The Higgs-like Bosons Couplings to Quarks

Mario Everaldo de Souza ${ }^{1}$
${ }^{1}$ Departmento de Física, Universidade Federal de Sergipe, São Cristovão, 49100-000, Brazil

Abstract

The allowed and suppressed Higgs-like bosons couplings to quarks are identified. The relative ratios of strengths of allowed couplings are calculated. The latter is extremely important for experimentalists in the determination of the nature of the recently found Higgs boson and in the search for the charged Higgs-like bosons.

Keywords Higgs boson, Higgs-like bosons, Higgs couplings.

1. Introduction

In the quest for the predicted Higgs boson Atlas [1,2] and CMS [3] collaborations have found a light narrow resonance with a mass of about 126 GeV . This very important finding has also been supported by data from the Tevatron [4]. However, some properties of the newly found boson differ from those of the predicted Higgs boson. In particular, D0 and CDF collaborations have reported an excess of $\left(A_{F B}^{t}\right)[5,6]$ which is the top quark forward-backward asymmetry, and also an increase in the $V b \bar{b}$ channel [4], while the LHC has observed an excess in the diphoton channel $\{7,8]$. Moreover, a detailed fitting to the available data up to the end of 2012 [9] has shown that "In short, significant deviations from the SM values are preferred by the currently available data and should be considered viable".

Therefore, it is very important to identify the Higgs couplings to quarks to determine the true nature of the recently found Higgs-like boson. On the other hand, theoretically, only SUSY models identify the Higgs boson couplings to quarks, as discussed in the article by Blum et al. [10]. Considering the work presented in reference [11], which presented Higgs-like bosons in the framework of a composite quark model, we identify all couplings of the Higgs-like bosons to quarks.
*Corresponding author:
mariodesouza.ufs@gmail.com
Published online at http://journal.sapub.org/xxx
Copyright © year Scientific \& Academic Publishing. All Rights Reserved

2. Calculation of all Higgs-like bosons couplings to quarks

In order to make easier the understanding of the assignment of the Higgs-like bosons couplings to quarks I reproduce below Table 8 and Table 4 (without the $2^{\text {nd }}$ column) from reference [11] which are now called Table 1 and Table 2, respectively.

Table 1. The quantum numbers of the Higgs-like bosons

Table 2. Projections of the quantum number Σ.

Primons	Σ_{3}
p_{1}	+1
p_{j}	
$(j=2,3,4)$	-1
	0

The values of Σ_{3} for primons and quarks are discussed in detail in reference [11]. For example, the u quark has $\Sigma_{3}=0$ and its primons p_{1} and p_{2} have $\Sigma_{3}=+1$ and $\Sigma_{3}=-1$, respectively.

According to Table 1 the neutral Higgs-like boson H^{0} is a triplet in which each member belongs to one of three possible values of Σ_{3} which are $-1,0,+1$. Because of this feature let us use a subscript for assigning the different values of Σ_{3}, and thus, there are H_{0}^{0} for the Higgs-like with $\Sigma_{3}=0, H_{-1}^{0}$ for the Higgs-like with $\Sigma_{3}=-1$, and H_{+1}^{0} for the Higgs-like with $\Sigma_{3}=+1$. For simplifying matters further, let us call both H_{+1}^{0} and H_{-1}^{0} by H_{1}^{0}. This way we can say that as a proton and a neutron exchange a pion by means of a strong interaction, primons p_{2} and p_{4} exchange a H_{1}^{0} and form quark S, yielding its mass, that is,

$$
p_{2} \stackrel{H_{1}^{0}}{\longleftrightarrow} p_{4}
$$

According to the above reasoning, there are the charged bosons $H_{+1}^{+}, H_{-1}^{+}, H_{+2}^{+}, H_{-2}^{+}$and also H_{+1}^{-}, H_{-1}^{-}, H_{+2}^{-}, H_{-2}^{-}. We can simplify the notation and designate both H_{+1}^{+}and H_{-1}^{+}by H_{1}^{+}and H_{+2}^{+}and H_{-2}^{+}by H_{2}^{+}. And for each Σ_{3} we can drop the plus and minus signs and consider, for example, that the interaction of p_{1} and p_{2} by means of H_{2} produce the u quark, that is,

$$
p_{1} \stackrel{H_{2}}{\longleftrightarrow} p_{2}
$$

This symbolizes

$$
p_{1}+H_{-2}^{-}=p_{2}
$$

and

$$
p_{2}+H_{+2}^{+}=p_{1}
$$

which in terms of the electric charges are, respectively,

$$
\frac{5}{6}+(-1)=-\frac{1}{6}
$$

and

$$
-\frac{1}{6}+(+1)=+\frac{5}{6}
$$

and in terms of the Σ_{3} charges are, respectively,

$$
+1+(-2)=-1
$$

and

$$
-1+(+2)=+1
$$

2.1 Interactions with equal quarks

Let us begin with the $q_{j} q_{j}$ interactions. For example, the u quark is the combination $p_{1} p_{2}$, and thus between two u quarks there are two interactions involving H_{2}. Between two $d\left(p_{2} p_{3}\right)$ quarks there are two interactions by means of H_{0}^{0}. Doing the same for the other quarks we obtain Table 3.

