants and 

emission probabilities in the wavefunctions until necessary. We do the same here. There will 

also be some minimum wavenumber k which we call min
k where for all min

k k  there will be 
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insufficient zero point energy available. We want Eq. (5.1. 1) to still apply at the maximum 

wavelength where min
1 / ( 1 / )

OU ObsevableUniverse
k R R  . In Section 6 we find gravitons have an 

infinitesimal rest mass 0
m of the same order as this minimum wavenumber min

k . At these 

extreme k values this rest mass must be included in the wavefunction exponential term. It is 

normally irrelevant for infinitesimal masses. Section 6.2 looks at 2N  infinitesimal rest 

masses finding
2

min
1

k
K  . Using Eq.(3.1. 11) with 1c   

 

 2 2
2 min

min 2

0

1
2

k

s n k
K

m
   and for spin 2 gravitons 

2 2

min

0 min2

0

1  or  
n k

m n k
m

          
   

 (5.1. 2) 

From Table 4.3. 1 we find    

                       For 2N   spin 2 gravitons 3.33n     so that   0 min
3.33m k    (5.1. 3) 

 

This virtual mass 0
m  introduces an extra exponential decay term 0m r

e


 in the virtual graviton 

wavefunction Eq. (3.4. 1) 0 0( )
.

m r k m r ikrkr ikr kr ikr
e e e e

      
   Define k  using Eq.  (5.1. 3)   

        

                min min min mi in0 m n
3.33     3.33 4and   .33kk k kk kk m k               (5.1. 4) 

 

The normalized virtual graviton wavefunction in Eq.  (3.4. 1)      

                                 
2 2

     becomes     
4 4

kr ikr k r ikr
k e k e

r r


 

   
   

(5.1. 5) 

 

 

Thus the interaction term in Eq. (5.1. 1) becomes  
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1 2 2 1 1 2
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4
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k r rk
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  (5.1. 6) 

 

Using Figure 3.4. 2 let point P  now be anywhere in the interior region of a typical universe. 

Let the average density be 
U

  (subscript U for homogeneous universe density) Planck masses 

per unit volume. Consider two spherical shells around point P of radii 
1 2

&r r  and thicknesses 

1 2
&dr dr  with masses 

2

1 1 1 1
4

U U
dm dv r dr     & 

2

2 2 2 2
4

U U
dm dv r dr    . Now we expect 

the graviton coupling constant  to be 1
G

   between Planck masses but because we do not 

really know this let us define   

 

        The Secondary graviton coupling constant between Planck masses 
G

        (5.1. 7) 
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Section 3.4.1 in Eq. (3.4. 3) used a scalar emission probability (2 / )( / )dk k  which becomes

(2 / )( / )
G

dk k   between Planck masses. (We return to this in section 5.3.2)  Now quantum 

interactions are instantaneous over all space but distant galaxies recede at light like velocities.  

However at the same cosmic time T in all comoving coordinate systems, clocks tick at the 

same rate, and a wavenumber k (or frequency) in one comoving coordinate system measures 

the same in all comoving coordinate systems.  Thus as we integrate over radii 
1 2

& 0r r     

we can still use the same equations as if the distant galaxies are not moving. (The vast 

majority of mass is moving relatively slowly in these comoving coordinate systems and we 

return to this important comoving coordinate property in section 5.3.1). Using this new 

coupling probability between Planck masses (2 / )( / )
G

dk k   we can now integrate over both 

radii 1 2
&r r ; but to avoid counting all pairs of masses 1 2

&dm dm  twice, we must divide the 

integral by two. The total probability density of virtual gravitons at any point P in the 

universe at wavenumber k is using Eq.(5.1. 6) 
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From Eq.(5.1. 4) 0 min
3.33k k m k k     and we can write Eq.(5.1. 8) as 
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As we think minG
K  will prove to be a universal constant scalar we will write this as follows. 
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min min min min 4
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 (5.1. 10) 
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Central observer 

at point P 
1

r   

5.2 Can we relate all this to General Relativity? 

The above assumes a homogeneous universe that is essentially flat on average. At any cosmic 

time T it also assumes there is always some value min
k where the borrowed energy density 

min minGk ZP
E E  the available zero point energy density min

@ k . It is also in comoving 

coordinates. At the same cosmic time T, all comoving observers measure the same 

probability density min min minGk G k
K dk  as in Eq. (5.1. 10). So what happens if we put a small 

mass concentration 1
m  at some point?  The gravitons it emits must surely increase the local 

density of min
k gravitons upsetting the balance between borrowed energy and that available. 

However General Relativity tells us that near mass concentrations the metric changes, radial 

rulers shrink and local observers measure larger radial lengths. This expands locally 

measured volumes lowering their measurement of the background minGk
 . But clocks 

slowdown also, increasing the measured value of min
k .  Let us look at whether we can relate 

these changes in rulers and clocks with the min min minGk G k
K dk   of Eq. (5.1. 10). 

5.2.1 Approximations with possibly important consequences  

 

 

 

 

 

 

 

 

 

 

 

Let us refer back to Eq. (3.4. 2) and the steps we took in section 3.4.1 to derive it; but now 

including 0 min
3.33k k m k k     as in Eq.(5.1. 4)  
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4
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4
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  (5.2. 1) 

 

And assume that space has to be approximately flat with errors 
1/2

1 (1 2 / ) / .m r m r     If 

we now focus on Figure 3.4. 2 , equation (5.2. 1) is the probability that a virtual graviton of 

wavenumber k is at the point P if all other factors are one. Let us now put a mass of 1
m  

Planck masses at the Source 1 point in Figure 3.4. 2 or as in Figure 5.2. 1. Also assume that 

the point P is reasonably close to mass 1
m (in relation to the horizon radius) at distance 1

r  as 

in Figure 5.2. 1 and the vast majority of the rest of the mass inside the causally connected or 

Spherical shells thickness dr   

& mass 
2

4
U

dm r dr   

 Mass 1
m   

 r   

Radius 1
r r   

                                                                                                

Figure 5.2. 1 

 



66 

 

observable horizon OH
R  is at various radii r, equal to 2

 r  of Eq. (5.2. 1) where 2 1
r r r   and 

thus 1
cos[ ( )]k r r cos( )kr  . Only under these conditions can we approximate Eq. (5.2. 1) 

as 

 
1 2 2 1

1

4
* * cos( )

4

k rk
e kr

r r
   




     

    (5.2. 2) 

 

 

As we have assumed average particle velocities are low ( relative to comoving coordinates) 

this is a scalar interaction (as in section 3.4.1) and as there are no directional effects we can 

consider simple spherical shells of thickness dr  and radius r around a central observer at the 

point P which have mass 
2

4 .
U

dm r dr   At each radius r the coupling factor 

(2 / )( / )dk k   we used in Eq. (3.4. 3) using Eq. (5.1. 7) becomes (2 / )( / )
G

dk k   between 

Planck masses and again we use the fact that all instantaneously connected comoving clocks 

tick at the same rate.   

      
                          21 1

2 2
Coupling factor 4

U

G G
m mdk dk

dm r dr
k k

 


 


    

                                   

(5.2. 3) 

Including this coupling factor in Eq. (5.2. 2) 
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(5.2. 4) 

 

This is virtual graviton density at point P due to each spherical shell. (Ignoring the relatively 

small number of particularly min
k  gravitons emitted by mass 1

m  itself, see addendum 8). 

