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Abstract 
Recently, Bennett and Riedel (BR) (http://arxiv.org/abs/1303.7435v1) argued that 
thermodynamics is not essential in the Kirchhoff-law–Johnson-noise (KLJN) classical physical 
cryptographic exchange method in an effort to disprove the security of the KLJN scheme. They 
attempted to prove this by introducing a dissipation-free deterministic key exchange method with 
two batteries and two switches. In the present paper, we first show that BR’s scheme is 
unphysical and that some elements of its assumptions violate basic protocols of secure 
communication. Furthermore we crack the BR system with 100% success via passive attacks, in 
ten different ways, and demonstrate that the same cracking methods do not function for the 
KLJN scheme that employs Johnson noise to provide security underpinned by the Second Law of 
Thermodynamics. We also present a critical analysis of some other claims by BR; for example, 
we prove that their equations for describing zero security do not apply to the KLJN scheme. 
Finally we give mathematical security proofs for each BR-attacks against the KLJN scheme and 
conclude that the information theoretic (unconditional) security of the KLJN method has not 
been successfully challenged. 

 

Introduction 

Information theoretic (i.e., unconditional) security [1] means that the stated security level—either 
perfect or imperfect, as in any physical system [2]—holds even for cases when the abilities of an 
eavesdropper (generally called “Eve”) are limited only by the laws of physics. Since 1984, 
quantum key distribution (QKD) [2] has been claimed to possess unconditional security and 
much later, in 2005, an alternative based on classical physics, known as the Kirchhoff-law–
Johnson-noise (KLJN) scheme [2], appeared as a competing approach.  

Very recently, QKD’s co-founder Charles Bennett [3] co-authored a manuscript [4] with Jess 
Riedel wherein they present an extensive criticism of the KLJN scheme and deny its security 
under idealized conditions. Bennett and Riedel (BR) assert that thermodynamics is not essential 



in the KLJN scheme and argue that it does not provide security. They attempt to prove this claim 
by showing a dissipation-free deterministic key exchange method with nothing but two batteries 
and two switches. Moreover, among other statements [4], BR argue that the quasi-stationary (i.e., 
no-wave) limit of electrodynamics is unsuited for information transfer, thus implying that this 
(required) assumption [2] for (perfect) security of the KLJN system is unphysical. Our present 
paper is a detailed critical analysis of the BR scheme. In summary, we show that BR’s scheme is 
unphysical, and we provide further analysis that demonstrates the security of the KJNL scheme. 

In this introductory chapter we set the scene for the next chapter, wherein we will fully crack the 
BR system in various ways and also respond to BR’s arguments about the KLJN scheme. We 
first consider the currently ongoing debates concerning the security of QKD, which is a 
necessary preamble since BR propound that the security of QKD is robust. Then we briefly 
outline the Kirchhoff-law–Johnson-noise (KLJN) secure key distribution scheme and its main 
features. Subsequently, we describe the “thermodynamics-free” key exchange system due to BR 
and the related argumentation in their paper [4].  

 

1.1 Is the security of quantum encryption indeed robust? 

BR write [4]: “we emphasize that quantum key distribution has been shown to be robust with 
imperfect components against very general attacks”. We see this situation very differently and 
first briefly summarize the currently ongoing debates in the QKD field. 

Currently, there is a discussion [5–8] about the fundamental security/non-security of existing 
QKD schemes. This debate was initiated by Yuen [5,8], who was later joined by Hirota [6] in 
claiming that the security of existing quantum key distribution schemes is questionable or poor. 
Recently, Renner [7] entered the discussion to defend the old security claims. It should be noted 
that Yuen [9] and Zubairy et al. [10] have proposed new advanced schemes for non-QKD-based 
secure quantum communication. 

BR’s claim that QKD displays “robust security with imperfect elements” [4] has been proven 
incorrect, and QKD has been cracked by utilizing the imperfect nature, such as non-linearity, of 
necessary building elements. Practical quantum communicators—including several commercial 
ones—have been fully cracked as shown in numerous recent papers [11–25]. Vadim Makarov, 
who is one of the leading quantum crypto crackers, stated that “Our hack gave 100% knowledge 
of the key, with zero disturbance to the system” [11]. This statement hits the foundations of 
quantum encryption schemes, because the often-claimed basis of the security of QKD protocols 
is the assumption that any eavesdropping activity will disturb the system enough to be detected 
by the communicating parties (generally referred to as “Alice” and “Bob”). An important aspect 
of these quantum-based hacking attacks is the extraordinary (100%) success ratio of extracting 
the “secure” key bits by Eve, which indicates that the security is not only imperfect but simply 
non-existing against these types of attacks until proper defense strategies or protocol 
modifications have been added to the scheme in order to restore the information theoretic 
security they supposedly had before these attacks were known.  

In conclusion, and in clear contradiction to BR’s claim [4], quantum key distribution has been 
found vulnerable to well-designed attacks for the case imperfect components. 



 

1.2 The KLJN secure key exchange system  

The Kirchhoff-law–Johnson-noise key distribution scheme [2,26–39] is a classical statistical 
physical alternative to QKD, whose security is based on Kirchhoff’s Loop Law and the 
Fluctuation-Dissipation Theorem. More generally, it is founded on the Second Law of 
Thermodynamics, which indicates that the security of the ideal KLJN scheme is as strong as the 
impossibility to build a perpetual-motion machine of the second kind. Potential and unique 
technical applications of the KLJN scheme include non-counterfeitable hardware keys and credit 
cards via Physical Uncloneable Functions (PUFs) [35]; unconditionally secure hardware, 
computers and other instruments [35,36]; and unconditionally secure smart grids [37–39]. The 
short summary of the KLJN scheme given below is based on a previous survey paper [2]. 

1.1.1 The idealized KLJN scheme and its security 

The working principle of the KLJN scheme [2,26] is presented in Fig. 1, which shows an 
idealized configuration without any defense circuitry—such as current-voltage 
measurement/comparison, filters, etc—against invasive and non-ideality attacks. At the 
beginning of each bit exchange period (BEP), Alice and Bob connect their randomly chosen 
resistors  and , respectively, to the wire line. These resistors are randomly selected by the 
switches from the set , , where the elements represent the low L and high H  
bit values 0 and 1, respectively. 

 
 

Figure 1. Outline of the core KLJN key exchange system. The communicator parties, Alice and Bob, randomly 
choose and connect either  or  to the wire. The (effective) temperature  is publicly agreed and kept, and 
the (enhanced or standard) Johnson noises of the resistors , , , and  are independent 

and Gaussian. The resulting channel voltage  and current  are also uncorrelated due to the Second Law of 
Thermodynamics. Parasitic elements leading to non-ideal features and defense circuitry against active (invasive) 
attacks and against attacks utilizing non-ideal features are not shown.  
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The Gaussian voltage noise generators—delivering white noise with publicly agreed 
bandwidth—represent an enhanced thermal (Johnson) noise at a publicly agreed high effective 
noise-temperature  at which their noises are statistically independent from each other, 

implying that , as well as from the noise during a former BEP. During the first 
practical implementation of the KLJN scheme, by Mingesz et al. [29], the noise-temperature 
range  was used, which made the wire temperature insignificant 
even when the wire resistance was not zero.  

