PRIMES IN THE INTERVALS $[(k+1) n, k n]$

S. SAMBASIVARAO ${ }^{1}$

Abstract

In this paper, we prove: (a) for every integer $n>1$ and a fixed integer $k \leq n$, there exists a prime number p such that $k n \leq p \leq(k+1) n$, and (b) conjectures of Legendre, Oppermann, Andrica, Brocard, and Improved version of Legendre conjecture as a particular case of (a).

1. Introduction

In 1845 , J. Bertrand conjectured that for every positive integer n, there is always atleast one prime p such that $n<p \leq 2 n$. This was first proved by P. Chebyshev in 1850, therefore it is also called the Bertrand-Chebyshev Theorem(B.C.T). S. Ramanujan provided a very simple proof to B.C.T using elementary properties of Gamma function(see [7). In conformity with S. Ramanujan, J. Nagura established the following:
Theorem 1.1 ([5). There is atleast one prime number between n and $\frac{6 n}{5}$ for $n \geq 25$.

Recently an interesting generalization of B.C.T was proposed by M.El.Bachraoui as an open problem: "Is it true for all integer $n>1$ and a fixed integer $k \leq n$, there exists a prime number p such that $k n \leq p \leq(k+1) n ?$ ", and proved that this is true for $k=2$, whereas B.C.T answers this question affirmatively for $k=1$. Latter, he concluded that a positive answer to this problem for every positive integer k with $k=n$ would prove Legendre conjecture(see [6]).
The purpose of this note is to provide a positive answer to the problem posed by M.El.Bachraoui. Consequently, we show that the conjectures of Legendre, Oppermann, Andrica, Brocard and Improved Version of Legendre conjecture are true.

2. Main Results

In what follows \mathbb{Z}_{+}denote the set of postive integers.
Let $\pi(n)$ denote the number of prime numbers less than or equal to n, known as prime-counting function. Then one can restate B.C.T in terms of π as "For every $n \in \mathbb{Z}_{+}, \pi(2 n)-\pi(n) \geq 1$ ".

Lemma 2.1 ([3],pp.427). The function

$$
\begin{equation*}
f(z)=\frac{e^{\frac{2 \pi i \Gamma(z)}{z}}-1}{e^{-\frac{2 \pi i}{z}}-1} \tag{2.1}
\end{equation*}
$$

equals 0 or 1 according as z is composite or prime.

[^0]Lemma 2.2 (4). For $n \geq 5$ and $n \in \mathbb{Z}_{+}$, then

$$
\begin{equation*}
\pi(n)=2+\sum_{q=5}^{n} \frac{e^{\frac{2 \pi i \Gamma(q)}{q}}-1}{e^{-\frac{2 \pi i}{q}}-1} \tag{2.2}
\end{equation*}
$$

The following theorem proves the claim made in (a).
Theorem 2.3. For every integer $n>1$ and a fixed integer $k \leq n$, there exists a prime number p such that $k n \leq p \leq(k+1) n$.

Proof. We prove this theorem in two cases.
Case1: Let $k \in \mathbb{Z}_{+}$and $1 \leq k \leq 5$.
It is clear that for all integers $n \geq 25,(k+1) n-\frac{6}{5}(k n) \geq 0$. By Theoren 1.1, there exists atleast one prime in between $k n$ and $(k+1) n$ for all $n \geq 25$.
By actual verification, we find that it is true for smaller values of n with $k \leq n$.
Case2: Let $k \in \mathbb{Z}_{+}$and $k>5$.
For each $q \in \mathbb{Z}_{+}$, we write $u_{q}=\frac{e^{\frac{2 \pi i \Gamma(q)}{q}}-1}{e^{-\frac{2 \pi i}{q}}-1}$. By Lemma2.2, for all $n \geq k$

$$
\begin{align*}
\pi((k+1) n) & =2+\sum_{q=5}^{(k+1) n} u_{q} \\
& =2+\sum_{q=5}^{2 k} u_{q}+\sum_{q=2 k+1}^{(k+1) n} u_{q} \tag{2.3}\\
& =\pi(2 k)+\sum_{q=2 k+1}^{(k+1) n} u_{q}
\end{align*}
$$

and

$$
\begin{equation*}
\pi(k n)=\pi(k)+\sum_{q=k+1}^{k n} u_{q} \tag{2.4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\pi((k+1) n)-\pi(k n)=\pi(2 k)-\pi(k)+\sum_{q=k n+1}^{(k+1) n} u_{q}-\sum_{q=k+1}^{2 k} u_{q} \tag{2.5}
\end{equation*}
$$

