Introduction to Real Clifford Algebras: from $\mathrm{Cl}(8)$ to E 8 to Hyperfinite II1 factors

Frank Dodd (Tony) Smith, Jr. - 2013
Real Clifford Algebras roughly represent the Geometry of Real Vector Spaces of signature (p, q) with the Euclidean Space $(0, q)$ sometimes just being written (q) so that the Clifford algebra $\mathrm{Cl}(0, q)=\mathrm{Cl}(\mathrm{q})$.
A useful starting place for understanding how they work is to look at the most central example and then extend from it to others.
This paper is only a rough introductory description to develop intuition and is NOT detailed or rigorous - for that see the references.

Real Clifford Algebras have a tensor product periodicity property whereby

$$
\mathrm{Cl}(\mathrm{q}+8)=\mathrm{Cl}(\mathrm{q}) \times \mathrm{Cl}(8)
$$

so that if you understand $\mathrm{Cl}(8)$ you can understand larger Clifford Algebras such as $\mathrm{Cl}(16)=\mathrm{Cl}(8) \times \mathrm{Cl}(8)$ and so on for as large as you want.
So $\mathrm{Cl}(8)$ is taken to be the central example in this paper which has 4 parts:
How $\mathrm{Cl}(8)$ works - page 2
What smaller Clifford Algebras inside $\mathrm{Cl}(8)$ look like - page 7
How the larger Clifford Algebra $\mathrm{Cl}(16)$ gives E8 - page 9
How larger Clifford Algebras $\mathrm{Cl}(16 \mathrm{~N})=\mathrm{Cl}(8(2 \mathrm{~N}))$ give in the large N limit a generalized Hyperfinite II1 von Neumann factor AQFT - page 14

References:

Lectures on Clifford (Geometric) Algebras and Applications
Rafal Ablamowicz, Garret Sobczyk (eds) (Birkhauser 2003) especially lectures by Lounesto and Porteous

Clifford Algebras and Spinors
Pertti Lounesto (Cambridge 2001)
Clifford Algebras and the Classical Groups
Ian R. Porteous (Cambridge 2009)
My Introduction to E8 Physics at viXra:1108.0027

How Cl(8) works

$\mathrm{Cl}(8)$ is a graded algebra with grade k corresponding to dimensionality of vectors from the origin to subspaces of 8 -dim space spanned by k basis vectors of 8 orthogonal basis vectors $\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\}$ of the 8 -dim Euclidean space. In the following construction use only the positive basis vectors (not their mirror image negatives). That is the same as looking at only the all-positive octant of the 8 -dim Euclidean space.

Grade:
0 - vectors from origin to itself - 0 -dimensional - 1 point
1 - vectors from origin to 1 of the 8 basis vectors - 1-dim - 8 line segments each of the 8 line segments is a 1 -dim simplex whose outer "face" is a 0 -dimensional point.
These 8 basis vectors are the basis vectors of the 8 -dim vector space of $\mathrm{Cl}(8)$.
2 - vectors from origin to pairs of the 8 basis vectors - 2 -dim - 28 triangles defined by pairs of vectors
each of the 28 triangles is a 2 -dim simplex (but NOT equilateral) whose outer "face" is a 1 -dimesional line segment.
These 28 bivectors (pairs of vectors) give the 28 planes of rotation of the 28 -dim group Spin(8) that includes rotations of the 8 -dim vector space of $\mathrm{Cl}(8)$.

3 - vectors from origin to triples of the 8 basis vectors - 3 -dim - 56 tetrahedra defined by triples of vectors
each of the 56 tetrahedra is a 3 -dim simplex (but NOT equilateral)

(image from wikipedia)
whose outer "face" is a 2 -dimensional triangle (that IS equilateral).