 

 
Figure 2. Mean-square voltage (and current). Three different levels are shown, which depend on the bit values; 
the intermediate value indicates secure bit exchange. 

 

Alice and Bob (as well as Eve) can use a measurement of the mean-square voltage and/or current 
to assess the bit status of the system, as shown in Fig. 2 for the case of voltage. The situations LH 
and HL represent secure bit exchange [2,26], because Eve cannot distinguish between them 
through measurements, and whenever Alice and Bob see the HH/LH situation they know that the 
other party has the complementary bit value, which means that they infer the full bit 
arrangement. Eve cannot extract this information, because she does not know any of the bit 
values. In other words, a secure bit has been generated and shared. The bit situations LL and HH 
are insecure, which means that these bits (50% of the executed BEPs) are discarded by Alice and 
Bob. 

According to the Fluctuation-Dissipation Theorem, the power density spectra  and 
 of the voltages  and , supplied by the voltage generators in  and , 

are given by 

,                                                 (1) 

respectively. In the case of secure bit exchange (i.e., the LH or HL situation), the power density 
spectrum  and the mean-square amplitude  of the channel voltage , and the 

same measures of the channel current , are given by 

,             (2) 
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and      

,       (3) 

respectively, where  f   is the noise bandwidth. 

 

1.1.2 The security of the KLJN scheme is based on the Second Law of Thermodynamics 

During the LH and HL cases, linear superposition makes the spectrum given by Eq. (2) represent 
the sum of the spectra at the two particular situations. Thus one obtains  

                          (4) 

when only the noise generator due to  is running and  

.                                        (5) 

when the only the noise generator due to  is running. 

If Eve is to identify which end of the wire has  or , it is necessary for her to measure and 
evaluate a physical quantity offering directional information. In the ideal case, the only 
information of this kind is the direction of the power flow from Alice to Bob (or vice versa, 
depending on the choice of positive current direction). In thermal equilibrium, however, this 
power must fulfill , as required by the Second Law of Thermodynamics. 
In other words, the ultimate security of the KLJN system against passive attacks is provided by 
the fact that the power , by which the noise generator due to resistor  is heating resistor 

, is equal to the power  by which the noise generator due to resistor  is heating 
resistor  [2,26,32]. Thus the fact that the net power flow is governed by 

 can easily be shown from Eqs. (4) and (5) for the noise-bandwidth   
by 
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The equality  is in accordance with the Second Law of Thermodynamics. In other 
words it is as difficult to crack the ideal KLJN scheme as to build a perpetual motion machine of 
the second kind [4].  

This security proof against passive (listening) attacks holds only for Gaussian noise—i.e., the 
statistics of thermal noise—which has the well-known property that its power density spectrum 
or autocorrelation function already provides the maximum achievable information about the 
noise, and no higher-order distribution functions or other tools, such as higher-order statistics, 
are able to provide additional information.  

The required duration of the BEP, at a given bit error probability [34] of the bit exchange 
between Alice and Bob, is determined by the following arguments: For the LL bit status of Alice 
and Bob, which is not a secure situation, the channel voltage and current satisfy 

    and  ,       (7) 

while, in the case of the other non-secure situation namely the HH bit status, the channel voltage 
and current satisfy 

    and      .     (8) 

During key exchange in this classical way, Alice and Bob must compare the predictions of Eqs. 
(7) and (8) with the actually measured mean-square channel voltage and current to decide 
whether the situation is secure (i.e., LH or HL prevails), while realizing that these mean-square 
values are different in each of these three situations (LL, LH or HL, and HH). If the situation is 
secure, Alice and Bob will know that the other party has the inverse of his/her bit, which implies 
that a secure key exchange takes place. Alice and Bob must use sufficiently large statistics to 
achieve low error probability. Fortunately, the bit error probability decays exponentially with the 
duration of the BEP [34]. Furthermore, a new “intelligent” KLJN protocol [31] can be used, 
which employs additional circuit calculations by Alice and Bob to reduce the BEP without 
increasing the error probability. 

 

1.1.3 On active (invasive) attacks and attacks utilizing non-idealities  

It has been pointed out repeatedly [2,26,28,29,32] that deviations from the earlier shown 
circuitry and Johnson-like noise—including invasive attacks by Eve, parasitic elements, delay 



effects, inaccuracies, non-Gaussianity of the noise, etc—will cause a potential information leak 
toward Eve. However it is fortunate that the KLJN system is very simple, which implies that the 
number of such attacks is strongly limited. The defense methods against the attacks are straight-
forward and are generally based on the comparison of instantaneous voltage and current data at 
the two wire ends via an authenticated communication between Alice and Bob, as indicated in 
Fig. 3. These attacks [2,40,43,45] are not the subject of the present paper, and we refer to our 
relevant rebuttals where they have been analyzed [2,32,41,42,44] and where misconceptions and 
errors have been pointed out and corrected. Our earlier survey paper [2] reviewed various attacks 
on the KLJN scheme.  

 

 

Figure 3. KLJN system minimally armed against invasive (active) attacks, including the man-in-the-middle-
attack. Alice and Bob measure the instantaneous channel voltage and current amplitudes and compare them via an 
authenticated public channel. In this way, they learn all the information Eve can have. Additions to prevent 
hacking—such as line filters, blinding detectors, etc—are not shown. The notation is the same as in Fig. 1. 

 

It is important to emphasize that Alice and Bob know Eve’s best measurement information, 
because it is given by comparisons of voltage and current at the two ends of the wire. If Eve uses 
the best available protocol and the security of a certain bit is compromised, this is known also by 
Alice and Bob who therefore can decide to discard the bit in order to have a secure key. This is a 
new and unique situation in cryptography, which raises a number of research questions as 
mentioned in an earlier paper [32]. 

Finally, a secure type of privacy amplification [33]—XOR-ing the key bit pairs and producing a 
new key with this output, which results in half of the original length—is also feasible to enhance 
the security because of the low bit error probability of KLJN key exchange. The error probability 
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decays exponentially with the increasing duration of the BEP [34]. At the experimental 
demonstration [29] it was  2 x 10 4 .  

 

1.1.4 Near-perfect information-theoretic security in practical KLJN schemes 

Of course, perfect security of any physical key exchanger exists only under ideal (mathematical) 
conditions. For example, quantum encryption theoretically can offer perfect security only in the 
limit of a zero-photon-emission rate [5] (i.e., zero bit exchange rate) and zero detector and 
channel noise limits, which are unphysical and can never occur in a real system. The KLJN 
scheme is no exception to this rule [2,26,32]: it offers perfect security only at zero bandwidth or 
distance as a consequence of transients, cable resistance, capacitance, etc. However, just as for 
claims in favor of QKD, parameters of the KLJN building elements and protocol can be chosen 
so that the perfect security limit can be approached asymptotically. The general situation in the 
non-ideal case is that a miniscule DC signal component buried in a much larger Gaussian noise 
(of fixed variance) must be detected by Eve from small statistics limited by the BEP. This DC 
signal component is typically the mean value of a finite-time mean-square operation or that of 
the output component of a cross-correlation operation; further discussion on this issue is given in 
an earlier paper [31] and in Sec. 2.8. Eve must detect the sign of this small DC component in the 
large noise. When the parameters approach the ideal situation, the ratio of the DC signal 
amplitude and the root-mean-square (RMS) amplitude of the noise converges towards zero as a 
power law decay—typically with exponent –1 or –2 [2,29,42,44]—with regard to the invested 
resources such as wire volume, current/voltage resolution, BEP duration, etc.  

