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Abstract

A new space of generalised functions extending the space D’, together
with a well defined product, is constructed. The new space of generalized
functions is used to prove interesting equalities involving products among
elements of D’. A way of multiplying the defined generalised functions
with polynomials is also derived.
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1 Introduction

Products of distributions are quite common in several fields of both mathematics
and physics. Examples arise naturally in quantum field theory, gravitation and
in partial differential equation (e.g shock wave solutions in hydrodynamics) see
[1]. An important issue, related to product of distributions, is the fact that the
product, in the general case, is not well defined in D′. This issue is known as
the Schwartz impossibility result (see [1] §1.3). In the Schwartz classical theory,
only the product between a smooth function and a distribution is well defined.
Historically, products of distributions are addressed by means of algebras of
generalised functions developed initially by J. F. Colombeau (see [1] and [2]).
In this paper we will propose a new approach to define products of distributions.

In paragraphs from 2 to 6, we construct a new space of generalised func-
tions, extending the space D’. In paragraph 7, we define a products in the above
mentioned space of generalised functions. In paragraphs 8, we use the new
developed theory to derive interesting equalities involving products among ele-
ments of D’. In paragraphs 9, we derive a method to multiply the generalised
functions defined in this paper with polynomials.

2 Main generating functions

Definition 1. We define F to be the set of all the function f(x) having the
following characteristics.

1) f(x) ∈ C∞
2) limx→−∞ f(x)xk = 0 for any k ∈ N
3) limx→+∞ f(x)xk = 0 for any k ∈ N

(1)
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Definition 2. Given any ξ(x) ∈ F then, if ξ(x) verifies the following conditions:∫ +∞

−∞
ξ(x)xkdx =

{
1 for k = 0
0 for k ∈ N− {0} (2)

then we call ξ a main generating function of order 0. We also call the derivative
ξ(p) with p ∈ N a main generating function of order p.

Figure 1: Plot of a ξ function

If we call Hp ⊂ F the set of all generating functions of order p, then we
have:

ξ(x) ∈ H0 ⇒ αξ(αx) ∈ H0

ξ(x) ∈ H0 ⇒ a[α1ξ(α1x) ] + b[α2(ξ(α2x) ] ∈ H0

ξ(p)(x) ∈ Hp ⇒ αp+1ξ(p)(αx) ∈ Hp
(3)

with a+ b = 1, α1 > 0 and α2 > 0.
From the second implication of the (3) it follows that if ξ1 ∈ H0, then for

any ρ(α) ∈ D′, such that: ∫ ∞
0

ρ(α)dα = 1 (4)

we have:

ξ2(x) =

∫ ∞
0

ρ(α)αξ1(αx)dα ∈ H0 (5)

provided that the above integral converges. Note that, given ξ1 and ξ2, ρ is not
unique. Also, ρ may be continuous, impulsive or mixed. For example, in the
second implication of the (3), we have ρ(α) = aδ(α− α1) + bδ(α− α2).

Finally we note that if ξ(p) ∈ Hp then:∫ +∞

−∞
ξ(x)(p)xkdx =

{
1 for k = p
0 for k ∈ N− {p} (6)
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3 New generalised functions

In this paragraph we will define a new class of generalized functions. Generalised
functions can be defined by means of the limit of sequences of functions fn(x).
In this paper we will deal only with generalised functions defined by means of
the limit of a sequence of the form:

lim
n→∞

nqf(nx) (7)

with f ∈ F . Note that the above sequences are not the most general way to
define distributions. For example, there is no sequence of the form (7) converging
to δ + δ′. We will call f(x) the generating function, nqf(nx) the generating
sequence and q the growing index of the generalised function defined by the (7).

Definition 3. We define the generalised functions ηp,qξ to be the following limit:

ηp,qξ (x) = lim
n→∞

nqξ(p)(nx) with p ≥ 0, q ∈ Z (8)

provided that ξ(p) ∈ Hp.

Note that, for reasons that will be clear further on, it is very important to keep
track of the main generating function ξ(p). We do that by using the notation
ηp,qξ . It is easy to see that:

ηp,p+1
ξ (x) = δ(p)(x) (9)

What kind of generalised function are the ηp,qξ ? If the sequence of distribu-

tions fn = nqξp(nx), in the (8), converges to ηp,qξ , then fn
nq−p−1 converges to δ(p).