4 - vectors from origin to 4-tuples of the 8 basis vectors - 4-dim - 704 -simplexes defined by 4-tuples of vectors each of the 704 -simplexes is a 4-dim simplex (but NOT equilateral)
whose outer "face" is a 3-dimensional tetrahedron (that IS equilateral).
5 - vectors from origin to 5-tuples of the 8 basis vectors - 5-dim - 56 5-simplexes defined by 5 -tuples of vectors
each of the 565 -simplexes is a 5 -dim simplex (but NOT equilateral) whose outer "face" is a 4-dim simplex (that IS equilateral).

6 - vectors from origin to 6-tuples of the 8 basis vectors -6-dim-28 6-simplexes defined by 6 -tuples of vectors
each of the 286 -simplexes is a 6-dim simplex (but NOT equilateral) whose outer "face" is a 5 -dim simplex (that IS equilateral).

7 - vectors from origin to 7-tuples of the 8 basis vectors-7-dim - 8 7-simplexes defined by 7 -tuples of vectors
each of the 87 -simplexes is a 7-dim simplex (but NOT equilateral) whose outer "face" is a 6-dim simplex (that IS equilateral).

8 - vectors from origin to 8 -tuples of the 8 basis vectors - 8-dim -18-simplex defined by the unique 8 -tuple of vectors the 8 -simplex is an 8 -dim simplex (but NOT equilateral) whose outer "face" is a 7-dim simplex (that IS equilateral).

> The total dimension of $\mathrm{Cl}(8)$ is
> $1+8+28+56+70+56+28+8+1=256=2^{\wedge} 8=16 \times 16$

The $\mathrm{Cl}(8)$ algebra is the algebra of 16×16 matrices of real numbers.

The product of the $\mathrm{Cl}(8)$ algebra is the product of 16×16 real matrices but it also has geometric meaning.

If you multiply for example a grade-2 element $=2$-dim simplex with basis vectors $\{x 3, x 5\}$
by a
grade-4 element $=4$-dim simplex with basis vectors $\{x 2, x 6, x 7, x 8\}$
then
you get a
grade-6 element $=6$-dim simplex with basis vectors $\{x 2, x 3, x 5, x 6, x 7, x 8\}$ BECAUSE
the Clifford Algebra product in this case acts like the exterior algebra wedge product (or the cross-product in 3-dim)
so that the product fo two independent subspaces of the $\mathrm{Cl}(8) 8$-dim Euclidean space is sort of the span of both subspaces taken together

BUT

If you multiply for example a grade-2 element $=2$-dim simplex with basis vectors $\{x 2, x 5\}$ by
a grade-4 element $=4$-dim simplex with basis vectors $\{x 2, x 6, x 7, x 8\}$ then
you get
a grade-4 element $=4$-dim simplex with basis vectors $\{x 5, x 6, x 7, x 8\}$ BECAUSE
the Clifford Algebra in this case acts partly like a dot-product so that in the product of two defined-by-the-same-vector subspaces the two subspaces cancel out to zero (the common basis vector x2is cancelled).

In short, Clifford aAlgebra idescribes the geometry of vector subspaces and
the geometry is exactly described by matrix algebras like

$$
\mathrm{Cl}(8)=16 \times 16 \text { real matrices } \mathrm{R}(16) .
$$

The 16×16 real matrices $R(16)$ are made up of 16 column vectors each of which is a 16 -dim vector that decomposes into two 8 -dim vectors.

Since16 times an 8+8 = 16-dim column vector gives all 16x16=256 elements of $\mathrm{R}(16)=\mathrm{Cl}(8)$
it is useful to regard the 16 -dim column vectors as fundamental square-root-type constituents of $\mathrm{Cl}(8)$ and to call them $\mathrm{Cl}(8)$ spinors.

Since the 16 -dim $\mathrm{Cl}(8)$ spinors decompose into two 8 -dim parts, call them 8-dim +half-spinors and 8-dim -half-spinors and denote them by $\mathbf{8 + 5}$ and $\mathbf{8 - s}$.