In order to assess the security of the shared key, one must compare the probability distribution 
for successfully guessing each possible key sequence of an N-bit-long key, encompassing 2N 
different sequences, with that of the perfect key having uniform distribution. The statistical 
distance  [46] between the distributions representing the actual key and the distribution 
representing the ideal (uniform) key is a useful concept. It defined by 

 ,        (9) 

where E and I represent Eve’s extracted key and the perfect key, respectively, and  and 

 are the probabilities of correctly guessing the jth version of Eve’s key and of the perfect 
key, respectively. The key exchange has -security, as discussed by Hirota [6], if the statistical 
distance between the distributions representing the actual key and the ideal (uniform) key is less 
than , i.e., 

           (10) 

for . The KLJN scheme provides identically and independently distributed sequences of 
random variables as key bit values, so that 

  ,      (11) 



where p is Eve’s probability of successfully guessing bits. In non-ideal cases involving an 
information leak, and when the parameters are sufficiently close to the ideal limit, p can be given 
as 

 ,           (12) 

where ; here  would mean a perfectly secure key. The reason for this behavior 
is easy to see if one realizes that Eve’s small DC signal component offsets the center (mean 
value) of the probability density burying the large Gaussian noise. The first derivative at the 
center of the Gaussian density function is zero, implying that its Taylor approximation, to first 
order, results in a stable value for small changes around the center. In the idealized case (i.e., 
zero DC signal) Eve’s estimation of the mean value of the Gaussian noise would yield  
(recording a positive sign at 50% of the exchanged key bits and negative sign also at 50% of the 
cases). In the non-ideal situation, the DC signal and the mean value of noise + signal are positive 
or negative; hence the flat amplitude distribution within this range makes Eve experience a non-
zero  q  (cf., Eq. 12) which is proportional to the DC signal [47]. 

As an example, we now consider the case of a non-zero wire resistance [29,40-42] and assume 
that capacitive effects are compensated [29] or can be neglected due to the actual bandwidth. 
More examples will be shown in Chapter 2. For the case of fixed distance and bandwidth, q is 
proportional to the inverse of the square of wire diameter, i.e., with the inverse of the wire’s 
volume V. In other words 

 ,           (13) 

where  is a constant valid for a wire-resistance attack. Then, for the case of   Nq 0.5 , one 
obtains 

 ,  (14) 

where the last approximation is valid for . Equation (14) indicates that  decays 
exponentially with increasing value of N and inversely with wire volume V. The value shown by 
Eq. (14) is valid without the use of privacy amplification [33], which can further decrease  if 
needed. 

For the case of -security with , i.e., in the   Nq 0.5  limit, the required q is given by 

 .         (15) 

During the experimental demonstrations of the KJNL scheme, referred to above [29], it was 
found that  q  equaled 0.025 for secure bit exchange during wire-resistance attacks with a wire 
resistance being 2% of the loop resistance. Equation (11) can directly be evaluated and, for a 
1000-bit-long shared key, it results  (i.e., an -security with 

 1000 10 279 ); for a 500-bit-long shared key it results in  (i.e., an -



security with  500 10 139 . It is important to note that this experimentally demonstrated security 
level was reached without privacy amplification [33]. 

Finally, we observe that there are advanced protocols that can enhance the security or limit the 
required resources in efficient ways while the scaling of  q  versus the utilized resource (wire 
volume, cf. Eq. 13) shown above in Eqs. (14) and (15) does not change. Below we give a short 
list of advanced protocols and associated basic security features proposed up to now: 

(a) Ideal KLJN schemes with passive attacks:  

 The Second Law of Thermodynamics and Kirchhoff’s Loop Law [2,26]. 

(b) Non-ideal KLJN schemes with passive or active (invasive) attacks: 

 Transient protocols involving random-walk from equal resistances [31] and voltage 
ramping/timing [2,29]. 
 Selecting the noise bandwidth versus the value of wire resistance and wire capacitance 

[2,29]. 
 General defenses that work in any situation including hacking, encompassing comparison 

of instantaneous voltage and current amplitudes and discarding any bits where they differ or 
where they provide information to Eve (even it is erroneous). Note, however, that specific 
protocols apply for different hacking attacks.  
 Privacy amplification (XOR-ing key bit pairs [33]).  
 Enhanced KLJN protocols, for example the “intelligent” (iKLJN) and “keyed” (KKLJN) 

methods [31]. 

 

1.2 Summary of Bennett–Riedel’s arguments regarding the KLJN scheme 

BR have presented an extensive analysis [4] that is fundamentally flawed but nevertheless very 
useful for the purpose of elucidating differences between simplistic or irrelevant model 
approaches and the physics upon which the KLJN scheme is founded.  

An outline of BR’s claims reads as follows: It is first stated that the no-wave limit (i.e., quasi-
static electrodynamics) is unphysical for signal propagation. Based on this statement, they assert 
that Eve can separate and measure the “orthogonal” wave components propagating from Alice to 
Bob and vice versa. They also state that the KLJN scheme is deterministic, which means that Eve 
has a full description of the whole system, including Alice’s and Bob’s history, if Eve’s 
measurements of the two wave components are limited by nothing but the laws of physics. To 
support these claims, BR expound that thermodynamics and noise are not essential in the KLJN 
scheme and that thermodynamics would eradicate determinism as a consequence of fluctuations. 
Further corroboration of their view is obtained from the construction of a deterministic and 
thermodynamics-free key exchanger, which looks similar to a KLJN scheme without resistor, 
and where two of the four noise voltage generators are removed and the remaining ones replaced 
by batteries with known and identical voltage. Moreover, BR propose a passive correlation-
measurement-based attack and an active current-extraction attack against the KLJN scheme. 



After briefly describing BR’s claims, we critically analyze and refute all of them in Chapter 2, 
and we also present the physics appropriate for the KLJN scheme.  

 

1.2.1 Bennett–Riedel’s claim concerning no information transfer in a wire in the no-wave (quasi-static) limit 

BR write [4]: “We believe this no-wave limit is inappropriate and nonphysical for analyzing 
communication protocols (even as a mathematical idealization) because if propagating waves 
are excluded there is no way for information to get from Alice’s side of the circuit to influence 
Bob’s side, or vice versa.” 

Based on this argument, they assert that Eve can separate and measure the “orthogonal” wave 
components that propagate from Alice to Bob and vice versa. 

After surveying the relevant physics facts about waves, directional couplers for signal separation 
and the no-wave limit in Sec. 2.1, we refute the above argument in Sec. 2.2. Furthermore, we 
show what physics has to say about signal propagation in the no-wave (quasi-static) limit. 

