PRIMES IN THE INTERVALS [(k+1)n, kn]

S. SAMBASIVARAO¹

ABSTRACT. In this paper, we prove: (a) for every integer n > 1 and a fixed integer $k \le n$, there exists a prime number p such that $kn \le p \le (k+1)n$, and (b) conjectures of Legendre, Oppermann, Andrica, Brocard, and Improved version of Legendre conjecture as a particular case of (a).

1. INTRODUCTION

In 1845, J. Bertrand conjectured that for every positive integer n, there is always atleast one prime p such that n . This was first proved by P. Chebyshevin 1850, therefore it is also called the Bertrand-Chebyshev Theorem(B.C.T). S.Ramanujan provided a very simple proof to B.C.T using elementary properties ofGamma function(see [7]). In conformity with S. Ramanujan, J. Nagura establishedthe following:

Theorem 1.1 ([5]). There is atleast one prime number between n and $\frac{6n}{5}$ for $n \ge 25$.

Recently an interesting generalization of B.C.T was proposed by M.El.Bachraoui as an open problem: "Is it true for all integer n > 1 and a fixed integer $k \le n$, there exists a prime number p such that $kn \le p \le (k+1)n$?", and proved that this is true for k = 2, whereas B.C.T answers this question affirmatively for k = 1. Latter, he concluded that a positive answer to this problem for every positive integer k with k = n would prove Legendre conjecture(see [6]).

The purpose of this note is to provide a positive answer to the problem posed by M.El.Bachraoui. Consequently, we show that the conjectures of Legendre, Oppermann, Andrica, Brocard and Improved Version of Legendre conjecture are true.

2. Main Results

In what follows \mathbb{Z}_+ denote the set of postive integers. Let $\pi(n)$ denote the number of prime numbers less than or equal to n, known as prime-counting function. Then one can restate B.C.T in terms of π as "For every $n \in \mathbb{Z}_+, \pi(2n) - \pi(n) \geq 1$ ".

Lemma 2.1 ([3],pp.427). *The function*

$$f(z) = \frac{e^{\frac{2\pi i \Gamma(z)}{z}} - 1}{e^{-\frac{2\pi i}{z}} - 1}$$
(2.1)

equals 0 or 1 according as z is composite or prime.

²⁰⁰⁰ Mathematics Subject Classification. 11N05.

Key words and phrases. Prime numbers.

¹Address for correspondence: Plot No.118, Vaidehi Nagar, Vanasthalipuram, Hyderabad-500070, Andhra Pradesh, India. Email Id. ssrao.siginam@gmail.com.

Lemma 2.2 ([4]). For $n \geq 5$ and $n \in \mathbb{Z}_+$, then

$$\pi(n) = 2 + \sum_{q=5}^{n} \frac{e^{\frac{2\pi i \Gamma(q)}{q}} - 1}{e^{-\frac{2\pi i}{q}} - 1}.$$
(2.2)

The following theorem proves the claim made in (a).

Theorem 2.3. For every integer n > 1 and a fixed integer $k \leq n$, there exists a prime number p such that $kn \leq p \leq (k+1)n$.

Proof. We prove this theorem in two cases.

Case1: Let
$$k \in \mathbb{Z}_+$$
 and $1 \le k \le 5$

It is clear that for all integers $n \ge 25$, $(k+1)n - \frac{6}{5}(kn) \ge 0$. By Theorem 1.1, there exists at least one prime in between kn and (k+1)n for all $n \ge 25$.

By actual verification, we find that it is true for smaller values of n with $k \leq n$. **Case2:** Let $k \in \mathbb{Z}_+$ and k > 5.

For each $q \in \mathbb{Z}_+$, we write $u_q = \frac{e^{\frac{2\pi i \Gamma(q)}{q}} - 1}{e^{-\frac{2\pi i}{q}} - 1}$. By Lemma2.2, for all $n \ge k$

$$\pi((k+1)n) = 2 + \sum_{q=5}^{(k+1)n} u_q$$

= 2 + $\sum_{q=5}^{2k} u_q + \sum_{q=2k+1}^{(k+1)n} u_q$ (2.3)
= $\pi(2k) + \sum_{q=2k+1}^{(k+1)n} u_q$,

and

$$\pi(kn) = \pi(k) + \sum_{q=k+1}^{kn} u_q.$$
(2.4)

Therefore,

$$\pi((k+1)n) - \pi(kn) = \pi(2k) - \pi(k) + \sum_{q=kn+1}^{(k+1)n} u_q - \sum_{q=k+1}^{2k} u_q.$$
(2.5)

Now.

Now, $\pi(2k) - \pi(k) + \sum_{q=kn+1}^{(k+1)n} \min_{q} u_q - \sum_{q=k+1}^{2k} \min_{q} u_q \le \pi((k+1)n) - \pi(kn) \le \pi(2k) - \pi(k) + \sum_{q=kn+1}^{(k+1)n} \max_{q} u_q - \sum_{q=k+1}^{2k} \max_{q} u_q \text{ for all } n \ge k.$ In view of Lemma2.1, we have $\pi(2k) - \pi(k) + \sum_{q=kn+1}^{(k+1)n} 0 - \sum_{q=k+1}^{2k} 0 \le \pi((k+1)n) - \pi(kn) \le \pi(2k) - \pi(k) + \sum_{q=kn+1}^{(k+1)n} 1 - \sum_{q=k+1}^{2k} 1$ $\Rightarrow \pi(2k) - \pi(k) \le \pi((k+1)n) - \pi(kn) \le \pi(2k) - \pi(k) + (n-k).$ Since $n \ge k$ and $\pi(2k) = \pi(k) \ge 1$ for all $k \ge 5$. $\pi((k+1)n) - \pi(kn) \ge 1$. This Since $n \ge k$ and $\pi(2k) - \pi(k) \ge 1$ for all k > 5, $\pi((k+1)n) - \pi(kn) \ge 1$. This completes the proof.