In the case of $\mathbf{C l}(\mathbf{8})$ the grade-1 vectors are also 8 -dim, denoted by $\mathbf{8 v}$, so
for $\mathrm{Cl}(8)$ we have a Triality Automorphism 8+s $=8$ - $\mathbf{s}=\mathbf{8 v}$ that turns out to be very useful in physics because it gives a relation between +half-spinors, -half-spinors, and vectors.

The equility between +half-spinors and -half-spinors gives a symmetry between fermion particles and antiparticles.

Since gauge bosons are grade-2 bivectors of which $\mathrm{Cl}(8)$ has 28 , the gauge boson Lagrangian dimension in 8 -dim spacetime is 28 .

Since in 8-dim spacetime fermions have Lagrangian dimension 7/2 the full fermion term of the Lagrangian also has dimension 28.

Therefore, in the high-energy 8 -dim spacetime Lagrangian the boson and fermion terms cancel due to the Triality Supersymmetry of boson Lagrangian dimension $=28=$ fermion Lagrangian dimension.

Once you understand the $\mathrm{Cl}(8)$ example you can extend the model to $\mathrm{Cl}(\mathrm{N})$ for any N and also extend it to spaces with any signature (p, q) for $p+q=N$ where p is the number of dimensions of negative signature and q is the number of dimensions of positive signature in the vector space over which the Clifford Algebra $\mathrm{Cl}(\mathrm{p}, \mathrm{q})$ is defined.

Clifford Algebras for Euclidean spaces $\mathrm{Cl}(0, \mathrm{q})$ are also denoted $\mathrm{Cl}(\mathrm{q})$, such as $\mathrm{Cl}(8)=\mathrm{Cl}(0,8)=\mathrm{R}(16)$ and $\mathrm{Cl}(16)=\mathrm{Cl}(0,16)=\mathrm{R}(256)$

For some (p, q) the Clifford Algebras are matrix algebras over complex C or quaternionic H as for example

$$
\begin{gathered}
\mathrm{Cl}(4)=\mathrm{Cl}(1,3)=\mathrm{H}(2) \\
\mathrm{Cl}(2)=\mathrm{H} \\
\mathrm{Cl}(1)=\mathrm{C}
\end{gathered}
$$

What smaller Clifford Algebras inside $\mathrm{Cl}(8)$ look like

Here is a table of all Clifford Algebras $\mathrm{Cl}(\mathrm{p}, \mathrm{q})$ smaller than $\mathrm{Cl}(8)=\mathrm{Cl}(0,8)=\mathrm{R}(16)$

R	C	H	${ }^{2} \mathrm{H}$	H(2)	C(4)	R(8)	${ }^{2} \mathbf{R}(8)$
${ }^{2} \mathrm{R}$	R(2)	C(2)	H(2)	${ }^{2} \mathrm{H}(2)$	H(4)	C(8)	R (16)
R(2)	${ }^{2} \mathbf{R}(2)$	R(4)	C(4)	H(4)	${ }^{2} \mathrm{H}(4)$	H(8)	C(16)
C(2)	R(4)	${ }^{2} \mathbf{R}(4)$	R(8)	C(8)	H(8)	${ }^{2} \mathrm{H}(8)$	H(16)
H(2)	C(4)	R(8)	${ }^{2} \mathrm{R}(8)$	R(16)	$\mathrm{C}(16)$	H(16)	${ }^{2} \mathrm{H}(16)$
${ }^{2} \mathbf{H}(2)$	H(4)	C(8)	$\mathbf{R}(16)$	${ }^{2} \mathbf{R}(16)$	R(32)	$\mathrm{C}(32)$	H(32)
H(4)	${ }^{2} \mathrm{H}(4)$	H(8)	$\mathrm{C}(16)$	R(32)	${ }^{2} \mathrm{R}$ (32)	R(64)	C(64)
C(8)	H(8)	${ }^{2} \mathrm{H}(8)$	H(16)	$\mathrm{C}(32)$	R(64)	${ }^{2} \mathbf{R}$ (64)	\mathbf{R} (128)

from lan Porteous's book "Clifford Algebras and the Classical Groups" (Cambridge 1995, 2009).