 

1.2.2 Bennett–Riedel’s claim that the KLJN system does not offer security 

BR [4] set up three equations for the KLJN scheme, which invoke the deterministic nature of 
Maxwell’s equations and neglect the stochastic nature of Johnson noise and the secret/random 
choice of the resistors. With this premise, it is not surprising that they concluded that KLJN does 
not offer any security. Here we discuss only the first and third of BR’s equations—since the 
second one is redundant—and their main conclusion. 

The conditional information  represents the remaining uncertainty about the set of data 

F when the set of data G is known. Now  if G completely determines F, whereas 

 for the case when G does not provide any information about F. BR’s first 
equation is 

 ,       (16) 

where X is a variable that fully describes the physical quantities on Alice’s side of Eve’s location 
during the BEP. These quantities include waves traveling toward Alice and away from her and 
all of her equipment, as well as noise and memory. The variable Y has the same meaning with 
regard to Bob. Furthermore, ZA and ZB are wave components propagating from Alice and Bob (as 
observed by Eve), respectively, and Z = (ZA, ZB) represents both wave components. We note that 
in BR’s paper [4] either Z is incorrectly indexed or X and Y must be exchanged.  

We first presume that Eq. (16) is valid, which assumes that ZA and ZB can measured separately. 
This means that the uncertainty about Alice’s “full description” X does not change if Eve 
expands her knowledge of wave ZA coming from Alice by the knowledge of wave ZB coming 
from Bob, and the same remains true even if knowledge of the total description of Bob’s data Y 
is included.  



It should be observed that the first equality in Eq. (16) contradicts BR’s proposed passive 
correlation attack [4], which requires knowledge of both ZA and ZB and thus implies that 

. 

We now introduce the mutual information  of X and Y, which measures how much the 
knowledge of X or Y tells about the other variable. As a consequence of Eq. (16), and with 
further argumentation, BR deduce the following equation for the conditional mutual information 
between X and Y, conditional on Z: 

 .       (17) 

This equation, if it is valid, would mean that after measuring the two waves Z = (ZA, ZB), Eve’s 
information about X (i.e., Alice’s full description) is not increased by learning Y (Bob’s full 
description). Thus after measuring the two waves Z = (ZA, ZB), Bob’s information about Alice 
would not be larger than Eve’s information about her. The same argumentation would work also 
in the opposite direction, so that the KLJN system would not offer any security. 

We will see below that BR’s equations are invalid even in the wave limit; this is a result of 
multiple reflections as well as of Alice’s and Bob’s secure reflection coefficients and noises 
(known only by them) that always guarantee that they know more than Eve. 

Most importantly, Eqs. (16) and (17) are entirely unfounded in the no-wave limit because the 
propagating relaxations ZA and ZB (which are not waves) cannot be measured separately; only 
their sum can be determined. 

  

1.2.3 Bennett–Riedel’s claim regarding a "thermodynamics-free" key exchange scheme  

One of the major claims of BR [4] is that thermodynamics and noise are not essential for security 
in the KLJN scheme. To prove this, they attempted to construct a deterministic key exchange 
method with two voltage generators and two switches, as illustrated in Fig. 4. This scheme is in 
fact already known; it is called the “Orlando system” and was conceived and patented by Davide 
Antilli in 2005 [48]. Despite its origin, we refer to it as the “BR system” below. 

In the idle mode between bit exchange periods, the switches are in position I; thus the wire 
channel is grounded. At the beginning of the BEP, Alice and Bob randomly choose between the 
switch positions L or H representing the corresponding bit values, and at the middle of the BEP 
they change their bit value. If the randomly chosen sequences of bit values happen to be 
identical, then the voltage on the wire will be zero for half of the BEP, and these events are 
disregarded. If the choices by Alice and Bob are complementary, then the voltage is U0 for the 
whole BEP.  



 
Figure 4. Outline of the (Antilli–)Bennett–Riedel system. The two ends of the wire channel are connected to a 
three-stage switch with positions I (idle between two bit exchanges), L (low bit value) and H (high bit value). The 
two DC voltage generators have the voltage   U0 , and   Uc (t)  and   Ic (t)  are the voltage and current time-functions in 
the wire. Note that this figure is an improved version of BR’s system because they mention the idle situation 
(necessarily grounded wire) only in the text but do not show it in their figure. 

 

BR make three statements about the system in Fig. 4, which will be important later: They assert 
that (i) “The wires and voltage sources are taken to be ideal, with zero thermal noise” and, as a 
corollary, that (ii) “Thermodynamics and noise do not play a role.” Furthermore, they claim (iii) 
that the BR system is secure in the “no-wave” limit accomplished in a special way: that Eve 
waits with her measurements until transients have decayed.  

We will see below that statements (i) to (iii) lead to an unphysical situation, namely that Eve 
must wait for infinite time before she may start listening. Furthermore, one should note that (iii) 
is an illegal assumption in unconditionally secure communications, because then Eve can only be 
limited by the laws of physics. Thus statement (iii), in itself, would imply only conditional 
security. 

In Secs. 2.1 and 2.2 below we show why BR’s scheme is unphysical, and we also crack it fully in 
a variety of ways while we demonstrate that the KLJN scheme stays unbroken as a consequence 
of the Second Law of Thermodynamics and of noise. 

 

1.2.4 Bennett–Riedel’s wave-transient-based attack before the steady state is reached 

BR write [4]: Thus, while the steady state mean square noise voltage in the original KLJN 
protocol does not allow Eve to distinguish between the LH and HL settings of Alice’s and Bob’s 
resistors she can distinguish them using (a) transient waves created by the switching action 
before the steady state is established. 

For example Bob’s resistor affects the phase and amplitude correlations between a right-
traveling wave at time t and its left-traveling echo at time t + , where  is the transit time from 
Eve to Bob and back, with the echo vanishing only if the resistor is perfectly impedance matched 
to his end of the line. 



Here it should be noted that BR have not put forward any concrete protocol with a quantitative 
and testable evaluation scheme. This is unfortunate because, by establishing such a protocol, one 
can see that, in the no-wave limit, such transients would represent minuscule information for Eve 
about Alice’s and Bob’s status. Even if propagating signal components (not waves) could be 
measured, the limited information about the noise within a small fraction of its correlation time 
(and the unknown additive noise and reflection at the other end of the wire) would make the 
information available to Eve very small. Moreover, even this minuscule information would 
converge towards zero upon a decrease of the noise bandwidth and/or a reduction of the wire 
length. The statistical distance between the KLJN key and that of the perfectly secure key (of the 
same length) will vanish in a fashion similar to the one described by Eqs. (14) and (15). Sections 
1.6 and 2.7 below discuss an efficient transient protocol and quantitative analysis. 

 

1.2.5 Bennett–Riedel’s passive time-correlation attack in the no-wave limit 

BR write [4]: Thus, while the steady state mean square noise voltage in the original KLJN 
protocol does not allow Eve to distinguish between the LH and HL settings of Alice’s and Bob’s 
resistors, she can distinguish them using (b) time correlations in the steady-state distribution of 
traveling waves resulting from the fluctuations that give rise to Johnson-Nyquist noise. For 
example Bob’s resistor affects the phase and amplitude correlations between a right-traveling 
wave at time t and its left-traveling echo at time t + , where  is the transit time from Eve to 
Bob and back, with the echo vanishing only if the resistor is perfectly impedance matched to his 
end of the line. 

