THE ENERGY OF THE GRAVITATIONAL FIELD FOR THE SCHWARZSCHILD METRIC

Vyacheslav Telnin

Abstract

This paper is the application of [1] to the Schwarzschild metric. And it gives the energy of the Earth gravitational field.

Content

1). The vector of energy-momentum for the gravitational field. 1
2). The application of item 1 to the Schwarzschild metric.
3). The energy of the Earth gravitational field.
1). The vector of energy-momentum for the gravitational field.

Let us take from [1] (4):

$$
\begin{align*}
& \theta_{n}^{k \cdot}=-L \cdot \delta_{n}^{k}-\left[\frac{\partial L}{\partial g_{\mu v, k}}-\partial_{\mid}\left(\frac{\partial L}{\partial g_{\mu v, k l}}\right)\right] \cdot g_{\mu v, n}- \\
& -\frac{\partial L}{\partial g_{\mu v, l k}} \cdot g_{\mu v, n \mid} \tag{1.1}
\end{align*}
$$

and from [1] (5):

$$
\begin{equation*}
j_{n}=n_{k} \cdot \mathrm{X}_{n}^{k}=\frac{1}{2} \cdot g^{m v} \cdot b_{m v, k} \cdot \delta_{n}^{k}=\frac{1}{2} \cdot g^{m v} \cdot b_{m v, n} \tag{1.2}
\end{equation*}
$$

Let us take the Lagrangian in this form:

$$
L=\eta \cdot R \cdot \sqrt{-g} \quad \eta=\frac{c^{3}}{16 \cdot \pi \cdot \gamma} \quad R=R^{\rho}{ }_{v \rho \lambda} \cdot g^{\lambda v}
$$

here $R^{\rho}{ }_{v \mu \lambda}$ - the Riemann tensor of curvature.
From [1] (3) we have:

$$
\begin{equation*}
P_{n}=\int\left(\theta^{1}{ }_{n}-\int d x^{1} \cdot \frac{1}{2} \cdot g^{m v} \cdot b_{m v, n}\right) \cdot d x^{2} \cdot d x^{3} \cdot d x^{4} \tag{1.3}
\end{equation*}
$$

2). The application of item 1 to the Schwarzschild metric.

The components of this metric tensor which are not equal zero are:
$g_{11}=1-\frac{2 \cdot m}{r} \quad g_{22}=-\frac{1}{1-\frac{2 \cdot m}{r}} \quad g_{33}=-r^{2} \quad g_{44}=-r^{2} \cdot \sin ^{2} \theta$
This tensor is symmetric and so $b_{m v}=0 \quad$ (2.1).
Formula (1.1) became such (at $\kappa=1$ and $n=1$) :

$$
\theta_{1}{ }^{1}=-\eta \cdot R \cdot \sqrt{-g} \cdot \delta_{1}{ }^{1}
$$

The energy of the gravitational field is:

$$
E=c \cdot P_{1}=c \cdot \int \theta_{1}^{1} \cdot d x^{2} \cdot d x^{3} \cdot d x^{4}
$$

The curvature of this space is this:

$$
R=-\frac{2 \cdot m^{2}}{r^{4} \cdot\left(1-\frac{2 \cdot m}{r}\right)}
$$

And for the energy we get:

$$
\begin{aligned}
& E=c \cdot \eta \cdot \int_{R_{1}}^{R_{2}} d r \cdot \int_{0}^{\pi} d \theta \cdot \int_{0}^{2 \pi} d \varphi \cdot r^{2} \cdot \sin \theta \cdot \frac{2 \cdot m^{2}}{r^{4} \cdot\left(1-\frac{2 \cdot m}{r}\right)}= \\
&=4 \cdot \pi \cdot m \cdot c \cdot \eta \cdot \ln \left|\frac{\left(1-\frac{2 \cdot m}{R_{2}}\right)}{\left(1-\frac{2 \cdot m}{R_{1}}\right)}\right|
\end{aligned}
$$

3). The energy of the Earth gravitational field.

For the Earth $\mathrm{m}=0.45 \mathrm{~cm}, R_{1}=6380 \mathrm{~km}, R_{2}=\infty ; \eta \approx 0.8 \cdot 10^{37} \frac{\mathrm{~g}}{\mathrm{sec}}$ $E=1.9 \cdot 10^{40} \mathrm{erg} \approx m_{\text {equ }} \cdot c^{2} \quad m_{\text {equ }}=2.1 \cdot 10^{19} g=3.5 \cdot 10^{-9} \cdot M_{\text {Earth }}$
That means that the equivalent mass of the Earth gravitational field is approximately in billion times less than the Earth mass.

Literature :

1 Energy - momentum Vectors for matter and gravitational field. http://viXra.org/abs/1304.0130

