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ABSTRACT 
 

This paper focuses on the symmetries of space lattice crystal cells. All 32 point groups of three 
dimensional crystal cells are exclusively described by vectors (three for one particular cell) taken from 
the physical cell. Geometric multiplication of these vectors completely generates all symmetries, 
including reflections, rotations, inversions, rotary-reflections and rotary-inversions. The sets of vectors 
necessary are illustrated in drawings and all symmetry group elements are listed explicitly as 
geometric vector products. Finally a new free interactive software tool is introduced, that visualizes all 
symmetry transformations in the way described in the main geometrical part of this paper.  

 
 

1. INTRODUCTION 2. MULTIPLYING VECTORS 
  

The geometric product[2,3] of vectors a,b 
includes sine and cosine of the enclosed angle 
α : 

The structure of crystal cells in two and three 
dimensions is fundamental for many material 
properties. Many elements, including 
Aluminium, Copper and Iron have e.g. cubic 
unit cells. The nearest neighbors of diamond 
structures form tetrahedrons. About 30 elements 
show hexagonal close-packed structure.[1] 
Important organic molecules like benzene have 
hexagonal symmetry. Today some 80% of 
crystal structure analysis is carried out on 
crystallized biomolecules with huge investments 
from pharmaceutical companies.  

 
ab = |a||b|(cos α + i sin α),       (1) 

 
where i=e1e2 is the unit oriented area element of 
the plane of the vectors a,b. The geometric 
product has symmetric (inner) and 
antisymmetric (outer) parts: 
 

a ∙ b = (ab+ba)/2 = |a||b| cos α,     (2) 
a∧b = (ab−ba)/2 = |a||b| i sin α.    (3) In two dimensions atoms (or molecules) often 

group together in triangles, squares and 
hexagons (regular polygons). Crystal cells in 
three dimensions have triclinic, monoclinic, 
orthorhombic, hexagonal, rhombohedral, 
tetragonal and cubic shapes.  

 
These properties can already be used to 
implement reflections across a line (in 2D) or at 
a mirror plane (in 3D). In both cases the mirror 
(line or plane) can be given by a normal vector c 
(with inverse c−1=c/c2, c−1c=1.) A vector x to be 
reflected, can be written in components parallel 
and perpendicular to c: x = x||+x⊥. Now x||∧c=0, 
because parallel vectors span no area, and x⊥∙ c 
=0, because of perpendicularity. So we must 
have  

The geometric symmetry of a crystal manifests 
itself in its physical properties, reducing the 
number of independent components of a 
physical property tensor, or forcing some 
components to zero values. There is therefore an 
important need to efficiently analyze the crystal 
cell symmetries.   

x||c = x|| ∙ c+0 = c ∙ x||+0 = cx|| ,   (4) Mathematics based on geometry itself offers the 
best descriptions. Especially if elementary 
concepts like the relative directions of vectors 
are fully encoded in the geometric multiplication 
of vectors.  

 
x⊥c = 0+x⊥∧c = 0–c∧x⊥= –cx⊥.  (5) 

 
Reflection only changes the sign of x||. Therefore  
 

x’= –x||+x⊥= –c−1c(x||–x⊥)= – c−1(cx||–cx⊥)=  
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= –c−1(x||c+x⊥c)= –c−1(x||+x⊥)c= –c−1xc   (6)  
 
is the reflected vector. To do a sequence of two 
reflections with unit normal vectors c,d simply 
results in  
 

x’=d−1c−1 x cd = (cd) −1x cd,       (7) 
 

etc. From elementary geometry we know that 
two reflections at planes with normal vectors c,d 
enclosing the angle θ/2 result in a rotation by 
angle θ. A general rotation operator (rotor) is 
therefore the product of two vectors R=cd 
enclosing half the angle of the final rotation. 
A sequence of three reflections at planes with 
normal vectors c,d,e gives a rotary-reflection: 
 

x’=(−1)(cde) −1x cde,          (8) 
 
because the first two reflections result in a 
rotation followed by a final reflection. If the 
three vectors c,d,e happen to be mutually 
orthogonal (cde=i), then (8) describes an 
inversion: 
 

x’= (−1)(−i) x i = − x.       (8a) 
 
The general transformation law is 
 

x’= (−1)p S −1 x S,           (9) 
 

with p = parity (even or odd) of the vector 
products in S. Because both S −1 and S are factors 
in (9), the sign of S and (non-zero) scalar factors 
of S always cancel. We therefore equate 
operators S if they only differ by real scalar 
factors (including positive and negative signs)! 
 