Some of the smaller Clifford Algebras are particularly useful in physics.
Here is how some of them fit inside $\mathrm{Cl}(8)=\mathrm{Cl}(0,8)$:

$$
\left.\begin{array}{rl}
\mathrm{Cl}(8)=\mathrm{Cl}(1,7)=\mathrm{R}(16)=\mathrm{H}(2) \times \mathrm{H}(2)=\mathrm{Cl}(1,3) \times \mathrm{Cl}(1,3) \\
\text { Spin(8) Triality Group and } \mathrm{F} 4
\end{array} \quad \begin{array}{c}
\mathrm{Cl}(2,6)=\mathrm{Cl}(3,5)=\mathrm{H}(8) \\
\mathrm{Cl}(6)=\mathrm{R}(8)=\mathrm{H} \times \mathrm{H}(2)
\end{array} \begin{array}{r}
\mathrm{Cl}(2,4)=\mathrm{Cl}(1,5)=\mathrm{H}(4) \\
\text { Conformal } \mathrm{SU}(2,2) \mathrm{Group}
\end{array}\right)
$$

How the larger Clifford Algebra $\mathrm{Cl}(16)$ gives E8

By Periodicity the tensor product $\mathrm{Cl}(8) \times \mathrm{Cl}(8)=\mathrm{Cl} 16$ with graded structure

The 16 -dim vector space of $\mathrm{Cl}(16)$ comes from $\mathrm{Cl}(8) \times \mathrm{Cl}(8)$ as grade $(0+1)=(1+0)=1$
and dimension $1 \times 8+8 \times 1=16$
The 120 -dim bivector space of $\mathrm{Cl}(16)$ comes from $\mathrm{Cl}(8) \times \mathrm{Cl}(8)$ as grade $(0+2)=(2+0)=(1+1)=2$
and dimension $1 \times 28+28 \times 1+8 \times 8=28+28+64$
The 28 bivectors in each of the $\mathrm{Cl}(8)$ generate the D4 Lie Algebra Spin(8).
The 120 bivectors in $\mathrm{Cl}(16)$ generate the D8 Lie Algebra Spin(16).

Therefore 120-dim D8 contains:
two copies of 28-dim D4

plus
a 64-dim structure that is the product of two 8 -dim $\mathrm{Cl}(8)$ vector spaces each of which is half of the 16 -dim D8 vector space so that effectively the $64-\mathrm{dim}$ structure is the square of the rank 8 of $D 8$ which is also

the rank of 248 -dim E8 whose 240 Root Vectors can be seen as 8 concentric circles of 30 Root Vectors (Wikipedia image)

such that there exists the symmetric space
D8 / D4xD4 = 8x8 = 64-dim rank 8 Grassmannian
and

> 248-dim E8 = 120-dim D8 + 128-dim D8 +half-spinor =
$=$ D4xD4 + 8x8 + 128-dim D8 +half-spinor D8+s

The spinors of $\mathrm{Cl}(16)=\mathrm{Cl}(8) x \mathrm{Cl}(8)$ come from the spinors of $\mathrm{Cl}(8)$: (8+s + 8-s $) \times(8+s+8-s)=$

$$
\begin{aligned}
& =(8+\mathrm{s} \times 8+\mathrm{s}+8+\mathrm{s} \times 8 \text {-s }+8 \text {-s } \times 8+\mathrm{s}+8 \text {-s } \times 8 \text {-s })= \\
& =(8+\mathbf{s} \times 8+\mathrm{s}+8 \text {-s } \times 8 \text {-s })+(+8+\mathrm{s} \times 8-\mathrm{s}+8-\mathrm{s} \times 8+\mathrm{s})= \\
& =(64+++64--)+(64+-+64-+)=128+128=256-d i m \mathrm{Cl}(16) \text { spinors }
\end{aligned}
$$