Table 3. Interactions involving equal quarks.

$q_{j} q_{j}$	Interacting bosons
$u u$	$2 H_{2}$
$d d$	$2 H_{0}^{0}$
$s s$	$2 H_{1}^{0}$
$c c$	$2 H_{1}$
$b b$	$2 H_{1}^{0}$
$t t$	$2 H_{1}$

2.2 Interactions between two different quarks

Since there are too many interactions between two different quarks, we classify them keeping one quark fixed, avoiding repetitions. For example, between quarks $u\left(p_{1} p_{2}\right)$ and $d\left(p_{2} p_{3}\right)$ there are interactions mediated by the bosons H_{0}^{0}, H_{1} and H_{2}. Doing the same for the other quarks we obtain Tables 4, 5, 6, 7 and 8.

Table 4. Interactions involving the u quark.

$q_{i} q_{k}$	Interacting bosons
$u d$	H_{0}^{0}, H_{1}, H_{2}
$u s$	H_{1}^{0}, H_{1}, H_{2}
$u c$	H_{0}^{0}, H_{1}, H_{2}
$u b$	$H_{0}^{0}, H_{1}^{0}, 2 H_{1}$
$u t$	H_{1}^{0}, H_{1}, H_{2}

Table 5. Interactions involving the d quark, excluding ud

$q_{i} q_{k}$	Interacting bosons
$d s$	$H_{0}^{0}, 2 H_{1}^{0}$
$d c$	H_{0}^{0}, H_{1}, H_{2}
$d b$	$H_{0}^{0}, 2 H_{1}^{0}$
$d t$	$2 H_{1}^{0}, H_{1}, H_{2}$

Table 6. Interactions involving the s quark, excluding $u s$ and $d s$.

$q_{i} q_{k}$	Interacting bosons
$s c$	$H_{0}^{0}, H_{1}^{0}, H_{1}, H_{2}$
$s b$	$H_{0}^{0}, 2 H_{1}^{0}$
$s t$	H_{1}^{0}, H_{1}, H_{2}

Table 7. Interactions involving the c quark, excluding $u c, d c$ and $s c$.

$q_{j} q_{k}$	Interacting bosons
$c b$	$H_{1}^{0}, 2 H_{1}$
$c t$	$H_{1}^{0}, 2 H_{1}$

Table 8. Interaction involving the b quark, excluding $u b, d b, s b$ and $b t$.

$q_{j} q_{k}$	Interacting bosons
$b t$	$H_{1}^{0}, 2 H_{1}$

2.3 Most Intense Interactions with H^{0}

As we see from the above tables, the most intense interactions involving H^{0} are those of the b quark with the d quark and the s quark, and the interaction of the d quark with the s quark because they are mediated by one H_{0}^{0} and two H_{1}^{0}. This is an important result from the experimental point of view because we can compare one of these three interactions with an interaction mediated by only one H^{0}. For example, comparing the interaction $s \leftrightarrow b$ with the interaction $c \leftrightarrow b$, we obtain a factor of 3 for the relative strength,

$$
\frac{s \leftrightarrow b}{c \leftrightarrow b}=3
$$

And we should also have the ratios

$$
\frac{s \leftrightarrow b}{d \leftrightarrow b}=\frac{s \leftrightarrow b}{d \leftrightarrow s}=\frac{d \leftrightarrow b}{d \leftrightarrow s}=1 .
$$

2.4 Medium Intensity Interactions with H^{0}

We obtain from the above tables, that there are interactions involving two H^{0} 's which are the interactions $d \leftrightarrow d, s \leftrightarrow s, b \leftrightarrow b, u \leftrightarrow b, s \leftrightarrow c$ and $d \leftrightarrow t$. We can compare them with those of section 2.3 and obtain the important relation (just one of the several ratios)

$$
\frac{s \leftrightarrow b}{b \leftrightarrow b}=\frac{3}{2}=1.5 .
$$

And we should also have the ratios (just some of the ratios)

$$
\begin{aligned}
& \frac{d \leftrightarrow d}{s \leftrightarrow s}=\frac{d \leftrightarrow d}{b \leftrightarrow b}=\frac{b \leftrightarrow b}{s \leftrightarrow s}=1 \\
& \frac{u \leftrightarrow b}{s \leftrightarrow c}=\frac{u \leftrightarrow b}{d \leftrightarrow t}=\frac{s \leftrightarrow c}{d \leftrightarrow t}=1
\end{aligned}
$$