We will analyze this problem in Secs. 2.6 and 2.7 and give a security proof showing that the 
statistical distance between this key and the perfectly secure key will vanish in an exponential 
fashion versus the length of the key. 

 

1.2.6 Current extraction/injection based active (invasive) attack 

BR write [4]: ...she (Eve) could still learn the key by an active steady-state attack in which she 
would place a very high-resistance shunt between her node and ground, and monitor the 
direction of current flow into it. Of course Alice and Bob could try to detect this weak leakage 
current also, and abort the protocol if they found it. The result would be an unstable arms race, 
won by whichever side had the more sensitive ammeter, not the sort of robustness reasonably 
expected of a practical cryptosystem. 

We observe that this attack is valid only against the BR system because, in the KLJN scheme, 
the direction of the current flowing into the shunt resistor does not provide any information since 
its origin is a Gaussian noise process with zero mean and exhibiting perfect symmetry around 
zero. What BR might want to say for the KLJN scheme is that, by using the shunt resistor in the 
middle, the change of the RMS current in the wire will be greater in the direction of the lower 
resistance than in the directions of the higher resistance.  

A miniscule difference in current, such as the one referred to above, is very difficult to measure, 
and therefore one of the present authors (LK) has proposed a more efficient attack of the 



mentioned type in the original paper describing the KLJN scheme [26]: this attack entails a 
separate noise current generator instead of a shunt resistance as well as an evaluation of the 
cross-correlations between the injected current and the channel currents at the two sides of the 
injection. These cross-correlations determine which end of the wire has the low and which one 
has the high resistance. An attack of this type was disregarded as being inefficient already in the 
foundation paper for KLJN [26], because Eve would need a very long time to create sufficient 
statistics to reach a reasonable decision, whereas she only has the short duration of the BEP 
before the process ends. In Sec. 2.8, we analyze this attack mathematically and give a security 
proof against it. 

 

Discussion and Results 
The flow of analysis and argumentation in this chapter is as follows: First, in Sec. 2.1, we survey 
well-know facts about the physics related to the no-wave (quasi-static) limit of electrodynamics 
as well as facts about information transfer in that limit. Then, in Sec. 2.2, we refute BR’s claim 
that there is no information transfer in the quasi-static (no-wave) limit. In Sec. 2.3 we then 
analyze BR’s equations (Eqs. 16 and 17 above) indicating zero security and show that they are 
invalid for the KLJN scheme not only in the no-wave limit but also in the wave limit, whereas 
they are indeed valid for BR’s thermodynamics-free system. In Sec. 2.4 we demonstrate that 
BR’s thermodynamic-free key exchanger is unphysical because transients will oscillate for 
infinite time in the wire. Subsequently, in Sec. 2.5, we analyze the real, physical BR system and 
present ten different ways to fully crack it. We also show there that none of these ways of 
cracking work against the KLJN scheme, which proves that thermodynamics is essential for the 
security of KLJN. In Sec. 2.6 we argue that BR are incorrect when they write that the wave-
transient attack would crack the KLJN system, and we also find that the statistical distance 
between the KLJN key and the ideal key exponentially converges zero versus the length of the 
key. In Secs. 2.7 and 2.8, we demonstrate why BR’s passive-correlation attack does not work in 
the KLJN system and why BR’s current-extraction attack fails to change the exponential 
convergence of the statistical distance to zero. Finally, Sec. 2.9 contains some general remarks 
about protection against hacking. 

 

2.1 Physics facts: Information, propagation, and wave couplers in the quasi-static limit 

In Secs. 2.1.1 to 2.1.4 we clarify what is meant by a wave in physics: what are the conditions for 
the existence of a wave, and what is quasi-static electrodynamics [49] represented by circuit 
symbols? We also discuss whether electronic circuits are able to transfer signals and information 
in the quasi-static (no-wave) limit, and we treat the nature of delayed signal propagation in the 
no-wave limit as well as the inefficiency to separate propagation directions with directional 
couplers [50]. 

 

2.1.1 The mathematical definition of a wave in physics 



In physics, a wave is defined as a propagating amplitude disturbance  that is the solution 
of the wave equation 

  ,         (18) 

where c is the phase velocity, i.e., the propagation velocity when no dispersion is present. The 
dynamics of waves is governed by the oscillation of energy between two types, such as the 
electrical and magnetic field energies. If only one of these types of energy takes part in the 
propagation—or if the propagation is not based on the bouncing of energy between these two 
fields—then the propagating field disturbance is not a wave but merely a near-field oscillation 
with retardation effects.  

We now consider a wire with finite size L. The wave equation in Eq. (18) has solutions only for 
frequencies  

 .           (19) 

In other words, propagating field disturbances with frequency components below the minimum 
wave frequency  do not satisfy the wave equation, and hence they are not waves. We concur 
with BR that propagation and corresponding time delays (i.e., retardation) are essential notions, 
but the propagating entities are not waves but field relaxations, and the consequences of this will 
be outlined below. Thus BR’s statements about propagating “orthogonal” wave components that 
can be separated in the two directions is simply unphysical and leads to incorrect equations and 
conclusions. Furthermore, when the KLJN scheme operates in the “no-wave limit”, this means 
that the condition 

           (20) 

applies [2,26], and BR are correct in using the term “quasi-static” to describe this situation. 
However, in the limit of quasi-static electrodynamics [49] it is incorrect to classify the 
propagating disturbances as waves; these disturbances are neither the solution of the wave 
equation nor do their electrical and magnetic fields have wave energy bouncing back and forth 
between them during propagation.  

 

2.1.2 The quasi-static limit of electrodynamics, and electrical circuitry symbols with lumped elements 

Quasi-static electrodynamics [49] and Eq. (20) constitute the bases for the operation and 
associated circuit drawings of any electrical circuit with lumped elements. The physical 
implication is that—along a line in a circuit drawing and the corresponding wire in the realized 
circuit, and at a given moment—the instantaneous current and the voltage amplitudes are 
virtually homogeneous, and retardation effects (including waves) can be neglected. In the 
absence of these implications, everyday electrical engineering design of circuits with lumped 
elements would be invalid and impossible.  



 

2.1.3 Signal propagation in the no-wave (quasi-static) limit 

After the comments above it is obvious that BR’s assertion, that without waves in the wire there 
is no information transfer, is not only unphysical but also in blatant contradiction with everyday 
experience. No landline phones, no computers or other electrical circuits with lumped elements 
would be able to function and process information if BR’s claim were true! In conclusion, the 
quasi-static (no-wave) limit [49] is a physically valid working condition for the KLJN system, 
and it is not unphysical as BR claim. 

 

2.1.4 Further implications of the quasi-static (no-wave) limit: Directional couplers, etc 

We now consider wave-based directional couplers for extracting and separating signal 
components in two directions. These couplers simply do not work in the quasi-static limit, and 
even in the wave limit the cancellation of the irrelevant signal component is strongly frequency 
dependent because it is determined by the successful destructive interference of wave 
components in the coupler [50]. Couplers with good directivity are of the size , where 

 and  is the frequency for optimal operation. For longer wavelengths (i.e., smaller 
frequencies), the system is subject to Rayleigh scattering and, accordingly, the separation of 
intensities decays with a power function scaling according to  f

4 . 