Integrating over radius 0r    the virtual graviton density at wavenumber k using 

Eq’s.(5.1. 4) & (5.2. 4) 
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1 0
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  (5.2. 5) 

 

 

Now 0 min
3.33k k m k k      and if min

k k then min
4.33k k   and so when min

k k :    

 

                                  

2 2

1 min min min min

min 2 2 2

1 min min min

1

min2

1 min

8 4.33 ((4.33 ) )
 

((4.33 ) )

             0.5018

G

G

U

Gk

U

m k dk k k

r k k k

m
dk

r k













 

  
 



 

 

  (5.2. 6) 
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Equation (5.1. 10) suggests min min minGk G k
K dk  . In comoving coordinates in a metric far 

from masses & g  ,  min
k  has its lowest value. As we approach any mass min

k  increases 

to min
k  where we use green double primes when g   to avoid confusion with the 

min
&k k   of Eq.(5.1. 4).  At a radius r  from mass m  the Schwarzchild metric is 

1/2
(1 2 / )m r


  for the time and radial terms. Radial rulers shrink and clocks slow, measured  

volumes and frequencies both increase locally as 1
m

r
  .Thus using min min minGk G k

K dk   

 

                If r m ;    
min min min

minmin min1 1
k

k
k dm V V V

r V V

k

k dk 

  
      

 
  

   (5.2. 7) 

 

 

So in this metric the total number of min
k gravitons is the original ( )g  minGk

  of Eq. 

(5.1. 10) plus the extra due to a local mass of Eq. (5.2. 6), but we have to divide this number 

by the increased volume to get the new density n minmi
(1 )

Gk Gk

m

r
   . Thus using Eq. (5.2. 7) 

 

       

min min min min min

min

min

min
New  (1 /  )  implying  2

1 / (1 / )

Gk Gk Gk Gk Gk

Gk Gk

Gk

m
m r

V V m r r

    





    
    




 
      

 (5.2. 8) 

 

 

Using Eq’s. (5.1. 9), (5.2. 6) & (5.2. 8) and dropping the now unnecessary subscripts, the 

graviton coupling constant G
  cancels out:     

              

                   
m 2

m

in2

min min

2
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min4
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(5.2. 9) 

 

 

(Strictly speaking we should be using mink
dk   in the top line of this equation but the error is 

second order as we are approximating with r m . We will do this more accurately below 

for large masses.) For the above to be consistent with General Relativity this suggests that: 

 

“At all points inside the horizon, and at any cosmic time T, the red highlighted part is 2  in 

Planck units. This is simply equivalent to putting 2
/ 1G c G c   ”.  

 

Thus we can say 

             

2

2

min 2

min

(1.412) 1.412
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  (5.2. 10) 

 

Putting Eq. (5.2. 10) the average density U
 into Eq. (5.1. 10) gives minGk

 & minGk
K . 
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(5.2. 11) 

 

 

If our conjectures are true, this is the number density of maximum wavelength gravitons 

excluding possible effects of virtual particles emerging from the vacuum. In section 6.2.2 we 

argue these do not change the minGk
K  of Eq. (5.2. 11). However minGk

K   does depend on the 

graviton coupling constant G
  between Planck masses, but G

  cancels out in Eq.(5.2. 9).  

It does not affect the allowed universe average density U
  in Eq. (5.2. 10).  

5.2.2 The Schwarzchild metric near large masses 

At a radius r  from a mass m  (dropping the now unnecessary suffixes) the Schwarzchild 

metric is 
1/2

(1 2 / )m r


  for the time and radial terms which can be written as  

                              
00

2

1 1 1

1 2 1/
M

M

rr
g

m r g 



  


 

(5.2. 12) 

 

Velocity M
 ( 1c  ) is that reached by a small mass falling from infinity and

1

M
 

is the metric 

change in clocks and rulers due to mass m . We are using green symbols with the subscript M 

for metrics g  as we did for min
k  above. The symbols 

1

M
 

help clarity in what follows. 

       Using these symbols   m
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  (5.2. 13) 

 

 

In sections 5.1.2 & 5.2.1 we approximated in flat space. The wavelength of min
k  gravitons 

span approximately to the horizon. They fill all of space. We can think of the space around 

even a large black hole as an infinitesimal bubble on the scale of the observable universe. The 

normalizing constant of a min
k wavefunction emitted from a localized mass is only altered 

very close to this mass. Over the vast majority of space it is unaltered. Only close to this mass 

will local observers measure min minM
k k   due to the change in clocks. There is also a local 

dilution of the normalizing constant due to the change in radial rulers. We will consider both 

these changes in two steps to help illustrate our argument. Now repeat the derivation of 

minGk
  as in section 5.2.1 but with a large central mass as in Figure 5.2. 1.  

At the point P consider Eq. (5.2. 2) 1 2 2

1

1* * cos )
4

4
(

k r
kr

r r
e

k


   


 


 .  The red part is 

the normalizing factor discussed above where we will initially ignore the dilution due to the  
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local increase in volume. The green &k r kr  can be thought of as invariant phase angles. So  

if we ignore the dilution factor this equation is unaltered. However the coupling factor 

contains all the masses in the universe and the local mass m . But in the Schwarzchild metric 

this is the mass dispersed at infinity before it comes together. At a radius r it is measured as 

M
m  . For the same reasons all the mass in the universe is increased by the same factor .

M
  

We are left with the factor min

min

2
G

dk

k




 which is the same as min

min

min

min

2 2
M

M

G G
d k

kk

dk

 

 







in the 

changed metric. So if we ignore the dilution factor and consider only clock changes Eq. (5.2. 

6) becomes, dropping the now uneccesary subscripts  

               With only time change and no dilution min min2

m

2

in

 0.5018 U

Gk MG

m
dk

r k
  


   

               But 
2

min

1.412U

k


  from Eq.(5.2. 10) so  min m

2

in

2
 0.354

Gk GM

m
dk

r
    

        Equ’s. (5.2. 11) &  (5.2. 13) are min
0.354

GGk
K  and 

2 2
M

m

r
   so we finally get  

 

           Before dilution of the normalization factor min min

2 2

min
 

M MGk Gk
K dk     (5.2. 14) 

 

So the total min
k graviton density before dilution is the original min min minGk Gk

K dk  plus the 

extra min min

2 2

min
 

M MGk Gk
K dk   .   So before dilution         
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    (5.2. 15) 

 

If we now increase the volume to that in the new metric, the new volume is 
Mrr

g   times 

the original volume. So in the new metric we must divide this value by M
 . 

 

            In the new metric min min

min min

2

min mimin n
 M

Gk M

M

Gk

Gk Gk

K dk
K dk kK d


 


    

(5.2. 16) 

 

If for example 2
M

  , frequencies are doubled so min min
2k k  , the number density of 

gravitons ( minGk
  min

2
Gk

 ) is doubled, but so is the measurement of a local small volume 

element, which is now 2V  . The above equations tell us that the original minGk
 background 

gravitons which occupied one unit of volume is now compressed into 1/2 a unit of volume 

and the remaining 3/2 units of volume is taken up by the gravitons due to the central mass. 

Figure 5.2. 2 illustrates this. The metric appears to adjust itself so that minGk
K (the maximum 

wavelength graviton probability constant) is an invariant scalar. (See Figure 5.3. 8 also.) 
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5.3 The Expanding Universe 

Section 5.1.1 conjectures that virtual gravitons are single wavenumber k  members of 

superpositions, of width dk . They are thus using Eq. (2.1. 4) wavefunctions k
  occurring 

with probability /sN dk k , but we have aready included the factors /dk k  in deriving Eq’s. 

(5.1. 9), (5.2. 6) & (5.2. 11). The number density of  k
  wavefunctions is simply

4
k Gk Gk

sN     for spin 2 & 2N   gravitons. To get the number density of gravitons at 

any wavenumber k we can rewite Eq. (5.1. 9) using Eq.(5.2. 10) for 
2 4

min
/

U
k & Eq.(5.2. 11) 
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k
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 (5.3. 1) 

 

The blue part of Eq. (5.3. 1) is one when min
/ 1k k x   . 

From Eq.(3.2. 1) the vacuum debt for a superposition is    
2

( ) .
k k

debt n p k   

Using Eq’s. (3.1. 11),  (3.1. 12) & (3.2. 10)         

2

2

2
1

k

k

k

K

K
 


.  