2.5 Less Intense Interactions with H^{0}

From the above tables we obtain that there are interactions involving just one H^{0} which are the interactions $u \leftrightarrow d, \quad u \leftrightarrow s, \quad u \leftrightarrow c, \quad d \leftrightarrow c, \quad s \leftrightarrow t$, $c \leftrightarrow b, b \leftrightarrow t, c \leftrightarrow t$ and $u \leftrightarrow t$. We can compare them with those of section 2.3 and 2.4 and obtain the important relation (just some of several ratios)

$$
\frac{c \leftrightarrow b}{s \leftrightarrow b}=\frac{d \leftrightarrow c}{d \leftrightarrow b}=\frac{d \leftrightarrow c}{d \leftrightarrow s}=\frac{b \leftrightarrow t}{d \leftrightarrow b}=\frac{1}{3} .
$$

And we should also have the ratios (just some of the ratios)

$$
\frac{u \leftrightarrow d}{u \leftrightarrow c}=\frac{u \leftrightarrow s}{u \leftrightarrow c}=\frac{u \leftrightarrow c}{d \leftrightarrow c}=\frac{d \leftrightarrow c}{c \leftrightarrow b}=\frac{b \leftrightarrow t}{c \leftrightarrow t}=1
$$

2.6 Interactions without H^{0}

We also obtain from the above tables that there are exactly three suppressed interactions involving H^{0} which are the interactions $u \leftrightarrow u, c \leftrightarrow c$ and $t \leftrightarrow t$. This is an important prediction that can be experimentally tested.

2.7 Interactions with the Charged Bosons

With respect to the charged bosons we notice that there is no interaction involving three bosons, that is, the most intense interactions involve two charged bosons. There are 15 of these interactions that are listed on Table 9. It is important to observe that there are interactions that do not involve the charged bosons. These are the six interactions $s \leftrightarrow b, d \leftrightarrow b, d \leftrightarrow s, d \leftrightarrow d, s \leftrightarrow s$ and $b \leftrightarrow b$.

Table 9. Interactions involving 2 charged bosons.

$q_{i} q_{k}$	Interacting bosons H_{1}, H_{2}
$u d$	H_{1}, H_{2}
$u s$	H_{1}, H_{2}
$u c$	H_{1}, H_{2}
$u b$	$2 H_{1}$
$u t$	H_{1}, H_{2}
$u u$	$2 H_{2}$
$c c$	$2 H_{1}$
$t t$	$2 H_{1}$
$d c$	H_{1}, H_{2}
$d t$	H_{1}, H_{2}
$s c$	H_{1}, H_{2}
$s t$	H_{1}, H_{2}
$c b$	$2 H_{1}$
$c t$	$2 H_{1}$
$b t$	$2 H_{1}$

3. Conclusion

All couplings of the Higgs-like bosons to quarks are identified. With them we are able to indicate the relative strengths of the interactions among quarks as well as the suppressed interactions. A very important result is that the search for the charged Higgs-like bosons should not involve
the interactions $s \leftrightarrow b, d \leftrightarrow b, d \leftrightarrow s, d \leftrightarrow d, s \leftrightarrow s$ and $b \leftrightarrow b$ because they are suppressed for the charged Higgs-like bosons.

REFERENCES

[1] [1] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B, vol. 716, 1, 2012.
[2] G. Aad et al. (ATLAS Collaboration), Phys. Rev. D, vol 86, 032003, 2012.
[3] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B, vol. 716, 30, 2012.
[4] T. Aaltonen et al. (CDF and D0 Collaborations), Phys. Rev. Lett., vol. 109, 071804, 2012.
[5] T. Aaltonen et al. (CDF and D0 Collaborations), CDF note 10807, 2011.
[6] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D, Vol. 84, 112005, 2011.
[7] ATLAS Collaboration, ATLAS-CONF-2012-168.
[8] CMS Collaboration, CMS-PAS-HIG-12-015.
[9] G. Bélanger, B. Dumont, U. Ellwanger, J. F. Gunion, and S. Kraml, JHEP02(2013) 053.
[10] K. Blum, R. T. D'Angelo, and J. Fan, arXiv:1206.5303v1 \{hep-ph].
[11] M. E. de Souza, "The Higgs-like Bosons and Quark compositeness", Frontiers in Science Vol. 3(3) (2013).