There are also non-wave-based directional couplers, which are able to separate signals coming 
from two directions in the wire. These couplers work with lumped elements, such as 
transformers or active devices, and can be efficient in a wide frequency range. Their working 
principle is to cancel the signal of the irrelevant direction by subtracting from the channel 
voltage another voltage that is induced by the channel current. However, all of these couplers fail 
with the KLJN key exchanger because, for a proper operation to reveal Alice’s voltage spectrum, 
the designer must know the exact value of her resistor. If instead Bob’s resistor value is used, 
then the resulting signal voltage will be different and signal’s spectrum will match Bob’s noise 
spectrum instead. This fact is again a consequence of the Second Law of Thermodynamics, 
which guarantees that the cross-correlation of the channel voltage and channel current is zero, 
which leads to statistically independent channel voltage and current as a result of their Gaussian 
nature. Similarly, measuring the channel voltage   Uc(t)  and current   Ic(t)  and creating 

  U L
* (t) Uc(t) Ic(t)RL  and   U H

* (t) Uc(t) Ic(t)RH  would not offer information as a 
consequence of the independence and the Gaussianity of   Uc(t)  and   Ic(t) . According to basic 

noise calculus, the spectrum of   U L
* (t)  and   U H

* (t)  would be   
4kTeff RL  and   

4kTeff RH , respectively, 
independently of the sign for the second terms in these sums. In conclusion, non-wave-based 
directional couplers do not provide useful information for Eve. 

 

2.2 Refutation of Bennett–Riedel’s claim about no information transfer in the no-wave 
limit 



As already shown in Sec. 2.1.3, there is indeed information transfer in the no-wave limit, and this 
fact is supported by common experience; cf. Eqs. (18) to (20). Therefore, the quasi-static limit is 
physical in an information processing system. 

 

2.3 Invalidity of Bennett–Riedel’s equations, and the correct equations 

Below, we show that BR’s equations are invalid for the KLJN scheme, in the wave limit as well 
as in the no-wave (quasi-static) limit.  

 

2.3.1 The wave limit and the Pao-Lo Liu key exchange system 

It is important to note that the default operation of BR’s system (cf., Fig. 4) is within the wave 
limit, which is a consequence of the abrupt switching of the voltage (cf., Sec. 2.4) and the 
generated high-frequency products. Moreover, in the BR system, no noise unknown by Eve is 
fed by Alice and Bob into the system. Thus Eqs. (16) and (17) are indeed valid for the BR 
system (but not for KLJN). As a consequence, the BR system does not offer any security for 
Alice and Bob, as further discussed in Sec. 2.5.  

The wave limit represents an illegal operational condition for the KLJN scheme, and therefore it 
is unimportant. However there is a software-based protocol working in the wave limit, known as 
the Pao-Lo Liu key exchange system [51–53], which was inspired by KLJN but does not utilize 
the Second Law of Thermodynamics. In the Liu protocol, random number samples of 
infinitesimally low noises (in the ideal situation) at Alice’s and Bob’s sites are sent and reflected 
with random sign of the reflection coefficient. Alice’s reflection coefficient, and the noise 
intensity added by her, is chosen so that, in the steady-state mode of ideal conditions, BR’s 
proposed correlation attack [4] between the incoming and outgoing waves does not yield any 
information for Eve. The relevant relation for the Liu protocol, in the ideal situation, is  

         (21) 

instead of the zero-security situation, , implied by BR’s considerations 
and Eq. (17) [4]. Furthermore and surprisingly, Liu’s system seems to satisfy 

        (22) 

in steady-state and at the ideal limit. Liu’s system has other weaknesses, though, stemming from 
the wave limit, viz., the distinct possibility to observe  and ; these flaws lead to problems 
with transients [52] and vulnerability to non-ideal filters [53]. Neither is Liu’s system protected 
by the Second Law of Thermodynamics or other laws of physics. 

Finally, returning to the KLJN scheme but lingering in the wave limit, we have the following 
comments: If only the waves coming from Alice’s direction and denoted  are known, this 
particular situation provides less information about Alice’s total description than the situation 
when the waves  coming from the direction of Bob are known as well. This is so because  



alone offers limited information about the reflection coefficient, and the resistance determining 
it, at Alice’s side. On the other hand, in accordance with BR’s passive correlation attack 
discussed in Sec. 1.2.5 (and also in Sec. 2.7 for the no-wave limit, where it does not work), the 
cross-correlation of  and  (requiring the wave limit) provides more information about the 

reflection coefficient at Alice than  does, and thus . We note, in passing, 
that BR’s attack and its justification contradict their own equation, given in Eq. (16), which 
claims that adding  to the knowledge of  does not help Eve. The duration of the BEP is 

limited in the KLJN protocol, and thus the relation  applies in Eq. (21). 

It should be observed that Liu’s system [51–53], described above, is slightly different from the 
KLJN system in the wave limit (which is illegal for KLJN) because, in the Liu protocol, the 
added and reflected noises are combined at the two ends in such a way that, in the ideal case, the 
cross-correlation does not yield any information from Eve. Thus Liu’s system implies that, in 
general, the correct relation for the wave limit is . 

 

2.3.2 Bennett–Riedel’s equations for the KLJN scheme in the no-wave (quasi-static) limit 

BR’s relations in Eqs. (16) and (17) do not exist for the KLJN system in the quasi-static limit 
because  and  are not observable separately [50]. Directional couplers that are able to 
separate such waves would produce outputs corresponding to 

           (23) 

and          

          (24) 

with . The largest separation would be at the high cut-off frequency  of the noise 
bandwidth. As already pointed out in Sec. 2.1.4, this will lead to unconditional -security  

, i.e., results of the same nature as in Eqs. (14) and (15). The resources invested by 

Alice and Bob are the duration  of the BEP and the length of the key . 

Finally, we set up the correct relations replacing Eqs. (16) and (17): The conditional information 
terms for the KLJN scheme satisfy 

  ,        (25) 

where  are current and voltage amplitudes along the wire in the steady state, 
where the dependence on x is miniscule and approaches zero for , and  is the 
initial transient disturbance (not wave) running from Alice toward Bob until Bob’s end is 
reached and Bob’s unknown noise is mixed into it. The last conditional information term 
expresses the fact that Bob, by knowing his own total description, is able to make an almost 



perfect guess of Alice’s description X [31]. However this term is still larger than zero, because 
errors remain even in this case [31,34], implying that a small uncertainty is left. 
Correspondingly, instead of Eq. (17), the correct relations for the conditional mutual information 
satisfy 

 .     (26) 

 

2.4 Proof that Bennett–Riedel’s key exchanger is unphysical 

It is easy to see that BR’s key exchanger is unphysical in its present form (cf., Fig. 4). To this 
end, let us consider how long Eve has to “graciously wait” for the termination of the switching 
transients before she can measure. This time, in fact, is infinite because the transient will bounce 
back from the two endpoints of the wire, with the same sign from the open end and with altered 
sign from the endpoint terminated by the battery. 

The observations above serve as a clear proof that, in the absence thermodynamics and the 
loss/energy dissipation it implies, even BR’s key exchanger cannot function, and this holds true 
also if we permit violations of the basic rules of security—viz., that Eve is allowed to measure 
whenever she can and wants—and instead force Eve to wait until the transients decay, which 
takes infinitely long time. 

