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Introduction. 

 

The Riemann Hypothesis has been an open problem for a long time. The reason why this 

problem remained not solved for over 150 years is that ZFC cannot settle this problem. In 

this article I present the main ideas in support of this view. 

 

 

Section 1. Reformulations of the Riemann Hypothesis. 

 

The following reformulations have been known for some time and the proofs of the 

statements in this section can be found in many references. 

 

Lagarias’ reformulation of RH [1]. The Riemann Hypothesis is true if and only if       

(n)   Hn +  exp(Hn)  log(Hn) , for all n (here (n) is the sum of divisors function and 

Hn  represent the harmonic sums). 

 

Robin’s reformulation of RH [1, 6]. The Riemann Hypothesis is true if and only if there 

is an n0  (and in fact n0 = 5040) such that (n)/n < e

  log(log(n)) , for all n > n0 (here 

(n) is the sum of divisors function). 

 

Littlewood’s reformulation of RH [4]. The Riemann Hypothesis is equivalent to the 

statement that for every  > 0 , we have M(x) = O(x
( 1/2 +  )

), when x   (here M(x) is 

the Mertens‘ function). 

 

 

 

 

 



 

 

Section 2. Algorithmic Complexity. 

 

I assume that the reader is familiar with the fundamentals of Algorithmic Information 

Theory, in particular with Kolmogorov complexity, prefix free codes and Chaitin 

complexity. In [7] it is stated the following theorem. 

 

Theorem [2, 7]. Let T be a 1 - consistent theory and U a universal Chaitin computer. 

Then there is a positive constant C (depending only on U) such that T can determine at 

most H(T) + C bits of .  

 

In the theorem above, H(T) represents the number of bits it takes to describe the 

arithmetical theorems of T. In other words, H(T) represents the algorithmic complexity of 

the program (Turing machine) that generates all the theorems of T (from axioms and 

rules of inference).  

 

We consider now Lagarias’ reformulation of RH above. We consider the Turing machine 

Z (that starts from an empty tape) that takes the positive integers n in sequence, calculates 

the sum of divisors (n) and the harmonic sum Hn (for each n), and then checks whether 

the inequality (n)   Hn +  exp(Hn)  log(Hn) is satisfied. If it is satisfied, then it 

follows the same procedure for n + 1, and so on. This Turing machine (Z) only stops if it 

finds an n such that (n) >  Hn +  exp(Hn)  log(Hn), otherwise it runs forever (it never 

stops).  

 

We consider a list of all possible programs P1 , P2 , P3 ,…….Pn , ….., encoded as binary 

strings in lexicographic order.  

 

Define  =  Pn halts  2
n.  This number is an encoding of the answers to every instance of 

the halting problem in a single real number. The n-th bit of  is 0 if the program Pn runs 

forever, and it has the value 1 if the program Pn halts in finite time. As far as I know, 

Turing first considered this oracle. 

 

The real number  is not a random number. The complexity of (n), an initial segment of 

length n is around log(n) [5]. 

 

We know how to compute an infinite number of its bits, but an infinity of others are 

unknowable. 

 

We consider two columns, the left column contains the binary codes of all the programs 

in lexicographic order. In the right column we have the number , with its bits 

corresponding to each program in the left column. 

 

We write l(P) for the length of the binary encoding of the corresponding program P, and 

we write t(P) for the number of state transitions, or time steps, before the program P halts. 

If P does not halt in finite time, then t(P) = . 

 



 

 

We define a n - counter program C(n) as a program that counts till n and then halts. The 

length l(C(n)) of the binary encoding of a n - counter program satisfies l(C(n)) < n + C, 

where the constant C can be determined. In other words, the length l(C(n)) of the binary 

encoding of a n - counter program is at most n + C.  

 

We define a late program as a program P for which t(P) > l(P)  (C + 1) and t(P) < . 

The reason behind this definition is that we want to make sure that all the n - counter 

programs are also late programs (according to our definitions). In the following, when we 

write t(P) > l(P), we understand that we consider the inequality t(P) > l(P)  (C + 1), 

where the constant C can be effectively computed. For simplicity in the presentation, we 

just write t(P) > l(P). 

 

We reorder only the late programs P (for which t(P) > l(P) and t(P) < ), in such a 

manner that  Pi < Pj (in the new order), iff t(Pi)  < t(Pj). Only the late programs P for 

which t(P) > l(P) and t(P) <  might change their order rank in the left column. The 

number  remains unchanged in the right column.  