 
3. TWO-DIMENSIONAL POINT GROUPS 
 
Fundamental are the two-dimensional 
symmetries of regular polygons with n=1,2,3,4,6 
corners.[4] (With n=5, no lattice can be built.) 
For an interactive online visualization see [8]. 
For n=1 there is no symmetry apart from the 
identity 1. For n=2 we have two points at x1=+a, 
and x2=− a. The two symmetry operations are 
the identity and the reflection at the plane 
perpendicular to a: 
 

x’= −a−1xa.            (10) 
 

Instead of the reflection, we can also use a 180˚ 
rotation with the help of any vector b 

perpendicular (90˚=180˚/2) to a:  
 
x’=baxab/a2/b2=b-1a-1xab=(ab)-1x(ab)=R-1xR(11) 
 
Compare Fig. 1.  

 
 

 
 
 

 
Fig. 1. Regular polygons (n=2,3,4,6) with 

vectors a,b. 
 
 
For n=3 we have a regular triangle centered at 
the origin as in Fig. 1. We can take one vector a 
pointing to one corner and a vector b pointing to 
the middle of a side, so that the two enclose +60
˚=180˚/3. The three symmetry rotations (120˚, 
240˚, 360˚) in positive sense are: 
 

R=ab, R2=(ab)2, R3=(ab)3= −1.     (12) 
 

The three symmetry reflections (6) are at the 
three lines through the center and the corners 
(different sign, because here a is in the line of 
reflection!): 
 

x’=a-1xa, x’=a-1R-1xRa, x’=a-1R-2xR2a.  (12a) 
 
For n=4 we have a square centered at the origin 
(Fig. 1.) We can take one vector a pointing to 
one corner and a vector b pointing to the middle 
of a side, so that the two enclose +45˚=180˚/4. 
The four symmetry rotations (90˚ ,180˚ ,270
˚,360˚) in positive sense are: 
 

R=ab,R2=(ab)2,R3=(ab)3,R4=(ab)4= −1. (13) 
 
The four symmetry reflections (6) are at lines 
perpendicular to vectors a, b, R-1aR, R-1bR.  
For n=6 we have a regular hexagon centered at 
the origin as in Fig. 1. We can take one vector a 
pointing to one corner and a vector b pointing to 
the middle of a side, so that the two enclose  
+30 ˚ =180 ˚ /6. The six symmetry rotations 
(60,120,180,240,300,360˚) in positive sense are: 
 

R=ab, R2, R3, R4 ,R5, and R6= −1.  (13a) 
 
The six symmetry reflections (6) are at lines 
perpendicular to vectors a,b,aR2,bR2,aR4,bR4.  
In general the point symmetry group of a regular 
polygon with n corners is generated by a vector 



a pointing to a corner and a vector b to the 
middle of an adjacent side, such that a,b enclose 
+180˚/n. (Rn = −1 is equivalent to this.) Using 
R=ba, instead of R=ab would generate rotations 
of opposite sense. 
 
 
4. THREE- DIMENSIONAL POINT 
GROUPS 
 
All known three-dimensional crystal lattices can 
be characterized by their crystal cells shown in 
Figs. 2,3 and 4. The symmetry transformations 
of these cells, which leave the center points O 
invariant, form groups of symmetry operations, 
called point groups. Altogether there are 32 
point groups associated with seven crystal 
lasses.[4,5,6] 

edge vectors a,b,c of unequal length. We now 
get the three symmetry groups: 
 
2 2=V={ab,bc,ac,1},  2=C2v={a,b,ab,1},  (16) 

22=Vh={a,b,c,ab,bc,ac,abc,1}.     (17) 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Tetragonal cell, trigonal (|a’|=|b’|=|c’|) 

cell (side view and top view along d-axis A’OA). 
a*, a, b, b* all in paper plane perpendicular to d, 
c
 

 
 
 
 
 
 
 
 

Fig. 2. Triclinic, monoclinic and orthorhombic 
crystal cells with invariant point centers O. 