So, with an abuse of notation, we may say that:

ηp,qξ =
δ(p)

np−q+1
(10)

The ηp,q are therefore the limit of sequences of functions that are shaped like
δ(p) and that, when we take the limit, grow at a lower or faster rate (according
to the sign of p-q+1).

Now, let us see how to determine all the ηp,q components of a generalised
function defined by means of the (7) and having generating function f(x) ∈ F .
We will suppose, for the moment, that all ηp,q, have the same main generating
function ξ ∈ H0. We will see, further on, that this turn out to be true. First
of all, we note that all the components of the distribution (7) have the same
growing index q. We will call this kind of generating functions homogeneous.
We have:

h = lim
n→∞

nqf(nx) =

∞∑
p=0

apη
p,q
ξ (11)

where the ap, although not explicitly noted, refer and depend from the function
ξ which we suppose known. Now, if q ≥ 1, h always contains one (and only one)
distribution ηq−1,qξ (x) = δ(q−1)(x) ∈ D′. From the (10) we know that:

lim
n→∞

nqf(nx)

nq−p−1
= apδ

(p) (12)
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So, for the distribution defined by the (11), we can determine the ap coefficients
by applying the Schwartz theory of distribution to our sequence of functions
divided by nq−p−1. Let φ be a test function and given p, we have:

h

nq−p−1
= lim
n→∞

∫ +∞

−∞
np+1f(nx)φ(x)dx = lim

n→∞

∞∑
k=0

(−1)kak
φ(k)(0)

nk−p
(13)

In the right side of the above equation we have two problems which make difficult
to evaluate the ak. The coefficients ak are mixed up by the summation on k
and, given a generic φ, this test function may pick up in the same coefficient
ak components related to different ξ(p). To better evaluate all ap we decide to
use, as a test function, xp. In this way we solve both problems mentioned above
since xp has all derivatives of order i equal to 0 for i 6= p (so the summation will
not mix various ak terms) and xp will filter out all components ξ(i) with i 6= p.
Of course a test function should vanish outside a compact interval (compact
support) and xp does not. However, the above requirement is needed to ensure
integrability which in our case is ensured by the fact that f ∈ F . So the fact
that xi has not compact support it is not a problem. We have:

lim
n→∞

∫ +∞

−∞
np+1f(nx)xpdx = (−1)p ap p! (14)

where p! is the value of the pth derivatives of xp. From the (14) we can easily
evaluate the ap as follows:

ap = lim
n→∞

(−1)p

p!

∫ +∞

−∞
np+1f(nx)xpdx

= lim
n→∞

(−1)p

p!

∫ +∞

−∞
n f(nx)(nx)pdx (15)

We note that the right part of the (15), for n that goes to infinity, in the (x, y)
plane, shrinks (along x) and grows (along y) like n, which leaves the integral
unchanged. For the above reason, the limit of the (15) is simply the value of
the integrals for any n. We may as well evaluate it for n=1. We have:

ap =
(−1)p

p!

∫ +∞

−∞
f(x)xpdx (16)

and therefore the ap coefficients are related to the momenta of f . We are now
ready to define our new space of generalised functions.

Definition 4. We define Gη to be the space of generalised functions which
elements are the limits of sequences of the type (8), (which we know to be homo-
geneous generalised functions), or the linear combinations af a finite or infinite
numbers of them.

We note that, since by definition we have:

lim
n→∞

np+1ξ(p) = δ(p)(x) inGη p ≥ 0 (17)

then the (17) states that, if we use main generating functions, we can define delta
and delta derivatives that have no components outside D′. In a few words, if
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we accept generalised function ηp,q to be real things (i.e. we work in Gη), we
have also to accept that only sequences nξ(nx) composed of main generating
functions converge to δ.

4 Definition of the Fξ sets

In the previous paragraph we have assumed that the coefficient ap are all related
to the same main generating function ξ. We will show that the above assumption
is true by finding an algorithm to determine the base function ξ of a generating
function f .
We give the following algorithm:

• Given a function f ∈ F , we determine the coefficient ap by means of the
(16).