If you try to combine all $128+128=256$ of the $\mathrm{Cl}(16) \mathrm{D} 8$ spinors with the 120 -dim $\mathrm{Cl}(16) \mathrm{D} 8$ Lie Algebra you will see that they will fail to make a nice Lie Algebra but
if you take only the ($64+++64--)=128-d i m \mathrm{Cl}(16) \mathrm{D} 8$ +half-spinors $\mathrm{D} 8+\mathrm{s}$

and combine them with the 120 -dim $\mathrm{Cl}(16) \mathrm{D} 8$ Lie Algebra they DO form the $128+120=248$-dim E8 Lie Algebra.
Although E8, like all Lie Algebras, can be written in terms of commutators, the 128-dim D8 +half-spinor part of E8 can be written as anticommutators, a property that E 8 in $\mathrm{Cl}(16)$ inherits from F 4 in $\mathrm{Cl}(8)$. Therefore, the 120-dim D8 part of E8 physically represents boson and vector spacetime with commutators
and
the 128-dim D8 +half-spinor part of E8 physically represents fermions with anticommutators. Further, since it is made up of (64++ + 64--)
it represents 8 spacetime components of 8 fermion particles plus 8 spacetime components of 8 fermion antiparticles.
The 8 first-generation fermion types are
electron, red up quark, green up quark, blue up quark ;
blue down quark, green down quark, red down quark, neutrino

Second and Third fermion generations, Higgs, and 3 mass states of Higgs and Tquark emerge as consequences of the Octonion / Quaternion transition from 8-dim Spacetime of the Inflationary Era of our Universe to 4-dim Physical Spacetime + 4-dim CP2 Internal Symmetry Space.

Could the D4xD4 + 8x8 + 128-dim D8 +half-spinor D8+s structure of E8 have been depicted by Flammarion on page 163 of his 1888 book
"L'Atmosphere Meteorologie Populaire" ?

Flammarion's Naive Missionary Explorer sees the intersection of Terrestrial Physics and AstroPhysics as a window to the Realm of Terrestrial-AstroPhysics Unification through E8 Physics.

As to Terrestrial Physics: a Standard Model Higgs has been observed by the LHC near Lake Geneva which looks like this part of the Flammarion Engraving (colorization from image on goodnewsfromdrjoe blog)

and
progress has been made toward understanding Palladium-Deuterium Cold Fusion, planting a seed that can grow into a productive Tree of Energy

As to AstroPhysics: Hot Fusion was known to be the Energy Source of the Sun

and
our Universe was shown to have a ratio DE: DM : OM
of Dark Energy to Dark Matter to Ordinary Matter roughly $3 / 4: 1 / 5: 1 / 20$

How larger Clifford Algebras $\mathrm{Cl}(8 \mathrm{~N})$ give in the large N limit a generalized Hyperfinite II1 von Neumann factor AQFT

As to Clifford Algebras larger than $\mathrm{Cl}(0,8)$

there is periodicity theorem that
$\mathrm{Cl}(0, \mathrm{n}+8)=\mathrm{M}(16, \mathrm{Cl}(0, n))$ of all 16x16 matrices
whose entries are from $\mathrm{Cl}(0, \mathrm{n})$
and $\mathrm{Cl}(\mathrm{p}, \mathrm{q}+4)=\mathrm{Cl}(\mathrm{p}, \mathrm{q}) \times \mathrm{Cl}(0,4)=\mathrm{Cl}(\mathrm{p}, \mathrm{q}) \times \mathrm{H}(2)$
and $\mathrm{Cl}(p, q)=\mathrm{Cl}(p+4, q-4)$
and $\mathrm{Cl}(\mathrm{p}+8, q)=\mathrm{Cl}(\mathrm{p}, \mathrm{q}) \times \mathrm{Cl}(0,8)=\mathrm{Cl}(\mathrm{p}, \mathrm{q}) \times \mathrm{H}(2) \times \mathrm{H}(2)=\mathrm{Cl}(\mathrm{p}, \mathrm{q}) \times \mathrm{R}(16)$
and $\mathrm{Cl}(\mathrm{p}, \mathrm{q}+8)=\mathrm{Cl}(\mathrm{p}, \mathrm{q}) \times \mathrm{Cl}(0,8)=\mathrm{Cl}(\mathrm{p}, \mathrm{q}) \times \mathrm{H}(2) \times \mathrm{H}(2)=\mathrm{Cl}(\mathrm{p}, \mathrm{q}) \times \mathrm{R}(16)$
whereby
the tensor product of n copies of $\mathrm{Cl}(8)$
$\mathrm{Cl}(8) \mathrm{x} \ldots$ (n times tensor product) $\ldots \mathrm{xCl}(8)=\mathrm{Cl}(8 \mathrm{n})$
and
any really large Clifford Algebra can
be embedded in the tensor product of a lot of $\mathrm{Cl}(8)$ Clifford Algebras.