Corollary 2.4. For each $n \in \mathbb{Z}_+$ and n > 5, $\pi(2n) - \pi(n) = \pi(n^2 + n) - \pi(n^2)$.

Proof. Follows from case 2. of Theorem 2.3 by taking k = n.

 $\mathbf{2}$

Now we can prove a few well-known conjectures in number theory as a special case of Theorem 2.3. Most of them are still unsolved.

Corollary 2.5. (Oppermann's Conjecture is true) For each $n \in \mathbb{Z}_+$ and n > 1, $\pi(n^2) - \pi(n^2 - n) \ge 1$ and $\pi(n^2 + n) - \pi(n^2) \ge 1$.

Proof. Follows from Theorem 2.3.

Corollary 2.6. For each $n \in \mathbb{Z}_+$, $\pi((n+1)^2) - \pi(n^2) \ge 2$ (This conjecture is due to Adway Mitra et.al [[1]], called the Improved version of Legendre Conjecture).

Proof. Let $n \in \mathbb{Z}_+$. Then there exist primes p and q such that $n^2 \leq p \leq n(n+1)$ and $n(n+1) \leq q \leq (n+1)^2$. (By Theorem2.3) Hence $\pi((n+1)^2) - \pi(n^2) \geq 2$.

Corollary 2.7. (Legendre's Conjecture is true) For each $n \in \mathbb{Z}_+$, $\pi((n+1)^2) - \pi(n^2) \ge 1$.

Proof. Follows from Corollary2.6

Corollary 2.8. (Brocard's Conjecture is true) For each integer n > 1, $\pi((p_{n+1})^2) - \pi((p_n)^2) \ge 4$ where p_n is the nth prime number.

Proof. Let p_n , p_{n+1} be consecutive primes with n > 1. Then $(p_n + 2)^2 \le (p_{n+1})^2$ since the minimum gap between consecutive primes is 2. By applying Theorem2.3 repeatedly, there exist primes p, q, r, s such that $(p_n)^2 .$ $Hence <math>\pi((p_{n+1})^2) - \pi((p_n)^2) \ge 4$.

Corollary 2.9. (Andrica's Conjecture is true) The inequality $\sqrt{p_{n+1}} - \sqrt{p_n} < 1$ holds for all n, where p_n is the nth prime number.

Proof. Let p_n, p_{n+1} be two consecutive prime numbers. In view of Theorem 2.3 we can find a $k \in \mathbb{Z}_+$ such that p_n is in any one of these intervals $I_1 = [k(k-1), k^2], I_2 = [k^2, k(k+1)], I_3 = [k(k+1), (k+1)^2].$ **Case 1:** Suppose $p_n, p_{n+1} \in I_2 \cup I_3$ then $k^2 < p_n < p_{n+1} < (k+1)^2$ $\Rightarrow \sqrt{p_{n+1}} - \sqrt{p_n} < 1.$ **Case 2:** Suppose $p_n, p_{n+1} \in I_1 \cup I_2$ then $k^2 - k + \frac{1}{4} < p_n < p_{n+1} < k^2 + k + \frac{1}{4}$ $\Rightarrow \sqrt{p_{n+1}} - \sqrt{p_n} < 1.$ **Case3:** Suppose $p_n \in I_3$ and $p_{n+1} \notin I_1 \cup I_2 \cup I_3$ Since p_n, p_{n+1} are consecutive primes, we have $(k+1)^2 < p_{n+1} < (k+1)(k+2)$ (in view of Theorem2.3), $\Rightarrow k^2 + k + \frac{1}{4} < p_n < p_{n+1} < k^2 + 3k + \frac{9}{4}$ $\Rightarrow \sqrt{p_{n+1}} - \sqrt{p_n} < 1$. This completes the proof.

References

- Adway Mitra, Goutam Paul, Ushnish Sarkar, Some Conjectures on the Number of Primes in Certain Intervals, arXiv:0906.0104v1[math.NT] 30 May 2009.
- [2] Andrica, D, Note on a Conjecture in Prime Number Theory, Studia Univ. Babes-Bolyai. Math. 31 44-48,1986.
- [3] Dickson, Leonard Eugene, History of the theory of Numbers, Volume I: Divisibility and Primality, Dover, 2005.

S. SAMBASIVARAO

- [4] Edigles Guedes, An Elementary Proof of Legendre's Conjecture, Vixra:1303.0048, February 3,2013.
- [5] J.Nagura, On the interval containing atleast one prime number, Proc. Japan. Acad., 28, 1952, 177-181.
- [6] M. El. Bachraoui, Primes in the interval [2n,3n], Int. J. Contemp. Math. Sci., Vol.1 2006, no.13 617-621.
- [7] S. Ramanujan, A Proof of Bertrand's Postulate J. Indian. Math. Soc., 11(1919), 181-182.

4