 
The triclinic cell of Fig. 2 has three sides of 
unequal lengths and 3 unequal non-orthogonal 
angles. The only two symmetry operations are 
inversion i and identity 1, giving the groups: 
 

22=Ci={i=a’b’c’, 1},    1=C1={1},  (14) 
 
The left group symbol 22 was introduced in [4], 
meaning that 3 orthogonal vectors a’b’c’ (with 
angles 180˚/2) are multiplied to give i. For using 
the non-orthogonal edge vectors a,b,c, we need 
to replace i=a∧b∧c in (14). [4] uses overbars 
instead of underlines. The second symbol is the 
Shoenflies symbol. 
The monoclinic cell of Fig. 2 has edge vectors 
a,b,c of unequal length. Only the angle between 
a and b is not 90˚. We have the following three 
groups: 
 

2=C2={R=a∧b,1},  1=CS={c,1},   (15) 
22=C2h={c, R, cR, 1},        (15a) 

 
where cR is a rotary-reflection. In (14)-(15a) the 
generators are shaded. 
The orthorhombic cell of Fig. 2 has orthogonal 
containing O. 
 
In the tetragonal cell of Fig. 3 two of the 
orthogonal edge vectors a,b’,c have equal length 
(|a|=|b’|). We gain a 4-fold rotation symmetry 
around the c-axis. To generate the symmetry 
groups we choose a vector b=(a+b’)/2 pointing 
to a corner of the a,b’-square. The angle of a and 
b will therefore be 45˚=180˚/4. Defining the  
90˚ rotation generator 
 

R = ab,            (18) 
 
the symmetry groups obtained are now: 

 
4=C4={R, R2, R3, R4 = 1},              (18a) 
42=S4={abc=Rc, (Rc)2=R2, (Rc)3=R3c, (Rc)4=1} 

(19) 
42=C4h={R,R2,R3,1, c,Rc,R2c,(Rc)3=R3c},   (20) 
4 2=D4={R,R2,R3,1, bc,Rbc,R2bc,R3bc},    (21) 
4=C4v={a, b, aR2, bR2, R, R2, R3, 1},       (22) 
42=Vd={a,bc,abc=Rc,(Rc)2=R2,R3c,        
       aR2=bab, a(Rc)3=bR2c,1},        (23) 
42=D4h={a, b, aR2, bR2, c, 

R, R2, R3, 1, 
bc, ac, aR2c, bR2c, 
Rc, R2c=i, R3c}.              (24) 

 
The highest order group 42 of (24) is called the 
holohedry of the tetragonal cell containing all 
other groups (18a)-(23) as subgroups. (24) lists 
line by line: five reflections, four rotations 
(90,180,170,360 ˚ ), four 180 ˚  rotations and 
three rotary-reflections, with R2c equal the 
inversion. In (18a)-(24) some algebraic identities 
are inserted, in order to ease the recognition of 



the subgroup relationships. 
The trigonal (rhombohedral) cell of Fig. 3, can 
be visualized as a cube stretched along one 
space diagonal AA’. The three originally 
orthogonal edge vectors a’,b’,c’, emanating at A, 
will end up with mutually equal angles less than 
90˚. We call the AA’ axis vector d= a’+b’+c’. 
We further define vectors a=b’×d, b=d×(d×
c’)=(d∧c’)d, with angle 30˚=180˚/6 and an 
alternative vector pair a*=aba, b*=bab also with 
angle 30 ˚ . (Compare Fig. 3) Defining the 
rotary-reflection  
 

Rr = abd = a*b*d,         (25) 
 
the highest order symmetry group (holohedry) of 
the trigonal cell is: 
 

62=D3d={a, aRr
2, aRr

4, 
bd, Rr

2bd, Rr
4bd, 

Rr, Rr
3=i, Rr

5=(ab)5d, 
Rr

2=(ab)2, Rr
4=(ab)4, 1}.      (26) 

 
(26) lists line by line: three reflections, three 180
˚ rotations, three rotary-reflections (the second 
equals the inversion), and three rotations 
(120,240,360˚). 62=D3d has the following four 
subgroups: 
 