0

2 spin 2For   
k

n k
K

m
N   and from Eq. (5.1. 3) 0 min

3.33m k from which we can show 

                                  

2 2
2

2 2 2

n minmi

  where   
1

k

k x

k k kx

k
x  

 
 .  

From Table 4.3. 1 3.33n   for gravitons.  Each wavefunction k
 borrows from the zero 

point fields
2

2

2

(3.33)

1
k

x
n

x
 


wavenumber k quanta. The quanta density required @k by 

gravitons is: 

The background gravitons that originally occupied one 

unit of volume are compressed into 1/2 a unit of volume as 

number densities are doubled in this new metric. 

     Figure 5.2. 2 An infinitesimal local volume in a metric where 2
Mrr

g   .  

 

Measured local volumes double, & 3/2 units of volume   

the increased number density equals the extra maximum 

wavelength gravitons at that point due to a central mass. 
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(5.3. 2) 

But the density of zero point modes available min
@ k is 2 2

min
/k dk   (ignoring some small 

factors). Even if 1
G

   this is too small by about 2 2

min
1/

OH
k R . However the area of the 

causally connected horizon 
2

4
OH

R suggests possible connections with Holographic horizons 

and the AdS/CFT correspondence [14].  

5.3.1 Holographic horizons and red shifted Planck scale zero point modes 

Malcadena proposed AntiDesitter or Hyperbolic spacetime where Planck modes on a 2D 

horizon are infinitely redshifted at the origin by an infinite change in the metric. In contrast 

we have assumed flat space on average to the horizon. In section 2.2.3 we defined a rest 

frame in which zero momentum preons with infinite wavelength build infinite superpositions. 

If we also have a spherical horizon with Planck scale modes, but here receding locally at the 

velocity of light, these Planck modes can be absorbed by infinite wavelength preons (from 

that receding horizon) and red shifted in a radially focussed manner inwards. We will argue 

in what follows, that at the centre where the infinite superpositions are built, approximately 

1/6 of these Planck modes can be absorbed from that horizon with wavelengths of the order 

of the horizon radius. This potential possibility only exists because zero momentum preons 

have an infinite wavelength. If any source of radiation recedes at velocity /v c   the 

frequency/wavenumber reduces as  (1 )
observer source

k k     where
2 1/2

(1 )  
  .  In the 

extreme relativistic limit 1   & we can put1       .  

                          

 

2

2 2

Putting 1  implies 1  and 1 2

             1

1

2  and 1 / 2

Thus 

 

(1 )
2 22

Observer

Source

k

k

      

    

 
 





 

       

  

  

   

       

         (5.3. 3) 

 

 

There is always some rest frame travelling at nearly light velocity that can redshift Planck 

energy modes into a min
1 /

OH
k R  mode and also many other frames travelling at various 

lower velocities that can redshift Planck energy modes into any min
k k  mode .  This is 

special relativity applying locally. But in sections 5.1.2 & 5.2.1 we used the fact that clocks 

in comoving coordinates tick at the same rate.   So how does Eq.(5.3. 3) help? Space between 

comoving galaxies expands with cosmic or proper time t and is called the scale factor ( )a t . It 

is normally expressed as ( )
p

a t t .                            
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                     Thus 
1

( )
p

a t pt


 and the Hubble parameter
( )

( )
( )

a t p
H t

a t t
   

    (5.3. 4) 

 

Writing the present scale factor normalized to one so that ( ) 1a T   implies ( ) /
p P

a t t T , we 

can get the causally connected horizon radius and the horizon velocity V. Using Eq.(5.3. 4)  

   
0 0

The horizon radius   only when  is constant.
( ) 1

T T

p

OH p

dt dt T
R T p

a t t p
  

   
       (5.3. 5) 

 

   

1
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The horizon velocity ( ) 1

 But  is the current Hubble constant so horizon velocity 1 ( )
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  (5.3. 6) 

Now the receding velocity of a comoving galaxy on the horizon is ( )
OH

V H T R   and thus 

from Eq.(5.3. 6) the horizon velocity is always 1V V   .  In other words the horizon is 

moving at light velocity relative to comoving coordinates instantaneously on the horizon as 

measured by a central observer. Now clocks tick at the same rate in all comoving galaxies but 

clocks moving at almost the horizon light velocity (relative to comoving coordinates 

instantaneously on the horizon) will tick extremely slowly or as 1/   from Eq.(5.3. 3) as 

special relativity applies locally in this case. Thus Planck modes on the receding horizon will 

obey Eq’s.(5.3. 3) as seen in all comoving coordinates. Let us now imagine an infinity of 

frames all travelling at various relativistic velocities relative to comoving coordinates 

instantaneously on the horizon and radially as seen by central observers. We can think of 

these as spherical shells on the horizon all of one Planck length thickness as measured by 

observers moving radially with them. Transverse dimensions do not change for all radially 

moving observers and the effective surface area of all these shells is
2

4
OH

R . The internal 

volume of all these shells as measured in rest frames by observers moving radially with them 

as each of these observers measures their thickness as one Planck length is 

                        2 2
Rest frame internal shell volume  4 4

OH OH
V R R R       (5.3. 7) 

We want the zero point quanta available where these quanta have Planck energy E  lasting 

for Planck time T  such that / 2E T   . Before redshifting a single zero point quanta 

thus has Planck energy (temporarily using a single primed k  that is not the k  of Eq. (5.1. 4)) 

where 1k   before redshifting and k after redshifting. The density of Planck energy zero 

point modes in this shell is 
2 2

/k dk    and at energy / 2k   per mode this is equivalent to 

          
2

2
2

k dk



 
  quanta, which we will write as zero point quanta density 

3

2
2

dk

k

k



 


. 

  (5.3. 8) 

Now at Planck energy 1k   and we are redshifting to k  where from Eq’s.(5.3. 3) 

/ 2k k   & / 2dk dk  .  Thus / /dk k dk k   .  As 1k   Eq.  (5.3. 8) becomes 
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2 2

dk dk

k k 




   

  (5.3. 9) 

 

Now multiply density by volume ie. Eq’s. (5.3. 7) &   (5.3. 9) to get the total Planck energy 

zero point quanta inside the rest frame shell as 
2

2

1

2
4

OH

d
R

k

k
  . Two thirds of these quanta  

are transverse and one third radial so only 1/ 6  of these quanta are available for redshifting  

radially inwards. Using Eq.(5.2. 10): After redshifting to wavenumber k  these quanta have  

radius min min

min

1 1 OH

C

Rk k
R

k k k k
    


 and thus occupy spherical volume
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Again using min OH
k R   the effective quanta density becomes 
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 These quanta are half scalar and half the vector required to build infinite superpositions. 

              Density of vector quanta available after redshifting 
2

2

2
8

k
dkx




   

 (5.3. 10) 

 

Now an observer at the centre of all this sees space being added inside the horizon at the rate 

of the horizon velocity  1 ( )
OH

V H T R   as in Eq. (5.3. 6). We will conjecture that the space 

added in one unit of Planck time inside the expanding horizon also creates the source of these 

zero point quanta that we can borrow. Thus Eq. (5.3. 10) becomes  
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  (5.3. 11) 

 

5.3.2 Plotting available and required zero point quanta 
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     Figure 5.3. 1 
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Figure 5.3. 1 plots Eq’s. (5.3. 2) & (5.3. 11) as a function of min
/x k k  and when min

k k  

we can equate these 

               
mi

2

min2

2

n min min

min min
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(5.3. 12) 

 

Equation (5.2. 10)

2

2
the average density of the universe  1.41

U

OH
R




 allows us to solve the 

present value of min OH
k R   .  Using the 9 year WMAP (March 2013) data for Baryonic and 

Dark Matter density and radius 61
2.7 10

OH
R    Planck lengths ( 9

46 10  light years) puts

2
 0.37

U OH
R   in Planck units. Thus

2 2
1.41 0.37

U OH
R     yields  

 

                                   The current value for min
0.51

OH
k R       (5.3. 13) 

 

                   

                Figure 5.3. 2  Plots 
2 2

1.41
U OH

R      

 Figure 5.3. 7 plots 0.65 ( 0.24 )Exp t    from Eq.(5.3. 20) out to 10 times the current age of 

the universe showing the exponential decrease with time. The current Horizon Hubble 

velocity 1 ( ) 4.35
OH

V H T R    and putting this and 0.51   into Eq. (5.3. 12) we can solve 

the approximate graviton coupling constant G
 .  
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(5.3. 14) 

 

The actual value for G
  is less important than the form of this equation as provided Eq. (5.2. 

