Four Prime-Generating Recurrences

by princeps

March 23, 2013

Abstract : Prime number generating recurrences are introduced . Keywords : Prime , Recurrence AMS Classification :11A41

1 Introduction

Let $a_1 = 1$, for n > 1, $a_n = a_{n-1} + lcm(a_{n-1}, n)$ [1]. This sequence has properties related to primes. For instance $a_{n+1}/a_n - 1$ consists of 1's or primes only.

2 Main result

Prime Number Generator I

Let $b_n = b_{n-1} + lcm(n-1, b_{n-2})$ with $b_1 = 2$ and $b_2 = 2$ then $a_n = b_{n+2}/b_n - 1$ is either 1 or prime [2].

Conjecture 1

1. Every term of this sequence is either prime or 1.

2. Every odd prime number is member of this sequence .

Maxima implementation

n; ans:0; n1:2; n2:2; list:[1,1]; (for k from 3 thru n do (ans:n1+lcm(k-1,n1) , list:append(list,[ans/n1-1]) , n1:n2 , n2:ans))print(list);

Prime Number Generator II

Let $b_n = b_{n-1} + lcm(\lfloor \sqrt{2} \cdot n \rfloor, b_{n-1})$ with $b_1 = 2$ then $a_n = b_{n+1}/b_n - 1$ is either 1 or prime.

Conjecture 2

1. Every term of this sequence is either prime of the form $\lfloor \sqrt{2} \cdot n \rfloor$ or 1 .

2. Every prime of the form $\lfloor \sqrt{2} \cdot n \rfloor$ is member of this sequence .

Maxima implementation

n; ans:0; n1:2; list:[1]; (for k from 2 thru n do (ans:n1+lcm(floor(sqrt(2)*k),n1) , list:append(list,[ans/n1-1]) , n1:ans))\$ print(list);

Prime Number Generator III

Let $b_n = b_{n-1} + lcm(\lfloor\sqrt{3} \cdot n\rfloor, b_{n-1})$ with $b_1 = 3$ then $a_n = b_{n+1}/b_n - 1$ is either 1 or prime.

Conjecture 3

1. Every term of this sequence is either prime of the form $\lfloor \sqrt{3} \cdot n \rfloor$ or 1 .

2. Every prime of the form $\lfloor \sqrt{3} \cdot n \rfloor$ is member of this sequence .

Maxima implementation

n; ans:0; n1:3; list:[1]; (for k from 2 thru n do (ans:n1+lcm(floor(sqrt(3)*k),n1) , list:append(list,[ans/n1-1]) , n1:ans))\$ print(list);

Prime Number Generator IV

Let $b_n = b_{n-1} + lcm(\lfloor \sqrt{n^3} \rfloor, b_{n-1})$ with $b_1 = 2$ then $a_n = b_{n+1}/b_n - 1$ is either 1 or prime.

Conjecture 4

1. Every term of this sequence is either prime of the form $\lfloor \sqrt{n^3} \rfloor$ or 1. 2. Every prime of the form $\lfloor \sqrt{n^3} \rfloor$ is member of this sequence.

Maxima implementation

n; ans:0; n1:2; list:[1]; (for k from 2 thru n do (ans:n1+lcm(floor($sqrt(k^3)$),n1), list:append(list,[ans/n1-1]), n1:ans))\$ print(list);

References

 OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A135504.
OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A217663.