In conclusion, BR’s scheme is unphysical, and one must realize that there are losses in “real” 
physical systems and that the related energy dissipation is controlled by thermodynamics. 

 

2.5 Ten ways to crack Bennett–Riedel’s key exchanger by passive attacks 

Below, we show ten ways to crack BR’s thermodynamics-free system with 100% success rate, 
and we furthermore point out that the same cracking methods do not work with the KLJN 
scheme, which is a consequence of thermodynamics and noise. 

 

2.5.1 Six universal energy/current-flow-analysis attacks 

To circumvent the problem of waves, Alice and Bob use proper voltage envelopes to prevent 
wave-modes (high-frequency components belonging to the wave limit). In practice, the wave 
modes should be kept negligible. Another alternative is that Alice and Bob use filters. One 
should note that convergence requires some loss, which is unavoidable for any real physical 
system. 

Six universal energy/current-flow-analysis attacks are based on the fact that any wire has a 
geometrical capacitance, and to charge the wire one needs a current flow, energy flow and power 
flow. Measurement of voltage and current, and determination their product, gives the power flow 
and its direction as shown in Fig. 5.  This power flow is the quasi-static analogue of the Poynting 
vector in electromagnetics.  



 
Figure 5. Universal energy-flow-analysis attack against BR’s scheme in the no-wave limit. The no-wave limit is 
provided by the specific time-function of the voltage   U0(t) . The capacitive current density   jc (t)  toward the ground 

is spatially homogeneous along the wire, which leads to a maximum channel current amplitude   Ic (t)  power flow 
vector and energy flow vector at the closed end, and zero at the open end. The direction of these vectors during the 
charge-up period is pointing toward the open end. 

 

The power flow vector is given by 

 ,                                 (27) 

and the energy flow vector is its integral over the BEP according to 

 .          (28) 

Eve’s situation is fully characterized by the direction of the current vector , the mean power 
flow vector , and the energy flow vector . The magnitudes of the ,  and 

 vectors with regard to location also fully inform Eve and compromise security. The 
further away from the connected voltage source these location-dependent quantities are 
evaluated, the less are their values, and they are zero at the open end. The directions of these 
vectors during the charge-up period are toward the open end.  

In conclusion, the direction and the location-dependence of the three measurable quantities offer 
six ways to fully crack the key in the BR system. 

 

2.5.2 Three transient-damping resistor attacks 

To make the system physical and stop the transient after one return, Alice and Bob may use 
damping resistors to match the wave resistance of the wire, as shown in Fig. 6. These resistors 



will cause a continuous noise current flowing into the geometrical capacitance of the wire. There 
are then three more ways to utilize thermodynamics to crack this system during the steady state. 

 

 
Figure 6. Transient-damping-resistor version of BR’s scheme, and capacitive noise current attack. The 
direction and the location-dependent value of the cross-correlation vector  Y  for the time-derivative of the channel 
voltage and the current vector provide two ways to crack the key, while the location-dependence of the RMS 
channel current offers a third way. 

 

The noise current is correlated with the time derivative of the channel voltage and can be written  

 .               (29) 

Both the sign of the cross-correlation vector  and its value with regard to location fully inform 
Eve about the situation; their absolute values are zero at the free end of the wire and maximum at 
the closed end.  

A third way to crack the key is given by the location-dependence of the RMS channel current, 
which is zero at the open end and maximum at the closed end. 

 

2.5.3 Wire-resistance Johnson-noise attack 

Any wire will have non-zero resistance, and thus it produces Johnson noise. Eve can simply 
measure the voltage noise between the wire and the ground at the two ends of the wire, as 
indicated in Fig. 7.  



 

Figure 7. BR’s scheme with finite wire resistance and Johnson noise attack. With a wire resistance of  Rw  and in 

the steady-state mode, Eve will measure a zero-power density spectrum Su  at the closed end of the wire and 

  Su 4kTRw  at the open end. 

 

The free end of the wire will have a voltage noise spectrum given by  

  ,          (30) 

while the connected end shows zero noise. Consequently Eve can fully crack the system. One 
may note that this attack can be avoided if the connected end of the wire has a large additive 
noise to conceal the noise given by Eq. (30), but then the former attacks utilizing the current, 
power flow and energy flow vectors will still crack the system even in the steady state. 

 

2.5.4 The above attacks are inefficient against the KLJN system as a result of thermodynamics 

It is easy to understand how thermodynamics and noise, fed by the two communicating parties, 
protect the KLJN scheme against the above attacks. The resistors used by Alice and Bob make 
the system thermodynamic and produce Johnson noise. The noise voltages are much larger than 
the parasitic Johnson noise of the wire, because the wire resistance must be small (maximum 1 to 
2% of ). Similarly the noise bandwidth is chosen so that the capacitive currents are 
negligible compared to the channel current.  

The implication of the considerations above is that, when the above described attacks are used 
against the KLJN scheme, Eve’s measurement will be a small DC signal buried in a large noise. 
This leads to relations similar to those shown for the wire resistance voltage drop in Eqs. (12) to 
(15), and the information theoretic security will be almost perfect. In the case of analogous 
attacks against the BR case, on the other hand, there is no other type of noise to bury Eve’s 
signal. The rectified noise voltages and currents, and the cross-correlation results, are all uni-
polar noises for which either the polarity of this quantity provides the result or, when its size 
matters, the size compared to zero. For example, the Johnson noise of the wire should be 
evaluated only at its two ends and should be zero at one end and non-zero at the other. Neither 
statistics nor averaging is needed to crack the BR system with these attacks; the result is virtually 
instantaneous and within the correlation time of the noise. 



 

2.6 On transient attacks against the KLJN scheme 

This attack is different from other attacks in the literature and in this paper in the sense that, in 
the no-wave (quasi-static) limit where KLJN operates, no concrete realization has ever been 
proposed with a measurement and evaluation protocol. Therefore, at the moment, this attack is 
only hypothetical but is brought up here for the sake of completeness and debate.  

Researchers working with the KLJN scheme have realized from the very beginning that 
transients pose vulnerabilities, and various schemes have been proposed to reduce the potential 
information leak; they include ramping up/down of the noise, starting from zero noise amplitude 
(and velocity), and adiabatic random walking of Alice’s and Bob’s resistance [31]. The 
efficiency of any attack is strongly limited; firstly, this is due to the quasi-static condition that is 
manifested by the noise voltage envelope and filters and, secondly, it is due to the unknown 
resistances and noises at the two ends of the wire. As soon as the front of the propagation (not 
wave) of the band-limited noise reaches the other end, new information about the particular noise 
is strongly reduced. Even in the case of a no-transient protocol, Eve has effectively only a very 
small sample of a noise whose duration is much shorter than its correlation time.  