• (a0 6= 0) We suppose a0 = 1 (if not, we can always divide f by 1/a0), clearly
f1 = f(x) − a1f ′(x) is a generating function for an element of Gη which
has no η1,q component. Iterating the process on f1 (i.e. we evaluate the
new ap coefficients and we remove the term of order 2) we get a function
f2 which is a generating function for an element of Gη which has no η1,q

and η2,q components. By keeping iterating on fn, we can remove all the
ηp,q components with p > 0 and we get eventually the generating function
for η0,q ∈ Gη which is, of course, a ξ function. We have:

ξ(x) = f − a1f ′ − (a2 − a21)f ′′ − (a3 − a21 − a2a1 + a31)f ′′′ − . . . (18)

• (a0 = 0) If ap is the first coefficient different from 0 then we can use the
same algorithm of point 2 but, this time, to determine ξ(p). We can then
integrate ξ(p) p times to get ξ.

Now, by starting from ξ and the ap, we can reverse the algorithm and we see
that we eventually construct a function f which is the generating function for an
element h ∈ Gη which has all components ηξ. This proves that our assumption,
according to which the (16) picks up η components all related to the same ξ
function, is true.

Definition 5. We define Fξ ⊂ F to be the set of the function f ∈ F for which
by applying the above described algorithm, we get the same main generating
function ξ ∈ H0.

It is easy to see that, given any ξ1, ξ2 ∈ H0 with ξ1 6= ξ2, then Fξ1 ∩ Fξ2 = ∅.
Now, given a function f ∈ F , we say that f is a null function if all the

coefficients ap evaluated by means of the (16) are equal to 0 (i.e. all the momenta
of f vanish).

Definition 6. We define N ⊂ F to be the set of all null functions.

For example, if ξ1 and ξ2 are two separate main generating functions of order
0, then ξ1 − ξ2 is a null function.

Finally we note that, it is possible to find functions f ∈ F which do not
belong to any Fξ. Good examples of that are the elements of N .
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5 Additional remarks on the η functions

We show now an important fact about the coefficient ap of the (16). Let ξ ∈ H0

be any main generating function of order 0 and ηp,qξ ∈ Gη a related generalised
function. We have:

lim
n→∞

ap(ξ)n
qξ(p)(nx) = ap(ξ)η

p,q
ξ (19)

If we choose ξα = ξ(αx), as a different generating function for of order 0, we
have:

lim
n→∞

ap(ξα)nqαp+1ξ(p)(nαx) = ap(ξα)ηp,qξα (20)

If the (19) and (20) are the same generalised function then:

lim
n→∞

ap(ξ)n
qξ(p)(nx) = lim

n→∞

ap(ξα)

αq−p−1
(nα)qξ(p)(nαx) (21)

since
lim
n→∞

nqξ(p)(nx) = ηp,qξ = lim
n→∞

(nα)qξ(p)(nαx) (22)

because the left and the right side limit of the (22) are the same function growing
and shrinking at the same rate with n, and therefore converge to the same
generalised function ηp,qξ , we conclude that:

ap(ξα) = αq−p−1ap(ξ) (23)

and therefore:

ηp,qξα =
1

αq−p−1
ηp,qξ (24)

From the (24), it is clear that if we want to use the ηp,q notation we have always
to specify the reference main generating function ξ since, for any specific element
of Gη, this has an impact on the amplitudes of the ηp,q (i.e. the amplitude of
the coefficients). This is why we use the notation ηp,qξ ∈ Gη.

Note that if p = q− 1 then, as expected, the η notation is independent from
ξ since ηp,p+1 = δ(p).