62=C3i={Rr, Rr

2, Rr
3=i, Rr

4, Rr
5, 1},      (27) 

3 2=D3={R=a*b=(ab)2, R2, R3=−1,  
bd, Rbd=a*d, R2bd=a*ba*d},     (28) 

3= C3v ={a, b*, aR2, R, R2, R3},           (29) 
3= C6  = {R, R2, R3}.                   (30) 

 
 

c, cR, cR2, cR3=i, cR4, cR5, 
ac, bc, acR2, bcR2, acR4, bcR4}.  (32) 

 
The holohedry 62 of (32) contains line by line: 
six reflections, six rotations (60,120,180,240,300, 
360 ˚ ), six rotary-reflections, and six 180 ˚ 
rotations. The hexagonal holohedry 62 has the 
following six subgroups: 
 
62=C6h={R, R2, R3, R4, R5, 1, 
        c, cR, cR2, cR3, cR4, cR5},       (33) 
6 2=D6={R, R2, R3, R4, R5, 1, 
        bc, Rbc, R2bc, R3bc, R4bc, R5bc} (34) 
6=C6v={R, R2, R3, R4, R5, 1, 

a, b, aR2, bR2, aR4, bR4},       (35) 
6=C3={R, R2, R3, R4 ,R5, 1},             (36) 
32=D3h={a, b*=bR=aR2, aR4=b*R2=b*ab*, 
     R2,R4,1,c,R2c,R4c,ac,b*c=acR2,acR4}, (37) 
32=C3h={R2=ab*, R4, 1, c, R2c, R4c}.      (38) 
 
For the group 6 2 it is interesting to note that: 
 

Rbc=ac, R2bc=bcR4, R3bc=R2ac=acR4, 
R4bc=bcR2, R5bc=R4ac=acR2.     (39) 

 
For the cubic crystal cell of Fig. 4 we define the 
three vectors a,b,c, such that a points to the 
middle of a side square face, b and c point to the 
middle of two edges, and the angles are 45˚ 
between a and b, 60˚ between b and c, and 90˚ 
between between c and a. We further define 
another edge middle vector a*=abcba. a*,b,c all 
have mutual angles of 60˚. The cubic holohedry 
has 48 elements: 
 
43=Oh={a,b,c,bab,cbabc,(ab)2c(ba)2,cbc,a*,aba, 
 
 
 
 
 
 
 
 

Fig. 4. Hexagonal and cubic cells. 
 

For the hexagonal cell we define like in Fig. 4 
two vectors a and b (at 30˚=180˚/6 angle) and 
for convenience an extra vector b*=bab (at 60˚ 
angle to a). The vertical vector is c. The 
holohedry is now with 
 

R=ab, Rc=cR, R2=ab*         (31) 
62=D6h={a, b,aR2, bR2, aR4, bR4, 

R, R2, R3, R4, R5, 1, 

i=(ab)2cbabc, 1, 
ab, (ab)2, (ab)3, babc, (babc)2, (babc)3, 
a*a, (a*a)2, (a*a)3, 
(ab)2c(ba)2a, cbabcaba, abcb,ac,babcbc,bcbabc, 
cbcaba, abacbc, (a*b)2, a*b, acba, abca,bc,(bc)2, 
abi, (ab)3i, babci, (babc)3i, a*ai, (a*a)3i, 
cbcabai, abacbci, (a*b)2i, a*bi, 
acbai, abcai, bci, (bc)2i}.               (40) 
 
The 1st line of (40) are 9 reflections, the 2nd line 
the inversion and identity, the 3rd and 4th line 
three triples of rotations by (90,180,270˚), the 
5th line six 180˚ rotations, the 6th line four pairs 
of rotations by (120,240˚) around the four space 
diagonals, the 7th line three pairs of 
rotary-inversions, and the 8th and 9th line four 
pairs of rotary-inversions around the four space 
diagonals. 
The cubic holohedry 43 of (40) has the 



following subgroups: 
 
