

The Riemann Hypothesis

Cristian Dumitrescu

Abstract. In this article I describe a proof of the fact that ZFC cannot say much about a

Turing machine that takes a very long time to halt (if it eventually halts). The

consequences of this fact in relation to the Riemann Hypothesis are presented.

Keywords. Riemann Hypothesis, Robin’s reformulation, Lagarias’ reformulation,

Littlewood’s reformulation, algorithmic complexity.

Mathematical Subject Classification Number: 11M99.

Introduction.

The Riemann Hypothesis has been an open problem for a long time. The reason why this

problem remained not solved for over 150 years is that ZFC cannot settle this problem. In

this article I present the main ideas in support of this view.

Section 1. Reformulations of the Riemann Hypothesis.

The following reformulations have been known for some time and the proofs of the

statements in this section can be found in many references.

Lagarias’ reformulation of RH [1]. The Riemann Hypothesis is true if and only if

(n) Hn + exp(Hn) log(Hn) , for all n (here (n) is the sum of divisors function and

Hn represent the harmonic sums).

Robin’s reformulation of RH [1, 6]. The Riemann Hypothesis is true if and only if there

is an n0 (and in fact n0 = 5040) such that (n)/n < e

 log(log(n)) , for all n > n0 (here

(n) is the sum of divisors function).

Littlewood’s reformulation of RH [4]. The Riemann Hypothesis is equivalent to the

statement that for every > 0 , we have M(x) = O(x
(1/2 +)

), when x (here M(x) is

the Mertens‘ function).

Section 2. Algorithmic Complexity.

I assume that the reader is familiar with the fundamentals of Algorithmic Information

Theory, in particular with Kolmogorov complexity, prefix free codes and Chaitin

complexity. In [7] it is stated the following theorem.

Theorem [2, 7]. Let T be a 1 - consistent theory and U a universal Chaitin computer.

Then there is a positive constant C (depending only on U) such that T can determine at

most H(T) + C bits of .

In the theorem above, H(T) represents the number of bits it takes to describe the

arithmetical theorems of T. In other words, H(T) represents the algorithmic complexity of

the program (Turing machine) that generates all the theorems of T (from axioms and

rules of inference).

We consider now Lagarias’ reformulation of RH above. We consider the Turing machine

Z (that starts from an empty tape) that takes the positive integers n in sequence, calculates

the sum of divisors (n) and the harmonic sum Hn (for each n), and then checks whether

the inequality (n) Hn + exp(Hn) log(Hn) is satisfied. If it is satisfied, then it

follows the same procedure for n + 1, and so on. This Turing machine (Z) only stops if it

finds an n such that (n) > Hn + exp(Hn) log(Hn), otherwise it runs forever (it never

stops).

We consider a list of all possible programs P1 , P2 , P3 ,…….Pn , ….., encoded as binary

strings in lexicographic order.

Define = Pn halts 2
n. This number is an encoding of the answers to every instance of

the halting problem in a single real number. The n-th bit of is 0 if the program Pn runs

forever, and it has the value 1 if the program Pn halts in finite time. As far as I know,

Turing first considered this oracle.

The real number is not a random number. The complexity of (n), an initial segment of

length n is around log(n) [5].

We know how to compute an infinite number of its bits, but an infinity of others are

unknowable.

We consider two columns, the left column contains the binary codes of all the programs

in lexicographic order. In the right column we have the number , with its bits

corresponding to each program in the left column.

We write l(P) for the length of the binary encoding of the corresponding program P, and

we write t(P) for the number of state transitions, or time steps, before the program P halts.

If P does not halt in finite time, then t(P) = .

We define a n - counter program C(n) as a program that counts till n and then halts. The

length l(C(n)) of the binary encoding of a n - counter program satisfies l(C(n)) < n + C,

where the constant C can be determined. In other words, the length l(C(n)) of the binary

encoding of a n - counter program is at most n + C.

We define a late program as a program P for which t(P) > l(P) (C + 1) and t(P) < .

The reason behind this definition is that we want to make sure that all the n - counter

programs are also late programs (according to our definitions). In the following, when we

write t(P) > l(P), we understand that we consider the inequality t(P) > l(P) (C + 1),

where the constant C can be effectively computed. For simplicity in the presentation, we

just write t(P) > l(P).

We reorder only the late programs P (for which t(P) > l(P) and t(P) <), in such a

manner that Pi < Pj (in the new order), iff t(Pi) < t(Pj). Only the late programs P for

which t(P) > l(P) and t(P) < might change their order rank in the left column. The

number remains unchanged in the right column.

If we know that a late program P halts in time t(P), and that t(P) > l(P) and t(P) < , then

we can compute all the bits corresponding to all the programs before P in the order

relation defined above. Note that if this program halts, but halts early (t(P) < l(P)), then

the statement above is not true.

We note that the programs that do not halt, or the programs that halt too early (for which

t(P) < l(P)) keep their order rank (inherited from the original lexicographic order) in the

defined new order. Only the programs P that halt late (for which t(P) > l(P) and t(P) <)

might change their order rank in the left column.