Now,

$$
\pi(2 k)-\pi(k)+\sum_{q=k n+1}^{(k+1) n} \min _{q} u_{q}-\sum_{q=k+1}^{2 k} \min _{q} u_{q} \leq \pi((k+1) n)-\pi(k n) \leq
$$ $\pi(2 k)-\pi(k)+\sum_{q=k n+1}^{(k+1) n} \max _{q} u_{q}-\sum_{q=k+1}^{2 k} \max _{q} u_{q}$ for all $n \geq k$.

In view of Lemma 2.1. we have $\pi(2 k)-\pi(k)+\sum_{q=k n+1}^{(k+1) n} 0-\sum_{q=k+1}^{2 k} 0 \leq \pi((k+$ 1) $n)-\pi(k n) \leq \pi(2 k)-\pi(k)+\sum_{q=k n+1}^{(k+1) n} 1-\sum_{q=k+1}^{2 k} 1$
$\Rightarrow \pi(2 k)-\pi(k) \leq \pi((k+1) n)-\pi(k n) \leq \pi(2 k)-\pi(k)+(n-k)$.
Since $n \geq k$ and $\pi(2 k)-\pi(k) \geq 1$ for all $k>5, \pi((k+1) n)-\pi(k n) \geq 1$. This completes the proof.

Corollary 2.4. For each $n \in \mathbb{Z}_{+}$and $n>5, \pi(2 n)-\pi(n)=\pi\left(n^{2}+n\right)-\pi\left(n^{2}\right)$.
Proof. Follows from case 2. of Theorem 2.3 by taking $k=n$.

Now we can prove a few well-known conjectures in number theory as a special case of Theorem 2.3. Most of them are still unsolved.
Corollary 2.5. (Oppermann's Conjecture is true) For each $n \in \mathbb{Z}_{+}$and $n>1$, $\pi\left(n^{2}\right)-\pi\left(n^{2}-n\right) \geq 1$ and $\pi\left(n^{2}+n\right)-\pi\left(n^{2}\right) \geq 1$.

Proof. Follows from Theorem 2.3 .
Corollary 2.6. For each $n \in \mathbb{Z}_{+}, \pi\left((n+1)^{2}\right)-\pi\left(n^{2}\right) \geq 2$
(This conjecture is due to Adway Mitra et.al [1]], called the Improved version of Legendre Conjecture).

Proof. Let $n \in \mathbb{Z}_{+}$. Then there exist primes p and q such that $n^{2} \leq p \leq n(n+1)$ and $n(n+1) \leq q \leq(n+1)^{2}$. (By Theorem2.3)
Hence $\pi\left((n+1)^{2}\right)-\pi\left(n^{2}\right) \geq 2$.
Corollary 2.7. (Legendre's Conjecture is true) For each $n \in \mathbb{Z}_{+}, \pi\left((n+1)^{2}\right)$ $\pi\left(n^{2}\right) \geq 1$.

Proof. Follows from Corollary 2.6
Corollary 2.8. (Brocard's Conjecture is true) For each integer $n>1, \pi\left(\left(p_{n+1}\right)^{2}\right)-$ $\pi\left(\left(p_{n}\right)^{2}\right) \geq 4$ where p_{n} is the nth prime number.