43=Th={a, bab, cbabc, i, 1, (ab)2, (babc)2,(a*a)2, 
cbcaba, abacbc, (a*b)2, a*b, acba, abca,bc,(bc)2, 
cbcabai ,abacbci, (a*b)2i, a*bi, 
acbai, abcai, bci, (bc)2i},               (41) 
 
4 3=O={ab, (ab)2, (ab)3, babc, (babc)2, (babc)3, 
a*a, (a*a)2, (a*a)3, 1, 
(ab)2c(ba)2a, cbabcaba, abcb,ac,babcbc,bcbabc, 
cbcaba,abacbc,(a*b)2,a*b,acba,abca,bc,(bc)2}, 

(42) 
 
33=Td={b, c, (ab)2c(ba)2, cbc, a*, aba,  
1, (ab)2, (babc)2, (a*a)2, 
cbcaba, abacbc, (a*b)2, a*b, acba, abca,bc,(bc)2, 
abi, (ab)3i, babci, (babc)3i, a*ai, (a*a)3i},   (43) 

 
3 3=T={1,(ab)2,(babc)2,(a*a)2, 
cbcaba,abacbc,(a*b)2,a*b,acba,abca,bc,(bc)2}. 

(44) 
 
 
5. VISUALIZATION OF CRYSTAL CELL 
SYMMETRIES 
 
A visualization of the various point symmetry 
groups can further their understanding 
considerably. For this purpose we employed the 
freely available software CLUCalc [7]. 
CLUCalc is a 3D-visualization tool with an 
extensive scripting language, which also 
supports Geometric Algebra. The script that was 
developed is also available from [7]. In the 
following a short introduction to the usage of the 
script is given. 
When CLUCalc starts up, it opens three 
windows: a script window, a text output window 
and a visualization window (Fig. 5). Through the 
menu of the script window the script can be 
loaded. After the point symmetry group script 
has been loaded, the visualization window is 
split into three areas: at the left a descriptive text 
containing interactive links is given, at the 
bottom control elements are shown and in the 
remaining space the crystal cell and related 
elements are visualized. The visualization is best 
viewed when the visualization window is 
maximized. 
Initially the two crystal cells with a triclinic 
symmetry are shown. By clicking on the blue 
text links in the left area with the mouse pointer, 
one can switch to crystal cells with different 
symmetries. The left crystal cell is always the 
initial cell, while the right cell shows the 

transformed crystal cell. The transformations 
performed are shown above the crystal cells. 
Initially only a ‘1’ is shown, i.e. the identity 
transformation. In order to perform group 
transformations on a cell, one first has to select a 
group by clicking on one of the blue group 
identifiers. Then the group generators become 
active, i.e. they become blue links. Clicking on 
one of the group generators applies the 
corresponding transformation to the left crystal 
cell, and the result is shown by the right cell. If a 
sequence of group generators are selected, one 
after another, the right cell represents the total 
transformation. The history of transformations is 
shown above the cells. 
As soon as more than one generator has been 
applied, a number of control elements become 
available at the bottom of the visualization 
window. The control entitled ‘Generator 
Position’ is a slider, which allows one to step 
through the series of operations performed on 
the initial cell. Furthermore, a set of buttons 
appear which can be used to reset the list of 
generators, or to remove single generators. 
The total transformation operator is also 
visualized in the initial cell. In order to rotate the 
visualization for inspection, one has to place the 
mouse pointer somewhere in the visualization 
area, hold down the left mouse button and move 
the mouse. To achieve a translation, the same 
has to be done with the right mouse button. 
Furthermore, the current group generators are 
visualized in a sub-window of the visualization 
area. In order to rotate this visualization, one 
first has to select ‘mouse mode 1’, which can be 
done through the menu. Then the left mouse 
button has to be held down while moving the 
mouse. 
Note that for each type of crystal cell, a 
(pseudo-) group denoted with a question mark is 
available. Selecting this group, gives access to a 
set of operators, that by themselves may not 
represent symmetry operations. However, 
combinations of these may again represent 
symmetry operations. This functionality was 
added to also show which transformations do not 
belong to the symmetry groups of a particular 
crystal cell. 
 
 
7. CONCLUSIONS 
 
Though the underlying geometric ideas are 
contained in [4], the present work is the first 
paper treating all elements of all 32 point groups 
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