We conclude this paragraph by finding a relation similar to the (23) but valid
in the most general case. Given ηp,qξ1 , if we choose any other ξ2 ∈ H0, evaluated
using the (5), as the reference generating function, then by using both the (23)
and the (5) we find that the relationship between the coefficients of ηp,qξ2 and

ηp,qξ1 is the follows:

ap(ξ2) = σp,q12 ap(ξ1) (25)

where:

σp,q12 =

∫ ∞
0

ρ(α)αq−p−1dα (26)

We are now ready to see an example. Given a Gaussian distribution fξ1(x) ∈
Fξ1 defined as follows:

fξ1(x) =
1√
2π
e−

x2

2 (27)

we want to represent the generalised function h ∈ Gη, having generating function
fξ1 and grooving index q = 1, by means of the ηp,q notation. Using the (16) we
have:

h = lim
n→∞

n fξ1(nx) = δ(x) +
1

2
η2,1ξ1 +

1

8
η4,1ξ1 +R

(
η6,1

)
(28)
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where R(η6,1) means that, to have the above equality exact, we need to add
an infinite number components of growing index 1 and order ≥ 6. If ξ2 ∈ H0

is a different main generating function, we can represent the same generalised
function h by means of the ηp,qξ2 . To do that, we need to find the function ρ
which allows as to evaluate ξ2 from ξ1 as defined by the (5) and then, using the
(26), we have:

h = δ(x) +
1

2
σ2
12 η

2,1
ξ2

+
1

8
σ4
12 η

4,1
ξ2

+R
(
η6,1

)
(29)

Note that the (29) has generating function fξ2 ∈ Fξ2 with fξ1 6= fξ2 and both
fξ1 and fξ2 generating functions for the same generalised function h ∈ Gη which
is:

h = lim
n→∞

n fξ1(nx) = lim
n→∞

n fξ2(nx) (30)

6 Transformations in F

Definition 7. Given ξ1, ξ2 ∈ H0 and the σ from the (26), we define

τ q12 = (σ0,q
12 , σ

1,q
12 , · · · ) (31)

to be a transformation in F such that:

τ q12 : f1 ∈ Fξ1 → f2 ∈ Fξ2 (32)

which transforms any element of Fξ1 in the relevant element of Fξ2 such that
the two elements are generating functions for the same element of Gη. We also
define T to be the set of all separate τ functions.

Note that, for example, τ qξ1ξ1 and τ qξ2ξ2 , having the same σ components, are the
same element in T . It is easy to show that T has the structure of an Abelian
group where the operation is composition of transformations and:

1) τ qξξ = (1, 1, · · · ) is the 0 element

2) − τ qξ1ξ2 = τ qξ2ξ1 with σp,q21 = (σp,q12 )−1
(33)

Now, let fξ1 , gξ1 ∈ Fξ1 be two generating functions for h1, h2 ∈ Gη of growing
indexes q1 and q2. Let also fξ2 , gξ2 ∈ Fξ2 , be the relevant generating functions
(taking into account the growing indexes) for the same generalised functions,
h1 and h2. If fξ1gξ1 ∈ Fξv and fξ2gξ2 ∈ Fξw then we state that:

τ q112 (fξ1) · τ q212 (gξ1) = τ q1+q2vw (fξ1 · gξ1) (34)

The (34) tells us that we can transform f and g from Fξ1 to Fξ2 and then
multiply them or multiply them and then transform the product from Fξv to
Fξw . In both cases we get the same function.

Unfortunately we do not have a formal prove for the (34). However, numer-
ical evidences (see appendix) suggest that the (34) is true.

An important question is whether ξv and ξw depend only from ξ1 and ξ2 and
are independent from the function f and g. We believe this is likely to be the
case although we do not have a formal proof of it. However, for the (34) to be
true, this assumption is not required nor it is ever used throughout the paper
and therefore, we will not spend more time on it.
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7 Product of generalised functions in Gη.

Let us see now, how to use the theory developed in the previous paragraphs to
define the product of generalised functions in Gη.

Definition 8. Given k homogeneous generalised functions hi ∈ Gη with gener-
ating functions fi ∈ Fξi and growing indexes qi, we define the product h of the
hi, to be the limit of the product of the generating sequences nqifi(nx):

h = lim
n→∞

nq1·...·qkf1(nx) · . . . · fk(nx) (35)

Note that, the product f1(x) · . . . · fk(x) ∈ Fξv where, in general, ξi 6= ξv for
each i.

Since any generalised function hi is well defined when the relevant generat-
ing function and growing index is given, then commutativity, associativity and
applicability of the Leibniz rule in Gη, for the product defined above, is ensured
by the commutativity, associativity and applicability of the Leibniz rule for the
relevant generating sequences.