Proof. Let p_{n}, p_{n+1} be consecutive primes with $n>1$.
Then $\left(p_{n}+2\right)^{2} \leq\left(p_{n+1}\right)^{2}$ since the minimum gap between consecutive primes is 2 . By applying Theorem 2.3 repeatedly, there exist primes p, q, r, s such that $\left(p_{n}\right)^{2}<$ $p<p_{n}\left(p_{n}+1\right), p_{n}\left(p_{n}+1\right)<q<\left(p_{n}+1\right)\left(p_{n}+1\right),\left(p_{n}+1\right)\left(p_{n}+1\right)<r<$ $\left(p_{n}+2\right)\left(p_{n}+1\right),\left(p_{n}+1\right)\left(p_{n}+2\right)<s<\left(p_{n}+2\right)^{2}$.
Hence $\pi\left(\left(p_{n+1}\right)^{2}\right)-\pi\left(\left(p_{n}\right)^{2}\right) \geq 4$.
Corollary 2.9. (Andrica's Conjecture is true) The inequality $\sqrt{p_{n+1}}-\sqrt{p_{n}}<1$ holds for all n, where p_{n} is the nth prime number.

Proof. Let p_{n}, p_{n+1} be two consecutive prime numbers.
In view of Theorem 2.3 we can find a $k \in \mathbb{Z}_{+}$such that p_{n} is in any one of these intervals $I_{1}=\left[k(k-1), k^{2}\right], I_{2}=\left[k^{2}, k(k+1)\right], I_{3}=\left[k(k+1),(k+1)^{2}\right]$.
Case 1: Suppose $p_{n}, p_{n+1} \in I_{2} \cup I_{3}$ then $k^{2}<p_{n}<p_{n+1}<(k+1)^{2}$ $\Rightarrow \sqrt{p_{n+1}}-\sqrt{p_{n}}<1$.
Case 2: Suppose $p_{n}, p_{n+1} \in I_{1} \cup I_{2}$ then $k^{2}-k+\frac{1}{4}<p_{n}<p_{n+1}<k^{2}+k+\frac{1}{4}$ $\Rightarrow \sqrt{p_{n+1}}-\sqrt{p_{n}}<1$.
Case3: Suppose $p_{n} \in I_{3}$ and $p_{n+1} \notin I_{1} \cup I_{2} \cup I_{3}$
Since p_{n}, p_{n+1} are consecutive primes, we have $(k+1)^{2}<p_{n+1}<(k+1)(k+2)$ (in view of Theorem 2.3),
$\Rightarrow k^{2}+k+\frac{1}{4}<p_{n}<p_{n+1}<k^{2}+3 k+\frac{9}{4}$
$\Rightarrow \sqrt{p_{n+1}}-\sqrt{p_{n}}<1$. This completes the proof.

References

[1] Adway Mitra, Goutam Paul, Ushnish Sarkar, Some Conjectures on the Number of Primes in Certain Intervals, arXiv:0906.0104v1[math.NT] 30 May 2009.
[2] Andrica, D, Note on a Conjecture in Prime Number Theory, Studia Univ. Babes-Bolyai. Math. 31 44-48,1986.
[3] Dickson, Leonard Eugene, History of the theory of Numbers, Volume I: Divisibility and Primality, Dover, 2005.
[4] Edigles Guedes, An Elementary Proof of Legendre's Conjecture, Vixra:1303.0048, February 3,2013.
[5] J.Nagura, On the interval containing atleast one prime number, Proc. Japan. Acad.,28,1952, 177-181.
[6] M. El. Bachraoui, Primes in the interval [2n,3n], Int. J. Contemp. Math. Sci., Vol. 1 2006, no. 13 617-621.
[7] S. Ramanujan, A Proof of Bertrand's Postulate J. Indian. Math. Soc., 11(1919),181-182.

[^0]: 2000 Mathematics Subject Classification. 11N05.
 Key words and phrases. Prime numbers.
 ${ }^{1}$ Address for correspondence: Plot No.118, Vaidehi Nagar, Vanasthalipuram, Hyderabad500070, Andhra Pradesh, India. Email Id. ssrao.siginam@gmail.com.