 

If we know that a late program P halts in time t(P), and that t(P) > l(P) and t(P) < , then 

we can compute all the bits corresponding to all the programs before P in the order 

relation defined above. Note that if this program halts, but halts early (t(P) < l(P)), then 

the statement above is not true. 

 

We note that the programs that do not halt, or the programs that halt too early (for which 

t(P) < l(P)) keep their order rank  (inherited from the original lexicographic order) in the 

defined new order. Only the programs P that halt late (for which t(P) > l(P) and t(P) < ) 

might change their order rank in the left column. 

 

We can find the values for an infinity of bits of , but we can only know that a finite 

number of programs halt late. In other words, if we know that an infinity of bits of  have 

value 1, and that they are all related to programs that halt late (for which t(P) > l(P) and 

t(P) < ), then we can reconstruct all the bits of the number . This would be a 

contradiction, since the halting problem is unsolvable. We write Plate  for the program that 

we can prove that halts late (t(Plate) > l(Plate) and t(Plate) < ), and has the highest order rank 

in the order relation defined above. We proved that this program exists. We want to find 

the conditions under which our Turing machine Z has an order rank that is greater that the 

order rank of Plate.  

 

We consider all the bits of  , up to the bit corresponding to the program Plate , and we 

write N for its length. This initial segment of  of length N has complexity around log(N). 

That means that no program much smaller log(N) can generate this initial segment of 

length N of . If a formal system like ZFC can generate an initial system of  of length N, 

then this N has a maximum value around C  2(H(ZFC)) (where the constant C can be 

effectively determined, and does not necessarily have the same value as the constant 

mentioned before). 

 

As defined before, whether the Turing machine Z (related to the Lagarias‘ reformulation 



 

 

of RH) halts or runs forever is equivalent to the Riemann Hypothesis being false or true. 

It is easy to prove that if Z ever halts,  then Z is a Turing machine that halts late (t(Z) > 

l(Z)). 

 

If we can verify that Z also satisfies t(Z) > C  2(H(ZFC)), then this means that the order rank 

of Z (for the order relation defined above) is greater than the length of the initial segment 

of  for which ZFC can determine all the bits (we note that rank(Z) > t(Z), for machines 

that halt late, at least up to a constant, because for any n, there is a n - counter program 

that halts late). Actually, since it is known that statistically, most programs halt early or 

run forever, that means that we have to check whether t(Z) > K, where K is much smaller 

than  C  2(H(ZFC)).  

 

What we are trying to prove is that the order rank of the program Z is greater than           

C  2(H(ZFC)). Once this is proved, then we can conclude that ZFC cannot decide whether Z 

halts in finite time or runs forever, because the order rank of Z is greater than the order 

rank of Plate. ZFC  cannot decide whether RH is true or false.  

 

We can then formulate the following theorem. 

 

Theorem. If the Turing machine Z (defined above, as related to RH) satisfies the relation 

t(Z) > C  2(H(ZFC)) (where the constant C can be determined), then ZFC cannot determine 

whether the Turing machine Z eventually halts in finite time or runs forever. ZFC cannot 

determine the value of the bit of  corresponding to program Z (in other words, Z has a 

very large order rank in the order relation defined above). 

 

Observation. We used here Lagarias’ reformulation of the Riemann Hypothesis, but we 

can use Robin’s reformulation, or other reformulations [3]. The essential idea is to link 

the Riemann Hypothesis to a Turing machine in such a manner that RH is false iff the 

Turing machine under consideration eventually halts in finite time (and RH is true iff the 

Turing machine under consideration does not halt in finite time). 

 

We also note that verifying that the Turing machine Z does not halt in less that                

C  2(H(ZFC)) computation steps is not an easy task (this may be a task for a quantum 

computer).  

 

The conclusion is that ZFC cannot say much about a Turing machine that takes a very 

long time to halt (even if it eventually halts in finite time). The very essence of how a 

formal system is defined must be modified, in order to deal with these problems, but this 

is a different challenge altogether. Another conclusion is that, since if t(Z) is finite, then 

this finite computation  would represent by itself a proof that RH is false, the only 

conclusion that we can reach is that the Riemann Hypothesis is true (as a metatheoretical 

argument). Refinements of this method can probably lower the value of K. In problems of 

this type, a very large, but finite computation, would be sufficient, in order to settle the 

Riemann Hypothesis. Very large, but raw computations can settle the Riemann 

Hypothesis, and other problems of a similar nature. We can estimate an upper bound for 

H(ZFC), and the constant C.  
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