We will show now, with a specific example, how to use the (35) to define
a product of generalised functions which is independent from the chosen ξi.
Suppose we want to evaluate the product h of the two generalised functions
h1, h2 ∈ Gη. We choose any ξ1 ∈ H0 and we find the relevant main generating
function fξ1 , gξ1 ∈ Fξ1 and the growing indexes q1, q2. We know also that
fξ1 · gx1 ∈ Fξv . We have:

hξ1 = lim
n→∞

nq1+q2fξ1(nx) gξ1(nx) (36)

Suppose now that we want to choose a different main generating function of
order 0 ξ2 ∈ H0 for which we find the generating functions fξ2 ∈ Fξ2 and
gξ2 ∈ Fξ2 relevant to h1 and h2. We know also that fξ2 · gξ2 ∈ Fξw . We have:

hξ2 = lim
n→∞

nq1+q2fξ2(nx) gξ2(nx) (37)

given the (34) then we have:

hξ2 = lim
n→∞

nq1 τ q112 (fξ1(nx)) nq2 τ q212 (gξ1(nx)) (38)

= nq1+q2 τ q1+q2vw (fξ1(nx) gξ1(nx))

from which we see that hξ1 and hξ2 are the same generalised function in Gη and
therefore the above product is well defined.

8 Equalities in D’

By using the above defined product, we can prove interesting equalities involving
products among elements of D′. We will see an example in this paragraph.

Note that from now on, we will choose a specific main generating function
ξ ∈ H0, once and forever. We will perform all our calculations with generating
functions in Fξ and we will give all the final results in terms of ηp,fξ . Since
the underling ξ is always the same, we will drop the ξ notation from the ηp,q
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functions and ap coefficients. When we write ηp,q, we really mean ηp,qξ and when
we write ap, we really mean ap(ξ).

Before we proceed we need to see how to represent step discontinuous func-
tions by using elements of Gη. Let ξ ∈ F be a main generating function for δ.
We define the following function:

χ(x) =

∫ x

−∞
ξ(t)dt (39)

to be a main generating function for u(x), the Heaviside function, where we use
a growing rate q = 0. Also if f ∈ C∞ is a function and χ is a main generating
function for u, then we define f(χ(x))) to be a generating function for f(u(x)).

Of course χ(x) and f(χ(x))) are not in F . However we are interested in mul-
tiplication of a step discontinuous functions with elements of Gη and therefore
in multiplying χ(x) and f(χ(x))) with elements of F so that we eventually get
a generating function, for our product, which is in F .

Now, given a generalised function f(u(x))), there are always β, γ ∈ R such
that:

[f(χ(x))− β − γχ(x)] ∈ F (40)

By applying the (16) to the (40), we can evaluate f(u(x)) in terms of elements
of Gη as follows:

f(g(x)) = β + γu(x) +

∞∑
p=0

apη
p,0 (41)

For example:

u2(x) = u(x) +

∞∑
p=0

apη
p,0 (42)

sign2(x) = (2u(x)− 1)2 = 1 +

∞∑
p=0

apη
p,0 (43)

Note that, in the following example we will use the notation introduced in
(10) (ηp,q expressed in the δ(p)/nk notation) and, since we do not have ξ in a
closed form, the coefficients of the ηp,q will be evaluated numerically.
We want to evaluate u(x)δ′(x):

u(x)δ′(x)→ n2 χ(nx)ξ′(nx) (44)

From which we have:

u(x)δ′(x) = a0nδ(x) +
1

2
δ′(x) + a2

δ(2)

n
+R

(
δ(4)

n3

)
(45)

We want to remove the nδ term. To do that, we evaluate the product δ2(x):

δ2(x)→ n2 ξ2(nx) (46)

From which we have:

δ2(x) = b0nδ(x) + b2
δ(2)

n
+ b4

δ(4)

n3
+R

(
δ(6)

n5

)
(47)
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Where b3 and b5 vanish (evaluated numerically, are smaller, in module, then
10−15). For any ξ, a0 = −b0 (evaluated numerically, have opposite sign and are
equal in module with an error smaller, then 10−14). By substituting the value
nδ from the (47) in the (45), we have eventually:

u(x)δ′(x) = −δ2(x) +
1

2
δ′(x) +R

(
δ(2)

n

)
(48)

or,(compare with [3]), as an equality among products of elements of D′ (i.e.
ignoring the higher order terms):

u(x)δ′(x) = −δ2(x) +
1

2
δ′(x) (49)