First we describe the so far best-known transient protocol, which is based on random-walk 
resistances [31]. Alice and Bob arbitrarily choose  or  as their  and , and they use 
continuously variable resistors—such as potentiometers, MOSFETs, etc—to execute the key 
exchange. If noise generators are employed to enhance the noise temperature, then their band-
limited white noise spectra also need to be variable in a synchronized fashion so that the noise 
temperature stays constant at the publicly agreed value . Furthermore, suppose that the noise 
bandwidth in the KLJN scheme is secured by line filters at Alice’s and Bob’s ends. At the 
beginning of the KLJN clock period, both Alice and Bob start with 

  ,                                                                                                      (31) 

and they stay at this value until the noises equilibrate in the wire. Thus no informative transients 
can be observed just after connecting the resistors to the line, because the bit values have not yet 
been realized. Then Alice and Bob execute independent, adiabatically slow continuum-time 
random walks with their resistor values (in a fashion synchronized with the spectral parameter of 
their noise generators). The random walks are performed so slowly that—from a thermodynamic 
point of view—the system is changing in the adiabatic limit; thus there is almost thermal 
equilibrium in the wire during the whole random-walk process.  

There is a publicly pre-agreed time tr to execute these independent random walks. If Alice and 
Bob reach their randomly preselected values  and  within this time period, then they stop 
the random walk and stay at this value. After the time period tr they restart the measurements in 
the regular fashion. This procedure virtually removes the transient effects and the information 
leak they may cause. 
If, by the end of the time tr, the random walk of Alice or Bob (or both) does not reach the 
randomly preselected resistance value, then he/she (or both) submit a cancellation signal via an 



authenticated channel, and the bit exchange process is immediately aborted; then a new 
independent KLJN-clock-period starts in the way described above. 

Concerning security, the production of spurious frequency products is proportional to the RMS 
speed  of the random walk and, if a concrete attack is implemented, it is reasonable to 
assume that it satisfies 

 ,           (32) 

where  is a constant relevant for the transient attack against this scheme (cf. Eqs. 12 and 13). 
The above assumption leads to unconditional -security  with results of the same nature 
as those given in Eqs. (12) and (15) and with statistical distance 

 .      (33) 

This result is reached without privacy amplification [33]. 

Here the resource used to approach the perfect security is the duration  of the BEP, because it 
is inversely proportional to  when the random walk time is dominating. In other words, at 
fixed key length the “price” of increasing the security is a reduction of the speed of key 
exchange, and  can again be arbitrarily small. 

 

2.7 Why Bennett–Riedel’s passive correlation attack does not work against KLJN 

Directional couplers have limited bandwidth, work in the wave limit and—given that their 
directivity is good—have a size  (cf. Sec. 2.1.4). For much longer wavelengths—i.e., 
smaller frequencies, as in the KLJN scheme—the system displays Rayleigh scattering and 
accordingly (cf. Eqs. 23 and 24) the passive correlation attack results in a correlation coefficient 
with

 
power function scaling according to . These conditions lead to unconditional -security 

 with results that again are of the same nature as those in Eqs. (12) and (15) and with 
statistical distance 

 ,      (34) 

where  is a constant defined as in Eq. (13). This value is once more reached without privacy 
amplification [33]. 

Here the resource used to approach perfect security is the duration  of the BEP, 
because it is inversely proportional to the highest frequency in the noise-bandwidth. In other 
words, at fixed key length the cost of increasing the security is a reduction of the speed of key 
exchange, and  can again be arbitrarily small. 

 



2.8 Why the current extraction/injection active attack does not work against KLJN 

BR [4] propose an active (invasive) attack wherein Eve connects a grounded resistor to the line 
in order to extract some current and also monitors the current direction in the wire. BR’s 
verbatim statement was reproduced in Sec. 1.2.6 above.  

We fully agree with the above assessment when it refers to the BR system. However this attack 
is inefficient against the KLJN scheme, and this fact was pointed out already in the original 
paper describing the KLJN scheme [26]. In fact, this latter paper proposes a technically more 
efficient attack of the same nature: that Eve injects a stochastic current at the middle and 
monitors the cross-correlation of this current with the channel currents in the two directions; the 
correlation coefficient will be greater in the direction of the smaller resistance. This attack was 
later pointed out also by Reiner Plaga and Horace Yuen in private communications. Alice and 
Bob monitor the channel currents at the two ends and compare their instantaneous amplitudes via 
an authenticated public channel. If the currents differ, the bit exchange event is terminated and 
that bit is discarded.   

The usual argument to justify the attacks referred to above is that Eve may use miniscule current 
amplitudes, which are below the detection limit of the comparisons by Alice and Bob. This 
argument does not work, however, because Alice and Bob can design their current resolution so 
that Eve, by implementing this attack, cannot extract enough information. The channel current at 
Alice’s side of Eve is 

  ,         (35) 

and at Bob’s side of Eve it is 

 ,        (36) 

where  is Eve’s injected current and . The cross-correlations with Eve’s 
current during the BEP are 

 , (37) 

     (38) 

where  stands for finite-time  average, U for noise components, and  for the exact 
average (requiring infinite time). The dominant terms at the right-hand side of Eqs. (37) and (38) 
are the noise terms of the cross-correlations between Eve’s current and the channel current, with 
mean-square amplitudes scaling as . The RMS amplitude  of Eve’s current is negligible 
compared to that of the channel current, and hence 

  ,          (39) 



where . The last noise terms at the right-hand side of Eqs. (37) and (38) are negligible 
compared to the first noise terms. The detection problem is again the same as the one 
encountered at the wire-resistance-attack: a small DC component (the second term) in a large 
noise (the first term). Thus, as inferred from Eqs. (12) and (13), q will again satisfy 

 ,           (40) 

where  is a constant relevant for this current injection/extraction attack at fixed  (note that 
 is inversely proportional to ). Again one reaches unconditional -security , 

with results of the same nature as those in Eqs. (12) to (15) and with statistical distance 

 .      (41) 

The result above is reached without privacy amplification [33]. At fixed key length, the resource 
utilized for approaching perfect security is the resolution of Alice’s and Bob’s current 
comparison, because  must be chosen to be smaller than the relative current resolution to stay 
hidden during the current injection. 

 

2.9 Remarks about potential hacking attacks 

Mathematical models of physical systems and their building elements are always approximate, 
and security proofs can only be given for these model systems. Particularly dangerous are the 
elements that are directly exposed to Eve. Thus a commercial secure key exchanger must be 
carefully designed with considering all the foreseeable hacking attacks. 

For example, a real KLJN scheme must be armed with extra circuitry and protocol steps against 
Makarov-style blinding attacks [11], circulator-based attacks [32], and other unexplored 
possibilities such as out-of-frequency-range probing attacks, etc.  

 

Conclusions 
We showed that thermodynamics, noise, and the Second Law of Thermodynamics—i.e., the 
impossibility to construct a perpetual motion machine of the second kind—are essential for the 
security of the classical physical key exchanger in the KLJN scheme. Furthermore we supplied 
mathematical security proofs for each attack proposed by Bennett and Riedel [4]. Our results 
indicate that the security of the KLJN system has not been successfully challenged by them.  

We also showed that the Bennett–Riedel scheme is unphysical and we cracked it with 100% 
success by passive attacks, in ten different ways. It was found that the same cracking methods do 
not function for the KLJN scheme. Some other claims by BR we subjected to critical analysis as 
well; for example, we proved that their equations for describing zero security do not apply for 
the KLJN scheme.  
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