10)
2 2

1.41
U OH

R    is true (or in other words all comoving observers measure the 

maximum wavelength graviton probability density minGk
K  as in Eq. (5.2. 11) GR is still true 

locally regardless of graviton coupling G
 . The normal gravitational constant (big) G is 

directly related to the metric change of GR, and if GR is true locally then G will not change, 

as it is independent of graviton coupling G
 . Because Eq. (5.3. 14) depends on the actual 
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present values for &V it must be approximate. The above analysis is based on a receding 

horizon source of cosmic wavelength quanta that can only be borrowed if preons are born 

with infinite wavelength, but as we will see exponential expansion seems to follow naturally 

from Eq. (5.3. 14). It also strongly suggests that if fundamental particles are in fact built from 

infinite superpositions that borrow quanta from zero point vector fields, then graviton 

coupling G
  between Planck masses must be much less than 1. So are there possible 

consequences of this?  

5.3.3 Possible consequences of a small gravitational coupling constant. 

In quantum mechanics forces between charged particles are due to the exchange of virtual 

bosons. All scattering crossections are calculated from the exchanged 4 momenum of these 

bosons. General Relativity suggests that the forces of gravity are fictitious and only seem real 

due to the change of the metric. This paper proposes that the change in the metric around 

mass concentrations is consistent with keeping the minGk
K  of Eq. (5.2. 11) constant.  These 

changes in the metric are about 164 times greater than the coupling constant suggests. We are 

suggesting in this paper that spin 2 gravitons only cause changes in the metric by the need to 

keep minGk
 at its appropriate value. The attempts to develop a quantum field theory for 

gravitons have difficulty with the infinities at Planck energies that are not renormalizable. 

They assume a gravitational coupling constant of one between Planck masses. This could all 

change if this coupling constant is in fact about 164 times smaller, as Planck energy gravitons 

would no longer automatically form Black holes. 

5.3.4 A possible exponential expansion solution and scale factors 

Let the scale factor be a then density
3

1

a
   and Eq. (5.2. 10) tells us the average density of 

the universe 

2

2
1.41

U

OH
R




 so that 

2

2 3

1
U

OH

K
R a




   where 1.41K   is constant. 

 

                           Thus     
3 2 2 2/3 2/3

a KR a K R
        where OH

R R    (5.3. 15) 

 

The Hubble parameter H is 

     

1/3 2/3 2/3 5/3

2/3 2/3 2/3 2/3

(2 / 3) (2 / 3) 2 1 1
   

3

dR dK R K Ra dR ddt dtH
a K R K R R dt dt

  

 

    
         

  

 

2
     Thus the Hubble Horizon velocity @  is 

3
OH

dR R
R V H R

dt

d

dt

 
     

  


 

(5.3. 16) 

 

We can also write Eq.(5.3. 14) 2
164 a constant

G
V    , hence 

2
2 0dV d V     .  
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Thus  
1

2

1dV

V dT

d

dT






  and Eq. (5.3. 6) tells us that the Horizon velocity OH
dR dR

V
dt dt

  .  

 

Equation (5.3. 6) also tells us that 1V H R V      so we can write Eq. (5.3. 16) as  

 

      
2 2

3( 1) 2
2

d

d

R R dV
V

V tt
V

d

 
  




  

 
 3

R dV
V

V dt
       ( 3)

dV V
V

dt R
   

  (5.3. 17) 

 

We will look for an exponential increase of the horizon velocity so / 0dV dt  and 3 .V      

 

Let us try first a simple 3 ( )V Exp bt with 3V  for all values of & 0b t  .     

Also simply put      
0 0

 3 ( )
t t

R Vdt Exp bt dt        thus    
3[ ( ) 1]Exp bt

R
b


 .  

Putting this value for R   plus 3 ( )V Exp bt  &  3 3[ ( ) 1]V Exp bt    into Eq. (5.3. 17)  

                ( 3) 3 ( ) 3[ ( ) 31]
3[ ( ) 1]

( )
V b

V Exp bt Exp bt
R Exp b

dV
bExp bt

d tt
      


.  

But 3 ( )V Exp bt and again  3 ( ) 3 ( )
dV d

Exp bt bExp bt
dt dt

  . Thus Eq’s. (5.2. 10) & (5.3. 14) 

are consistent with 3 ( )V Exp bt for positive b regardless of the value of graviton coupling G
  

        A possible expansion solution is 3 ( )V Exp bt  & 
3[ ( ) 1]Exp bt

R
b


 , 0.b    

(5.3. 18) 

 

But is this consistent with the local special relativity requirement for OH
R ? In other words 

does
0

3[ ( ) 1]
@ time ( )

( )

T dt Exp bT
R T a T

a t b


   ? Now Eq. (5.3. 15) tells us the scale factor 

3 2 2 2/3 2/3
a KR a K R

      but Eq.(5.3. 14) says
2

1/V   so the scale factor
1/3 2/3

.a V R   

 

From Eq. (5.3. 18), ignoring the constant factors 3 & b, ( )V Exp bt  &  ( ) 1R Exp bt   

                       

1/3 2/3

0

1/3 2/3

/3 2 3

0

1 /

The scale factor ( ) ( ) [ ( ) 1]

Thus 
( )

            =
( ) [ ( ) 1]

3[ ( ) 1]
           

( )

( ) [ ( ) 1]

T

T

a t Exp b

a T

Exp bT E

t Exp bt

dt
R

a t

dt

Exp bt Exp bt

Exp b

b

b

xp T

T

 













 

5.3. 19) 

                               

And Eq. (5.3. 18) appears to be a consistent exponential expansion for both V and R.  
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From Eq.(5.3. 14) we showed   
1

2

1dV

V dT

d

dT






. Using Eq. (5.3. 18) 3 ( )V Exp bt  &  

3 ( )
dV

bExp bt
dt

 implies ( / 2)K Exp bt    . The current value of 0.51   from Eq.(5.3. 

13) and our best guess of 0.48b   from Figure 5.3. 3 yields 

 

                                    min
0.65 ( 0.24 ) in radians

OH
k R Exp t      

 

    (5.3. 20) 
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Figure 5.3. 4 
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  Figure 5.3. 5 
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1
Hubble  now

and is best guess. 

b
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H
u
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b
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     Figure 5.3. 3 

 
b    

    Hubble parameter  

1/H T  now if 0.48b   

 always 2 / 3H t  if 0b    
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5.3.5    Possible values for b and plotting scale factors 

This simple exponential expansion starts at the Big Bang and is very different to the current 

cosmology models that keep a constant horizon velocity until Dark Energy starts to take 

effect. This continuous exponential increase could well lead to slightly different values for 

the radius OH
R  and also possibly the age 

9
13.8 10T    years. (Some recent observations [1]  

have also been questioning the leading current dark energy explanations of acceleration).  

Current cosmology models put the Hubble parameter as / 1/H a a T   at present (based on 
9

13.8 10T   years). It also simplifies the plots above if we put
9

13.8 10  years 1T     with   

OH
R  or radius R  becoming multiples of 1T  . Using Eq. (5.3. 6) 1 ( )V H T R  , Figure 5.3. 