We can get to the same results by using the Leibniz rule (which we know to
work with our definition of product). We evaluate the product of u(x)δ(x). We
have:

u(x)δ(x)→ n χ(nx)ξ(nx) (50)

From which we have:

u(x)δ(x) =
1

2
δ(x) +R

(
δ′

n

)
(51)

by taking the derivatives of both sides we have:

δ2(x) + u(x)δ′(x) =
1

2
δ′(x) +R

(
δ(2)

n

)
(52)

as expected. More examples can be found in the appendix.

9 Products with polynomials

From the (15) is possible to show that given any ξ
(p)
1 ∈ Hp we have:

ξ
(p−1)
2 (x) = − x

p
ξ
(p)
1 (x) ∈ Hp−1 with p > 0 (53)

The above equality gives us an hint on how to extend to the concept of main
generating functions and define main generating functions of negative orders.

To do that, we define a function ξ[−p] ∈ H [−p] ⊂ F tu be a main generating
function of order −p if it is possible to find f ∈ F such that ξ[−p)]xp = f for
each x ∈ C − {0} (i.e. f goes to 0 in 0+ and 0− at least like xp) and:∫ +∞

−∞
ξ[−p)](x)xkdx =

{
1 for k = −p
0 for k > −p (54)

In analogy with the definition of Fξ, we define the set F[ξ] in the obvious way.

Note that the notation ξ[−p] may be misleading since, although the derivative
of ξ[−p] is a ξ[−p+1], the ξ[−p], both for p positive and negative, are always null
functions. So, for example, the derivative of ξ[−1] is ξ[0] which is different from
ξ(0) which, in turn, is the derivative of χ(x) /∈ F .
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From the (54) we see that:

ξ
[−1]
2 (x) = −xξ(0)1 (x) ∈ H [−1] (55)

and
ξ
[p−1]
2 (x) =

x

p− 1
ξ
[p]
1 (x) ∈ H [p−1] with p < 0 (56)

Definition 9. We define η[p],q to be the following generalised functions:

η[p],q = lim
n→∞

nqξ[p] with p, q ∈ Z (57)

Note that, due to the way Gη has been defined, it already contains the η[p],q.
Now, by using the definitions of ηp,q and η[p],q, it is easy to prove the following
equalities:

ηp−1,q−1 = −xpη
p,q p > 0

η[−1],q−1 = −x η0,q p = 0
η[p−1],q−1 = −xpη

[p],q p > 0

η[p−1],q−1 = x
p−1η

[p],q p < 0

(58)

We will briefly prove only the first equality of the (58). Multiplying a generalised
function by x is equivalent to multiply its generating sequence by x before taking
the limit. Given the generating sequence nq x ξ(p) and by using the (15), we can
evaluate the coefficients as:

ak(nq x ξ(p)) = lim
n→∞

(−1)k

k!

∫ +∞

−∞
nx ξ(p)(nx)(nx)kdx

= lim
n→∞

(−1)k

k!

1

n

∫ +∞

−∞
n ξ(p)(nx)(nx)k+1dx

= ak−1(nq ξ(p−1))

= −k ak(nq−1 ξ(p−1)) (59)

from which the first of the (58) follows. In particular:

δ(p−1) = −x
p
δ(p) for p > 0 (60)

which is a well known result in literature (compare with [3]).

Note that, xξ
[0]
1 = −ξ[[−1]]2 and the derivative of ξ[[−1]] is equal to ξ[[0]] 6= ξ[0],

with obvious meaning of the notation. By iterating the process we can define
the ξ[[...p...]], all in F , and the η[[...p...]],q, all in Gη, with as many square brackets
as we want. These are all new generalised functions present in Gη and which
arise naturally from the theory we have developed.