We can find the values for an infinity of bits of , but we can only know that a finite

number of programs halt late. In other words, if we know that an infinity of bits of have

value 1, and that they are all related to programs that halt late (for which t(P) > l(P) and

t(P) <), then we can reconstruct all the bits of the number . This would be a

contradiction, since the halting problem is unsolvable. We write Plate for the program that

we can prove that halts late (t(Plate) > l(Plate) and t(Plate) <), and has the highest order rank

in the order relation defined above. We proved that this program exists. We want to find

the conditions under which our Turing machine Z has an order rank that is greater that the

order rank of Plate.

We consider all the bits of , up to the bit corresponding to the program Plate , and we

write N for its length. This initial segment of of length N has complexity around log(N).

That means that no program much smaller log(N) can generate this initial segment of

length N of . If a formal system like ZFC can generate an initial system of of length N,

then this N has a maximum value around C 2(H(ZFC)) (where the constant C can be

effectively determined, and does not necessarily have the same value as the constant

mentioned before).

As defined before, whether the Turing machine Z (related to the Lagarias‘ reformulation

of RH) halts or runs forever is equivalent to the Riemann Hypothesis being false or true.

It is easy to prove that if Z ever halts, then Z is a Turing machine that halts late (t(Z) >

l(Z)).

If we can verify that Z also satisfies t(Z) > C 2(H(ZFC)), then this means that the order rank

of Z (for the order relation defined above) is greater than the length of the initial segment

of for which ZFC can determine all the bits (we note that rank(Z) > t(Z), for machines

that halt late, at least up to a constant, because for any n, there is a n - counter program

that halts late). Actually, since it is known that statistically, most programs halt early or

run forever, that means that we have to check whether t(Z) > K, where K is much smaller

than C 2(H(ZFC)).

What we are trying to prove is that the order rank of the program Z is greater than

C 2(H(ZFC)). Once this is proved, then we can conclude that ZFC cannot decide whether Z

halts in finite time or runs forever, because the order rank of Z is greater than the order

rank of Plate. ZFC cannot decide whether RH is true or false.

We can then formulate the following theorem.

Theorem. If the Turing machine Z (defined above, as related to RH) satisfies the relation

t(Z) > C 2(H(ZFC)) (where the constant C can be determined), then ZFC cannot determine

whether the Turing machine Z eventually halts in finite time or runs forever. ZFC cannot

determine the value of the bit of corresponding to program Z (in other words, Z has a

very large order rank in the order relation defined above).

Observation. We used here Lagarias’ reformulation of the Riemann Hypothesis, but we

can use Robin’s reformulation, or other reformulations [3]. The essential idea is to link

the Riemann Hypothesis to a Turing machine in such a manner that RH is false iff the

Turing machine under consideration eventually halts in finite time (and RH is true iff the

Turing machine under consideration does not halt in finite time).

We also note that verifying that the Turing machine Z does not halt in less that

C 2(H(ZFC)) computation steps is not an easy task (this may be a task for a quantum

computer).

The conclusion is that ZFC cannot say much about a Turing machine that takes a very

long time to halt (even if it eventually halts in finite time). The very essence of how a

formal system is defined must be modified, in order to deal with these problems, but this

is a different challenge altogether. Another conclusion is that, since if t(Z) is finite, then

this finite computation would represent by itself a proof that RH is false, the only

conclusion that we can reach is that the Riemann Hypothesis is true (as a metatheoretical

argument). Refinements of this method can probably lower the value of K. In problems of

this type, a very large, but finite computation, would be sufficient, in order to settle the

Riemann Hypothesis. Very large, but raw computations can settle the Riemann

Hypothesis, and other problems of a similar nature. We can estimate an upper bound for

H(ZFC), and the constant C.

References:

1. K. Briggs, “Notes on the Riemann Hypothesis and abundant numbers“, 2005

more.btexact.com/people/briggsk2/

2. C. S. Calude, “Chaitin Numbers, Solovay Machines, and Incompleteness“,

CDMTCS Research Report Series - 114, October 1999.

3. C. S. Calude, “A New measure of the Difficulty of Problems“, CDMTCS Research

Report Series - 277, February 2006.

4. H. M. Edwards, “Riemann’s Zeta Function“, Dover Publications, Inc., 2001.

5. T. Ord, T. D. Kieu, “On the Existence of a New Family of Diophantine Equations for

“, arXiv:math/0301274v3 [math.NT] 12 Oct. 2003.

6. G. Robin, “Sur L‘Ordre Maximum de la Fonction Somme des Diviseurs”, Seminaire

Delange-Pisot-Poitou, Theorie des nombres (1981 - 1982), Progress in Mathematics 38

(1983), 233 - 244.

7. R. M. Solovay, “A version of for which ZFC can not predict a single bit”, in C. S.

Calude, G. Paun (eds.), Finite versus Infinite. Contributions to an Eternal Dilemma,

Springer - Verlag, London, 2000, 323 - 334.

Cristian Dumitrescu,

119 Young St., Ap. 11,

Kitchener, Ontario N2H 4Z3,

Canada.

Email: cristiand43@gmail.com

 cristiand41@hotmail.com

Tel : (519) 574-7026

mailto:cristiand43@gmail.com
mailto:cristiand41@hotmail.com