3 plots the Hubble parameter by time ( 1)T  now as a function of the exponential time 

coefficient b showing if 0b   that  always 2 / (3 )H t  as in current cosmology at critical 

density with no dark energy. Also if 1/H T now the best guess is 0.48b  . This yields 

3.85R T  or 15%  greater than current cosmology. Figure 5.3. 4 plots horizon velocity & 

Figure 5.3. 5 the scale factor based on 0.48b  , but of course the actual value of b or rate of 

change with time must be in agreement with the redshifts currently observed when looking 

back towards the big bang. These could well change b and radius R. Figure 5.3. 6 plots the 

transition to positive acceleration of the scale factor showing the effect of changing the value 

of b.  Figure 5.3. 7 plots Eq.(5.3. 20) min
0.65 ( 0.24 )

OH
k R Exp t     out to 10 T. 

2 4 6 8 10
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Time t    
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b

b
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     Figure 5.3. 6 

 

 

 Figure 5.3. 7 

 

Cosmic time t    

0.51 radians now    

Current time 1t   

Big Bang 
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5.3.6 An infinitesimal change to General Relativity effective at Cosmic scale 

Section 5 is based on energy in the zero point fields being limited. We argued that uniform 

mass density throughout the cosmos has probability density minGk
 as in Eq. (5.2. 11). At this 

probability density the zero point quanta density available equals that required. To maintain 

this required balance (see Figure 5.3. 1) we argued that around any mass concentration the 

curvature of space expands space locally so as to keep min
0.355

GGk
K  as in Eq. (5.2. 11) 

constant at all points. In other words our conjecture only works if the local curvature of space 

depends on the difference between the local mass density and the uniform background. 

Compared to General Relativity this is an infinitesimal change except at cosmic scale. GR 

says the curvature of space depends on local mass density whereas we argue that it depends 

on the difference between local mass density and the average background. This automatically 

guarantees the universe to be flat on average. All our aguments in Section 5 start with flat 

space on average. The equations of GR would look almost identical except the Energy 

Momentum Tensor T  in comoving coordinates requires 00
T  the mass/energy density to 

change from   to U
   where the density of the universe U

  is as in Eq. (5.2. 10). 

 

00
 In comoving cordinates  changes from  to  in the Energy Momentum Tensor 

U
T T


      (5.3. 21) 

5.3.7 Non comoving coordinates when  g  .   

To this point everything we have looked at has been in comoving coordinates. Velocities 

relative to comoving coordinates are usually referred to as peculiar velocities, so, does what 

we are saying above still apply in such non comoving coordinates? If we have a sealed box of 

real photons (or gravitons) fixed in comoving coordinates, and move relative to it at peculiar 

velocity P
  say, its measured volume will shrink as

1 2 1/2
(1 )

P P
 

  . (We will use red 

symbols with the subscript P, and triple primes for wavenumber min
k   for peculiar velocities, to 

distinguish them from metric changes where we used green and a double primed min
k   .) 

Thus the density or number of particles per unit volume increases as 
2 1/2

(1 )
P P

  
   .  

In comoving coordinates the mean momentum of the universe is zero so the background 

virtual gravitons are all time polarized. The minimum wavenumber min
k  will have its lowest 

value in these coordinates (at least far from mass concentrations where g  ).Time 

polarized min
k gravitons are spherically symmetric with no mean momentum in any direction 

so we can imagine a box of them fixed in comoving coordinates. If we now move relative to 

this imaginary box at peculiar velocity P
  it will also shrink as

1 2 1/2
(1 )

P P
 

  and the 

number density of these min
k gravitons will increase as P

 . But the local measurement of min
k

also increases to mi minn P
k k and thus min minP

kdk d .  

 

        min mink P k
    ,       mi minn P

k k   &   min minP
kdk d .Thus Eq. (5.2. 11) 

       min min minGk Gk
K dk  still applies. In non comoving coordinates if g    

        then mi minmin nGkGk
K dk  , and the scalar minGk

K  remains constant.   

   

  (5.3. 22) 
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5.3.8     Non comoving coordinates when  g  .   

When we derived Eq. (5.1. 10) min min minGk Gk
K dk  this probability density was obtained by 

integrating twice over all space. Each of these integrations produced the averaged affect of 

complex phase angles. If there were no complex phase angles we could say that the amplitude 

to find a min
k graviton would be min min min minGk Gk Gk

K dk   . It turns out that the affect of 

complex angles reduces the amplitude to find a min
k graviton due to the rest of the universe  

by  .  Thus including the averaged affect of complex angles and using Eq. (5.2. 11) 

   

    min min min mn inmi
Amplitude  (due to rest of universe  0.355)

Gk GkGk G
K dk dk         (5.3. 23) 

We effectively included this  factor when we derived Eq. (5.2. 6). As in Figure 5.2. 1 

the probability for a small mass m to emit a min
k graviton is 2 min

min

2
G

dk
m

k



. The normalized 

wavefunction is min2min min min

min min min2 2 2

2 2 2 4.33
   (as  0 &  4.33

4 4 4

k rk k k
e k r k k

r r r  

  
    

using Eq. (5.1. 4)). Thus we can say that the: 

    min

2 minmin min

2 2

min

4.334.332 2
 

2 4
Amplitude  (due to small mass )

Gk

G

G

dkdk k m
m

k
m

r r




  
    

  

 (5.3. 24) 

 

As we have already included the affect of the complex angle we can say 

 

   The product of these two amplitudes is 
min

min 2

4.332
0.355

4

G

G

dkm
dk

r





  

         

    mimin min min minminn

2 2
 due to small mass * 0.35

GGk GGk kk G

m m
m dk K dk

r r
                                            

 

 

 (5.3. 25) 

 

This is approximately what we got in Eq. (5.2. 6) but using Eq.(5.2. 10) as in Eq.(5.2. 11). 

The key point is that the only variable in either minmin
 or 

k GkG
 is 

min
dk , as complex phase 

angles are invariant. Thus minmin minmin
*  is always proportional to ,

Gk GG kk
dk    and at peculiar 

velocity P
  as in Eq.(5.3. 22) min minP

kdk d . So both min min
&

Gk Gk
   increase as P

  and 

their ratio does not change. The logic of our aguments is not affected by peculiar velocities. 

The same is true for large masses moving at peculiar velocities. In a metric M
 as in section 

5.2.2 (using four blue primes for combined peculiar velocity and metric changes)

min minMP
k k    and n mimi nMP

d kk d   . Both min min
&

Gk Gk
   increase as P


M

 and again their 

ratio does not change. All the arguments we used in section 5.2.2 do not change and Equ’s. 

(5.2. 14), (5.2. 15) & (5.2. 16) still apply in non comoving coordinates providing M
  is the 

velocity reached by a small test mass falling from infinity in the same rest frame as the mass 

concentration m  moving at peculiar velocity P
 . We can think of min

0.355
GGk

K  as a 



81 

 

constant scalar throughout the universe representing the Probability Density of finding a 

minimum wavenumber min minMP
k k   virtual graviton at all points of spacetime. Near mass 

concentrations the metric changes. Local clock rates change and so does the measurement of

min
k , but not the scalar minGk

K  . Locally measured infinitesimal volumes increase to 

accommodate the extra locally emitted maximum wavelength gravitons keeping the scalar of 

probability density constant. We argue that General Relativity is consistent with this.  

If we think of the mass in the universe as a dust of density U
 essentially at rest in comoving 

coordinates we can define a tensor (Background)T . In comoving coordinates 

(Background)T has only one non zero term 00
(Background)

U
T  . In any other coordinates 

this same (Background)T  tensor is transformed by the usual tensor transformations that 

apply in GR. If these coordinates move at peculiar velocity
P

  then 
2

00
(Background)

P U
T   

2

00
(Background)

P
T . This all suggests the infinitesimally modified Einstein field equations 

 

                            
4

1 8
(Background)

2

G
G R g R T T

c
    


       

 (5.3. 26) 

 

We argue that Eq.(5.3. 26) is consistent with keeping the scalar min
0.355

GGk
K   constant 

throughout all spacetime as in Figure 5.3. 8. This infinitesimal modification is only relevant 

in the extreme case as T approaches (Background)T . Far from mass concentrations 

(Background)T T  . Space curvature is in general somewhere between slightly negative 

and zero, but the causally connected universe is flat on average regardless of the value of .   