As a final remark we note that the function f(x) = ξ(x) + ξ[−1] verifies the
(2) although it contains a ξ[−1] component. Since a good ξ function should
not have any ξ[[...p...]] components in it, then we need to add this condition to
the (2) in order to have a complete set of conditions for the definition of our ξ
functions.
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We will use now the theory developed in this paragraph to discuss a well
known example in the theory of product of distributions (compare with [2] §1.1
ex. i). If vp 1

x is the Cauchy principal value of 1
x then we have:

0 = (δ(x) · x) · vp 1

x
= δ(x) ·

(
x · vp 1

x

)
= δ(x) (61)

which is absurd.
By using our theory we know that xδ(x) = −η[−1],0 6= 0. We have:

0 = (x · δ(x) + η[−1],0) · 1

x
= δ(x) +

1

x
η[−1],0 = δ(x)− δ(x) (62)

a results that makes us to feel much more comfortable.

Appendix

A.1 Examples of product of distributions

We will use the notation introduced in (10).
Example 1:

δ(x)δ′(x) (63)

By taking twice the derivative of both sides of the (51), and rearranging the
terms we get:

δ(x)δ′(x) =
1

6
δ(2)(x)− 1

3
u(x)δ(2)(x) +R

(
δ(3)

n

)
(64)

Example 2: evaluated numerically.

sign2(x)δ(x)→ n (2χ(nx)− 1)2ξ(nx) (65)

from which we have:

sign2(x)δ(x) =
1

3
δ(x) +R

(
δ(2)

n2

)
(66)

A.2 Numerical evidences in support to the (34)

First of all, to perform our numerical analysis, we need to choose suitable ξ
functions. Let f(x) be the following Gaussian distribution:

f(x) =
1√
2π
e−

x2

2 (67)

then we define ξ1(x) to be:

ξ1(x) = f(x)− 1

2
f (2)(x) +

1

8
f (4)(x)− 1

48
f (6)(x) (68)

which is a very good approximation of a ξ function and it is derived from the
Gaussian distribution by removing the first 3 higher order ηp,1(x) components

12



(compare with the (28) and the algorithm (18) above). Also we define ξ2(x) to
be:

ξ1(x) = 0.3 ξ1(x) + 0.7 ξ2(2x) (69)

By means of the (16) we evaluate numerically the coefficients ap of the two
products ξ · ξ and ξ · ξ′, generating functions for δ2 and δ · δ′. We have:

a0 a1 a2
q-p-1 1 0 -1
ξ1 · ξ1 0.747850786175440 0 0.064630940223461
ξ2 · ξ2 1.164372758468304 0 0.025251755987242

Table 1 (δ2)

a0 a1 a2 a3
q-p-1 2 1 0 -1
ξ1 · ξ′1 0 0.373925393087720 0 0.032315470111731
ξ2 · ξ′2 0 0.582186379234155 0 0.012625877993621

Table 2 (δ · δ′)

The coefficients in the table 1 and 2 above, have been evaluated by integrat-
ing the functions numerically in the interval [-10,10] on 5000 points.

Our argument in support of the (34) is that, the ratios between the ap coef-
ficients are the σp,qvw and, if the (34) is true, these ratios have to be independent
from the specific ξ(p) functions that have been multiplied.

We know that the σ depends only from q − p − 1 and therefore, if the (34)
is true then, for example, σ0,2

vw evaluated from table 1 will be equal to σ1,3
vw

evaluated from table 2 although they refer to the product of different functions.
Note that, for our analysis to be correct, we make the assumptions that ξv and
ξw are the same sets in both multiplications of table 1 and 2. Although this has
not been proven in the general case, in this case it is certainly true since, for
example, Dξ21=2ξ1 · ξ′1 and therefore ξ21 and ξ1 · ξ′1 belong to the same space Fξv .

We show in the following tables the results we have found in our analysis:

σ0,2
vw = σ1,3

vw σ2,2
vw = σ3,3

vw

table 1 a0(ξw)
a0(ξv)

= 1.556958660728280 a2(ξw)
a2(ξv)

= 0.390706926124457

table 2 a1(ξw)
a1(ξv)

= 1.556958660728288 a3(ξw)
a3(ξv)

= 0.390706926124451

difference 7.9 · 10−15 6.0 · 10−15

Table 3

We conclude that the numerical evidences suggest the (34) is true.
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