Four Prime-Generating Recurrences

Predrag Terzic
Podgorica, Montenegro
pedja.terzic@hotmail.com

March 23, 2013

Abstract : Prime number generating recurrences are introduced.
Keywords : Prime, Recurrence
AMS Classification :11A41

1 Introduction

Let $a_{1}=1$, for $n>1, a_{n}=a_{n-1}+\operatorname{lcm}\left(a_{n-1}, n\right)[1]$. This sequence has properties related to primes. For instance $a_{n+1} / a_{n}-1$ consists of 1's or primes only .

2 Main result

Prime Number Generator I

Let $b_{n}=b_{n-1}+\operatorname{lcm}\left(n-1, b_{n-2}\right)$ with $b_{1}=2$ and $b_{2}=2$
then $a_{n}=b_{n+2} / b_{n}-1$ is either 1 or prime [2].
Conjecture 1

1. Every term of this sequence is either prime or 1 .
2. Every odd prime number is member of this sequence .

Maxima implementation

n;
ans:0;
n1:2;
n2:2;
list:[1,1];

```
(for k from 3 thru n do
(ans:n1+lcm(k-1,n1) ,
list:append(list,[ans/n1-1]),
n1:n2,
n2:ans))$
print(list);
```


Prime Number Generator II

Let $b_{n}=b_{n-1}+l c m\left(\lfloor\sqrt{2} \cdot n\rfloor, b_{n-1}\right)$ with $b_{1}=2$
then $a_{n}=b_{n+1} / b_{n}-1$ is either 1 or prime.

Conjecture 2

1. Every term of this sequence is either prime of the form $\lfloor\sqrt{2} \cdot n\rfloor$ or 1 .
2. Every prime of the form $\lfloor\sqrt{2} \cdot n\rfloor$ is member of this sequence.

Maxima implementation

n;

ans:0;
n1:2;
list:[1];
(for k from 2 thru n do
(ans:n1+lcm(floor(sqrt(2)*k),n1),
list:append(list,[ans/n1-1]),
n1:ans)) $\$$
print(list);

Prime Number Generator III

Let $b_{n}=b_{n-1}+l c m\left(\lfloor\sqrt{3} \cdot n\rfloor, b_{n-1}\right)$ with $b_{1}=3$
then $a_{n}=b_{n+1} / b_{n}-1$ is either 1 or prime.

Conjecture 3

1. Every term of this sequence is either prime of the form $\lfloor\sqrt{3} \cdot n\rfloor$ or 1 .
2. Every prime of the form $\lfloor\sqrt{3} \cdot n\rfloor$ is member of this sequence .

Maxima implementation

n;
ans:0;
n1:3;
list:[1];
(for k from 2 thru n do
(ans:n1+lcm(floor(sqrt(3)*k),n1),
list:append(list,[ans/n1-1]) ,
n1:ans) $\$$
print(list);

Prime Number Generator IV

Let $\mathrm{b}_{n}=b_{n-1}+l c m\left(\left\lfloor\sqrt{n^{3}}\right\rfloor, b_{n-1}\right)$ with $b_{1}=2$
then $a_{n}=b_{n+1} / b_{n}-1$ is either 1 or prime.

Conjecture 4

1. Every term of this sequence is either prime of the form $\left\lfloor\sqrt{n^{3}}\right\rfloor$ or 1 .
2. Every prime of the form $\left\lfloor\sqrt{n^{3}}\right\rfloor$ is member of this sequence .

Maxima implementation

n;
ans:0;
n1:2;
list:[1];
(for k from 2 thru n do
(ans:n1+lcm(floor(sqrt(k^3)),n1),
list:append(list,[ans/n1-1]) ,
n1:ans))\$
print(list);

References

[1] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A135504.
[2] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A217663.