 

 

 

 

    

 

 

 

 

 

 

 

The above arguments are only true if the determinant of the metric 1g  , ignoring the 
2 2

&sinr  factors, in particular 00
1.

rr
g g   We have also ignored angular momentum which 

will change this. We have only considered the gravitons interacting between a local mass and 

the rest of the universe and ignored the relatively small emission of gravitons by the mass 

itself. Both these effects will be addressed in a separate paper. See Addendum 8. 

minGk

G

K




  

min
k    

min
0.1 0.25k   

very approximately 

@ the Big Bang 

62

min
10k


   

     now 

At any cosmic time T  in any coordinates, and in any metric, 

in the infinitesimal band min
dk , min min minGk Gk

K dk   is always 

true. minGk
K is a constant scalar, but the measurement of min

k  

depends on both local metric clockrates and cosmic time T . 

Future 

 

 Figure 5.3. 8 
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6 Further consequences of Infinite Superpositions 

6.1 Low frequency Infinite Superposition cutoffs 

In section 4.2 when we introduced gravity, for the lower limit in our integrals we assumed

min
0k  , and then in section 5 showed that there is a lower limit min

0k   .  It turns out that 

for massive 1N   superpositions the effect of this is negligible in comparison to the high 

frequency cutoff cutoff
k   , which we showed gravity can address in section 4.2. For 

infinitesimal rest mass 2N  superpositions we cannot however ignore the effect of min
0k  .  

6.1.1 Quantifying the approximate effect of min
0k  on infinite superpositions 

If we look again at section 4.2.1 we can repeat what we did there as follows. Initially to 

illustrate these effects we will consider only 1N   superpositions where we can say that  

 

   

min

min

2

m2 2 2

min

in2

When  &   0 and thus

1 1 1 1
1 1

1 1 1

(for

1

 1 only)

1
nk

nk

nkCutoff nk

K c

nk

nkCuto

utoff

nk nk nkCutoff ffK

NK K

K K K
K

K




  

 
       



 


 
 

    

     

    

  (6.1. 1) 

Our earlier infinitesimal 
2

min2

1
nk

nkCutoff

K
K

      and from Eq. (3.1. 11)
2

2 2 2

2
nk C

n s
K k .  

For spin ½ fermions for example 2
/ 2 9n s  . Also 

2 2
1/

Cutoff P
k L  and 

2 2

min
1/

OH
k R so that  

                       
2

2

min2

22

2 2 2

2 2

2

9 9( ) (1 )

9 9
nk

nk

CP OCP

C OH CCutoff OH

H
L L R

K R R
K


          

2
2

The ratio of the extra contribut  to  (where ) n i
9

io  s 
P

C

OH
L R

  



 

 
    







  

   

 

  (6.1. 2) 

 

(Where   is the original 
2

1/
nk

K cutoff of Eq. (4.2. 2)). Equation (6.1. 2) is for spin ½, but the 

numerical factor 9 only changes slightly for spins 1 & 2.  In Planck units
61

10
P OH

L R  , but 

for electrons say
2 44

6 10
C
  , so the effect is of order 

4 56 26 1
/  /10 10 10  

  which we 

have been ignoring. We cannot ignore this however in the case of infinitesimal rest masses as 

we will see. 

6.2 Infinitesimal Masses and N = 2 Superpositions 

Looking again at angular momentum and rest masses in section 3.2 the key factor in our final 

integrals is in Eq. (6.1. 1). Using Eq.  (3.1. 12) we can rewrite Eq. (6.1. 1) as 

 

                                                 

min

2 2 2

min

1 1 1

1

nk

nk

K cutoff

nk nk nkCutoffK
K  

 
  

 

                                 
 

           (6.2. 1) 
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With massive 1N   superpositions as above the difference between 
2

min
& 1

nk
  is vanishingly 

small, i.e.
2

min
( 1) 1/

nk
     and as in section 6.1.1 this first term is of much less significance 

than the
2

nkCutoff
  term. Now define an approximate equality between 

2

min
&

k
N  using Eq.  

(3.1. 12) as follows 

 

                                                          
2 2

min min
1

k k
N K   

 
      (6.2. 2) 

 

In section 3.2 we derived angular momentum and rest masses for only massive or what we 

called 1N   particles. To get integral angular momentum we had to assume in deriving Eq. 

(3.2. 6) that the minimum value of min
 or 0

nk nk
K K  . For massive 1N   particles such as the 

fermions the error in this assumption (as in section 6.1.1) is 25
10


  times smaller than , 

which for an electron is already 45
10 

  due to the high frequency cutoff @ 18.31
10 .GeV  

(We allowed for this 45
10 

 when we included gravity in section 4.2.)  From section 6.1.1 

above we approximated
2 2 2

min
 as 9 /

nk C OH
K R for a spin ½ fermion. So we can express Eq. (6.2. 

2) in terms of this approximation for fermions with non infinitesimal mass 

                                              
2 2

2

2

min 2 2
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2

9 9
1 1    as    

9
For example an electron has 10

0

C

O

C C

k

OH OH

H

N
R R

R





 
    





   

                   

 

                   (6.2. 3) 

       

 

For the massive particles it appears we can safely say that 1N  . Even if neutrino masses 

were as low as 4
10 eV

  then 592

min
1 10 .

k
 

   If the mass is too small however Eq. (6.2. 1) 

tells us we cannot get the correct angular momentum unless something else changes. 

Infinitesimal increases above 1 of the order of 50
10


 or so can be handled perhaps by a 

small change in the actual high frequency cutoff details, but this probably does not allow 

massive particles to be much less than sub micro electron volts. So if massive particles are a 

group with 1N  , then it would not seem unreasonable to imagine there could possibly be 

another group with 
2

min
2 1

k
N K    implying that 

2

min
1.

k
K   Repeating the derivation 

of Eq. (3.2. 6) but with 
2

min
2 1

k
N K    and for clarity and simplicity let cutoffnk

K   .   
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L

L

              

 

       (6.2. 4) 

 

 

Provided we have doubled the probability of superpositions as in Eq. (2.1. 4) from 

1( ) /Ns dk k  to 2( ) /Ns dk k , the final angular momentum results in Eq’s. (3.2. 6) & 
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(6.2. 4) are identical. The same is true for rest mass calculations.  For multiple integer n 

infinite superpositions if 2N   then the expectation value
2

min
1

k
K  .  

We thus conjecture that all 2N   infinite superpositions have
2

min
1

k
K  .  

From Table 4.3. 1 

               2N  infinitesimal rest mass spin 1 superpositions have 3.98n   

               2N  infinitesimal rest mass spin 2 superpositions have 3.33n   

 

Using Eq’s. (3.1. 11) and Eq.(5.1. 10). 

      

2

2 2 2 2

min min

2

m

2 2

min

in

15.82
  or  0.355  for Spin 1

2 2

11.09 2
                                

1

1  or  0.300  for Spin 2   
2

OH

C C C

OH

C C

k

n s R
k k

R
k

K   


 









  

 

  (6.2. 5) 

 

Using the value for 0.51   from Eq. (5.3. 13) based on WMAP data which also puts the 

horizon radius at  9
46 10   light years 

61
2.7 10

OH
R    Planck lengths.   

 

        Spin    Compton Wavelength  C      Infinitesimal Rest Mass 

           1               0.7
OH

R           34
6.5 10  eV.


    

           2               0.59
OH

R          34
7.7 10  eV.


   

    Table 6.2 1 Infinitesimal rest masses of 2N   photons, gluons & gravitons.  

 

These Compton wavelengths and rest masses are the present values, changing slowly but 

exponentially with cosmic time T. They are based on WMAP data where 1   and could be 

slightly different if 1  as in section 5.3.8. They also depend on the actual value of b in the 

exponential expansion 3 ( )V Exp bt . These infinitesimal rest masses limit the range of virtual 

photons, gluons and gravitons to approximately the horizon. The graviton rest masses above 

are close to recent proposals explaining the accelerating expansion of the cosmos [2] [3]. 