Since the E8 Physics classical Lagrangian is Local,
it is necessary to patch together Local Lagrangian Regions to form a Global Structure describing
a Global E8 Algebraic Quantum Field Theory (AQFT).
Mathematically,
this is done by embedding E 8 into the $\mathrm{Cl}(16)$ Clifford Algebra and using a copy of $\mathrm{Cl}(16)$ to represent each Local Lagrangian Region.

A Global Structure is then formed
by taking the tensor products of the copies of $\mathrm{Cl}(16)$.
Due to Real Clifford Algebra 8-periodicity, $\mathrm{Cl}(16)=\mathrm{Cl}(8) \times \mathrm{Cl}(8)$ and any Real Clifford Algebra, no matter how large, can be embedded in a tensor product of factors of $\mathrm{Cl}(8)$, and therefore of $\mathrm{Cl}(8) \times \mathrm{Cl}(8)=\mathrm{Cl}(16)$.

Just as the completion of the union of all tensor products of $2 x 2$ complex Clifford algebra matrices produces
the usual Hyperfinite II1 von Neumann factor that describes creation and annihilation operators on the fermionic Fock space over C^(2n) (see John Baez’s Week 175), we can take the completion of the union of all tensor products of $\mathrm{Cl}(16)=\mathrm{Cl}(8) \times \mathrm{Cl}(8)$
to produce a generalized Hyperfinite II1 von Neumann factor that gives a natural Algebraic Quantum Field Theory structure for E8 Physics.

In each tensor product $\mathrm{Cl}(16) \times \ldots \times \mathrm{Cl}(16)$
each of the $\mathrm{Cl}(16)$ factors represents a distinct Local Lagrangian Region.
Since each Region is distinguishable from any other, each factor of the tensor product is distinguishable so that the AQFT has Maxwell-Boltzmann Statistics.
Within each Local Lagrangian Region $\mathrm{Cl}(16)$ there lives a copy of E 8 . Each 248-dim E8 has indistinguishable boson and fermion particles.
The 120-dim bosonic part has commutators and Bose Statistics and the 128-dim fermionic part has anticommutators and Fermi Statistics.

The E8 Local Classical Lagrangian structure has a direct correspondence with the AQFT Creation-Annihilation Quantum Operator structure by the correspondence between
E8 and its Contraction semidirect product A7 + $h _92$ where the Heisenberg algebra h_92 $=28+64+1+64+28$ is made up of the central 1
plus
$28+28$ for creation and annihilation of 28 D4 gauge bosons with 16 of the 28 giving $U(2,2)$ for Conformal Gravity and 12 of the 28 giving the gauge bosons of the Standard Model plus
$64+64$ for creation and annihilation of $8 \times 8=64$ components of 8 fundamental fermions with respect to 8-dim spacetime and
the central $\mathbf{A 7}+1$ of the semidirect product is $\mathbf{U}(8)$ within D8 of E8 that describes 8 position $\times 8$ momentum dimensions of 8 -dim spacetime with (4+4)-dim Kaluza-Klein Quaternionic structure.