6.2.1 Cutoff behaviours for N = 1 & N = 2 superpositions 

Equation (6.2. 1) can be written for both 1N   & 2N   superpositions using the results of 

sections 4.2 & 6.2 as follows  

                   
min

min

2

min

2

min

2 2

2 2

1 1 1 1
     when 

1 2(1 )

1 1 1 1
 =           when 

1

2

1
1

2

1

nk

nk

nk

nk
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K cutoff

nk nkCutoffK

K cutoff

nk

nk nkCutoffK k

K
N

N
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       (6.2. 6) 

 

(We should be using expectation values, but for clarity we simply imply them.) We have 

shown in section 6.2 that 2

min
1/ 1/ 2

k
   when 2N  , but in reality it is Eq. (6.2. 6) that 
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must be true. In section 4.2 we showed that for 1N   superpositions the primary coupling of 

gravity to preons infinitesimally increased the interaction probability by   (1to )    where  

 

from Eq. (4.2. 4)      
2 2

0

2

2

0

2 22 2
2

2

()

1

(8 )8 nk cut

G

EMP off

m G

s

m c

K cutoff snc k







 
  


.  

 

In the 1N   case this meant that any deficits due to a non infinite cutoff were exactly 

balanced by the contribution from gravity, but in the 2N   case this infinitesimal correction 

is out by a factor of two. However Eq. (6.2. 6) tells us that exactness can be maintained in the 

2N  case by an infinitesimal change from 2

mi minn

2
 to 1/1/ 1/  22 1/

kk
   . Thus both 

1N   & 2N  superpositions can cut off at Planck energy as in section 4.2.2.  The low 

frequency cutoff for all superpositions is at min
/

OH
k R   if they are to affect gravity. 

6.2.2 Virtual particle pairs emerging from the vacuum and space curvature 

For almost a century it has been a puzzle why spacetime is not massively curved by Planck 

scale zero point energy densities. However space appears to be flat on average regardless of 

this massive Planck scale zero point energy density so something must be different. In section 

5.2.1 we argued that the curvature of space is consistent with constant maximum wavelength 

virtual graviton probability density min min minGk Gk
K dk   as in Eq. (5.1. 10). We calculated this 

density assuming gravitons only couple to the average density U
  of energy, plus baryonic 

and dark matter in the universe. If maximum wavelength gravitons coupled to all virtual pairs 

emerging from the vacuum there is just not enough zero point energy at cosmic wavelengths 

to build them. We also argued that spacetime warps around any departure from a uniform 

background mass density U
 .  

So let us similarly conjecture the possibility that secondary interaction gravitons (as distinct 

from primary interaction gravitons as in section 4.2.1) only couple to any departure from the 

uniform background of virtual pair creation. If real gravitons in gravitational waves signal 

spacetime how to behave, then virtual gravitons coupling to departures from uniform 

backgrounds also somehow signal space how to expand (as in section 5.3). However even if 

there are no min
k gravitons coupling to virtual pairs, there must still be sufficient quanta 

available in the zero point vector fields to build the virtual particles themselves. It would 

initially seem that this requirement would exceed that for gravitons. Particle lifetimes are the 

key here. About 99% of graviton superpositions have lifetimes of T the age of the Universe 

where the uncertainty principle only allows energies 1 1

min OH
E k R T

 
    . Available zero 

point energies are limited for only such long lifetime superpositions. On the other hand most 

virtual pairs have extremely short lifetimes where the uncertainty principle allows much 

greater supplies of zero point energies to build their superpositions. Because of this we will 

ignore this issue when applying Eq. (5.3. 12). 
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6.2.3 What do we really mean by departures from the virtual pair background? 

It would initially seem that real particles are departures from a virtual pair background and 

that all virtual particles are not departures. But this is not always true. The zero point 

background locally available (See section 6.2.4 for clarification of local and redshifted) is the 

energy source from which most virtual pairs are created. It is Lorentz invariant in all frames. 

The local intensity at any point is always 3

max
k  or the Planck energy cubed if the maximum 

frequency is 1
Planck

k   and we integrate over all frequencies. But other sources of energy can 

create virtual particles. In comoving coordinates, what is usually referred to as “Real matter 

or energy” has an overall average of zero momentum. This is the matter that gravitons couple 

to. The conservation of mass/energy (or in relativistic language four momentum) tells us that 

in comoving frames this mass/energy lasts for something like the age of the universe. (Think 

galaxies etc.) It cannot be destroyed but it can be converted temporarily into virtual particles. 

This before and after conservation of 4 momentum is used in scattering crossection 

calculations [9] where virtual particles exist briefly. So “Real matter or energy” is a departure 

from the uniform zero point virtual pair background, but the virtual particles that real energy 

can briefly turn into are also departures. The long term average of this local “Real matter or 

energy” is what counts and is what cosmic wavelength gravitons couple to.  The gluons that 

bind quarks are virtual particles and form the vast bulk of the proton mass and thus most 

normal matter. They exist briefly individually but form long term mass/energy. If something 

can be weighed, including its virtual particles, it is a departure by our definition.   

6.2.4 Redshifted zero point energy from the horizon behaves differently to local 

As we said above local zero point energies are Lorentz invariant. At high frequencies there is 

no shortage locally to build the high frequency components of superpositions. If a massive 

1N   virtual pair emerges from the vacuum its life is short,and borrows long range quanta 

only briefly. If there were no redshifted supply from the horizon there would be only a few 

modes of the local supply of min
1 /

OU
k R  quanta inside the horizon. Because preons are born 

with zero momentum and infinite wavelength they can however absorb a different supply of 

redshifted min
1 /

OU
k R  quanta from the receding horizon as we have discussed. This min

k

quanta redshifted supply behaves differently to normal Lorentz invariant zero point local 

fields. It behaves as 
min min

2.36 "The Quanta required @ Constant"
Qk G

K k of Eq.(5.3. 12). 

Where 
min min min

6.66 "The Graviton Constant"
Qk Gk

K K k   of Eq. (5.2. 11). This redshifted supply 

is only available to zero spin preons that are born with zero momentum, or infinite 

wavelength, in the rest frame in which infinite superpositions are built. 

6.2.5 Revisiting the building of infinite superpositions 

In section 2 we developed equations to determine the probability of each mode of a 

superposition using local zero point fields and in section 5 when we found the cosmic 

wavelength supply inadequate we switched to a different redshifted supply for long range 
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quanta. So how do we justify our use of the local zero point fields to determine mode 

probabilities and behaviours? As we said above there is a plentifull supply of high frequency 

local zero point fields. This local supply is adequate for high densities of superpositions for 

all modes from the Planck energy 1k   high energy mode cutoffs to somewhere around 
20

10k


 or near nuclear wavelengths. The coupling to local zero point fields in this high 

frequency region determines the behaviour of all the standard model particles. There is 

however a gradual transition to absorbing quanta from the redshifted horizon supply as the 

wavelength increases. Because the redshited supply of min
k  quanta behaves as the invariants 

min min
or 

Qk Gk
K K above and entirely differently to Lorentz invariant local zero point fields, 

spacetime has to warp around mass concentrations and the universe has to expand. 

6.2.6 The primary to secondary graviton coupling ratio G
   

In Eq. (4.2. 14) we found 318.3
G

    as the ratio between the primary graviton coupling to a 

bare Planck mass and the normal measured gravitational constant G. Equation (5.1. 7) 

defined graviton coupling between Planck masses G
 . If 1

G
   as we had expected, the ratio 

between primary and secondary graviton coupling (as defined for colour and 

electromagnetism in Eq. (3.3. 2) would be
1

318.3
G G GG

        . But we found in section 

5.3.2 that the graviton coupling constant between Planck masses was 1/164
G

   implying  

 
1

The primary to secondary graviton coupling ratio 164 318.3 52,000
G GG

 
       (6.2. 7) 

 

However this is obviously very approximate. Equation  (6.2. 7) can also be interpreted as the 

primary graviton coupling to preons is (318.3)G  and the secondary graviton coupling is 

/164G . To solve graviton superpositions we can use Eq. (3.3. 16) which is the 

gravitational interaction probability between fermions and we can now put on the RHS the 

coupling ratio  52, 000
G

   in the same way as we did for Eq.(3.3. 21) 
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But from Eq. (4.4. 1)
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Using Eq.(4.4. 3),
4

* 170.95
n n

c c n   for spin 2, 2N   we get the infinitesimal mass 

graviton superposition values in Table 4.3. 1. The probability of a graviton, of the same 

mass/energy as say photons, gluons or fermions etc exchanging gravitons, (using the same 

procedure as in Eq. (3.3. 16)) is 5
10


  of the probability of photons, gluons or fermions 

exchanging gravitons. This is consistent with gravitational energy not being included in the 

Einstein tensor and why we said in section 1.1.1 that gravitons may not emit gravitons. This 

implies that the gravitational constant does not run with wavenumber k at high energies as the 

other coupling constants do. This is why we can use the normal gravitational constant G as 

the secondary gravitational coupling constant S
G  where we put the primary gravitational 

coupling to bare preons as P G S G
G G G     in Eq.(4.2. 3). 

6.2.7 N=1 & N=2 Bosons and the Higg’s mechanism 

In the Standard Model the Higg’s mechanism adds mass to zero mass photons but here we 

say it adds mass to infinitesimal mass photons but not only does it do that, it also converts 

them from from 2N   to 1N  , and also from 3,4,5n   to 4,5,6n  superpositions.  

 

6.3 Black Holes, the Firewall Paradox and possible Spacetime Boundaries  

Several recent papers [15] [16] [17] [18] [19] have discussed the BH firewall paradox. In 

section 5.2.2 we use the fact that outside observers see infalling mass remaining on the 

horizon. In fact if we look carefully at the analyses in sections 5.2.1 & 5.2.2 we see they 

strongly suggest that GR cutsoff at the BH horizon; one of the possible firewall paradox 

implications. The equations we derived do not work inside the horizon. Our argument that a 

constant graviton scalar minGk
K  is consistent with GR will not work inside the horizon. 

( min
k Quanta that go in to build superpositions would not return in time

1

min
T k T


   ).  

Is it possible that the horizon of a Black Hole could well be a spacetime boundary?  

 

6.4 Dark Matter possibilities 

Table 4.3. 1 shows a spin 2, 1N   neutral massive graviton type superposition that exchanges 

infinitesimal mass 2N   graviton superpositions 
5

10  more strongly than 2N   gravitons 

exchange 2N   gravitons. It may possibly be only detected via these graviton interactions. 

(Dark Matter Wimp searches would not see these as spin 2 is not subject to the weak force.) 

 

6.5 Higgs Boson 

It is not clear if the Higgs boson is a spin zero superposition so it is not in Table 2.2. 1; but if  

it is, it would be some superposition of infinite superpositions with a total angular momentum 

vector summing to zero just as two spin ½ fermion superpositions can for example. 
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6.6 Constancy of fundamental charge  

It has always been fundamental that the electromagnetic charge of protons and electrons is 

precisely equal and opposite to get a neutral universe. In section 4.2 we showed that the 

probability of superpositions was (1 ) /sN dk k   where the infinitesimal  is proportional 

to rest mass squared and thus different for various particles. We used this probability to 

determine interaction coupling strengths in section 3.3. This suggests that the probability of 

virtual photon emission is also proportional to the probability (1 ) /sN dk k   of each 

superposition, and would not be precisely equal for electrons and protons due to small 

variations in   of the order of 45
10


  between electrons and quarks. If however we look 

closely at Eq.(4.2. 3) and the following equations, by adding the amplitude for gravity at right 

angles we effectively added the probabilities of spin 2 gravity generated superpositions to 

those of spin 1 colour and electromagnetic superpositions. If somehow only those 

superpositions generated by spin 1 electromagnetic and colour interact with spin 1 photons 

this would cancel any minute difference in charge. If this is not so then there are infinitesimal 

differences in charge of the order of 45
10


 which would surely have shown up in some form 

by now unless there are minute differences in the total number of electrons and protons. 

6.7 Feynman’s Strings 

Over a century ago there were various models of the electron. The Abraham-Lorenz was 

probably the most well-known [20] [21].  All these models suffered from the problem that the 

electromagnetic mass in the field was 4/3 times the relativistic mass. In 1906 Poincare 

showed that if the bursting forces due to charge were balanced by stresses (or forces) in the 

same rest frame as the particle, these would cancel the extra 1/3 figure restoring covariance 

[22]. In chapter 29 Volume II of his famous lectures on physics, Feynman, probably jokingly, 

suggested that if the electron is held together by strings that their resonances could explain 

the muon mass; he just may have been right [23].The equations for infinite superpositions in 

this paper apply equally to all massive particles. Also, as infinite superpositions are held 

together by interactions with zero point forces in the same rest frame, could these zero point 

interactions possibly be Feynman’s strings? If they hold the virtual preons in orbit, it would 

seem that they should also be able to balance any bursting forces due to electric charge. 

However this paper suffers from the same problem as the Standard Model. There is nothing 

in it suggesting the quantization of mass of the massive particles; but it does however suggest 

the mass of infinitesimal rest mass particles.  

7  Conclusions 

If fundamental particles are built from infinite superpositions then why do we never see any 

sign of them? It is important to remember that all components of infinite superpositions are 

virtual and only complete infinite superpositions can behave as real particles.  If infinite 
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superpositions could be somehow decomposed into their virtual components this would 

destroy the resulting equivalent real particle. Could it be that particle conservation laws 

controlling the behaviour of fundamental particles somehow prevent any sign of their virtual 

components? Also the viability of this paper depends on primary interactions where spin zero 

preons can borrow mass from some Higgs type scalar zero point field, and energy from 

colour and electromagnetic zero point vector fields. The behaviour of these primary 

interactions is very different to the secondary interactions that the SM is all about. The SM 

rules applying to borrowing mass and energy from scalar and vector zero point fields may not 

apply to primary interactions; but the secondary interactions of QED, QCD etc of the SM 

applying to fundamental particles must equally apply to infinite superpositions. We have also 

not discussed gravitational waves. Just as a minute graviton coupling constant can lead to 

much larger changes in the metric around mass concentrations, we can imagine similarly 

small emmissions of real 2m    gravitons leading to larger waves in the metric. Finally, this 

paper suggests that if fundamental particles can in fact be built from infinite superpositions:  

 Quantum mechanics may well rule the exponential expansion of space and the 

warping of spacetime around concentrations of mass/energy.  

 The warping of spacetime around mass concentrations and the exponential expansion 

of space may possibly be the only evidence of infinite superpositions we will ever see.  

 General Relativity (in an infinitesimally modified form affecting cosmic scale only) 

could well be a consequence of Quantum Mechanics.   

 The interaction between gravitons is minute in relation to the much amplified but 

apparent attraction between mass concentrations due to metric changes. This may 

affect the quantum field theory of gravitons. (Black holes may not automatically form 

around Planck energy gravitons.) 

 General Relativity may not apply inside Black Holes, and the event horizon itself may 

possibly be a Spacetime Boundary, as infinite superpositions will not form inside 

them.  

8 Addendum 

The finding in this paper suggesting consistency between an infinitesimally modified General 

Relativity (affecting cosmic scale only) and all observers seeing a constant maximum 

wavelength graviton probability density scalar minGk
K only considered the gravitons 

interacting between a small mass (in relation to the rest of the cosmos) and the mass of the 

rest of the cosmos. For clarity and simplicity those gravitons emitted by the small mass itself 

were ignored. Their affect is small except close to black holes. This second order effect will 

be explored in a separate paper.  
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