The Projective Line as a Meridian
by Kelly McKennon

1. Introduction

(1.1) Abstract We investigate that mathematical idea which in algebra is known as a cross ratio,
in one-dimensional geometry as a projective line, in two-dimensional geometry as a circle, and in three-
dimensional geometry as a regulus. We view each of these in its natural habitat, and show how each is an
avatar of one Platonic object, which object we term a meridian.

(1.2) Cross-Ratio The cross ratio looms large in the development of projective geometry. It was
known to Pappus of Alexandria back in the first half of the fourth century, and was used by Karl von Staudt
in 1857 to present the first entirely synthetic treatment of the subject. Von Staudt' introduced the notion of
a Wurfor throw : this was a pair of ordered pairs of points on a line. Throws were separated into equivalence
classes by projectivities of the line, in relation to the situation of the line in a plane.

In Section 2 we follow a somewhat similar course, the main difference being that we regard the line as a
set by itself without the influence of a surrounding plane, setting out four postulates to which the equivalence
classes of throws must be subject. This approach not only induces a “projective” structure on the set, but
also provides a particular model of a meridian, with from four to six distinguished points.

(1.3) Projective Line A “projective line” M over a field F is often defined as the family of
lines through the origin of a two dimensional vector space V over F. The “projective structure” of such a
projective line is induced by a set of so-called homogeneous coordinates: V is given a coordinate system,
and the homogeneous coordinates of any (line) element is the set of inherited coordinates of all the points
on that line distinct from the origin of V: they are related of course by all having the same ratio.

An equivalent “synthetic” definition is to consider a line A" embedded in a projective plane and then to
use “complete quadrilaterals” to define addition and multiplication. Given any “throw” {[A, B),[C, D]} in
the sense of von Staudt, and any fifth point F, there exist many complete quadrilaterals for which each of
the pairs of the throws lie on the intersections of opposing lines of the quadrilateral, and such that one of
the other lines passes through the fifth point.

#(A,B, ,E) E/\C D
s

A F

Fig. 1: The Quinary Operator on a Line in the Real Projective Plane.

However, for each of these complete quadrilaterals the remaining line cuts A at the same point. This
defines a quinary operator y on the points of N. One fixes three distinct points of A/, calling them 0, 1 and
oo, and then places them in a certain way in three of the arguments of y to obtain a binary operator. One
of these ways defines addition, and another way defines multiplication: in such wise that the complement of
oo in N becomes a field.

L Of. [Von Staudt] pp. 166 et seq. and [Veblen & Young] §55.
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Fig. 2: Addition of Points on a Line in the Real Projective Plane.
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Fig. 3: Multiplication of Points on a Line in the Real Projective Plane.

Of course both the analytic and the synthetic methods require a priori a projective plane. It turns
out that the projective plane may be dispensed with, and the quinary operator can be defined through a
compact set of axioms. Section (4) follows such a program.

(1.4) Circle A circle C embedded in a plane is another model for a meridian, which in some
respects is more illuminating than a straight line A/. The connection between the two is the so called
“stereographic projection”, where the line is aligned tangent to the circle, a point P is designated on the
other side of the circle, and lines through P correspond points on C with points on A through intersection.
This correspondence then transfers the quinary operator on N induced by complete quadrilaterals to a
quinary operator on C. However this quinary operator on C can be obtained directly and more simply. If
one takes a throw on C, each of the pairs of points of the throw determines a line. The two lines intersect in
a point Q. If one draws a line through @ and a fifth point on C, that line intersects C in exactly one other
point (unless the line is tangent to C). This other point is the value of the quinary operator.
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4(A,B,C,D,E)

Fig. 4: The Quinary Operator on a Circle.

Given a circle C in the plane, there are a number of other curious operators induced on C by the plane.
In fact each line A/ in the plane induces such a (trinary) operator « as follows. Let (A, B, C] be an ordered
triple on C, none of the points of which are on A/. The line through A and C intersects A/ at a single point
K. The line through K and B intersects the circle at one other point?: this is by definition the value of x at
(A, B,C] (we denote it in the figures below by | A, B, C|). If one fixes B and lets A and C' vary, one obtains
a binary operator which is, in fact, a group operator. When the line A intersects the circle C through two
points, the resulting group is isomorphic with the multiplicative group of non-zero real numbers. When the
line NV is tangent to the circle C, the resulting group is isomorphic with the additive group of real numbers.
When the line N does not intersect C, the resulting group is isomorphic to the group of complex numbers
of modulus one.

K

|4,B,C]

B

Fig. 5: Libra Operator Induced on a Circle by an Exterior Line.

2 Unless the line is tangent to the circle, in which case x((A, B, C])=B.
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Fig. 6: Libra Operator Induced on a Circle by an Interior Line.

l4,B,C]

Fig. 7: Libra Operator Induced on a Circle by a Tangent Line.

(1.5) Libras The trinary operators « described in (1.4) are examples of what we shall call libra
operators. Libra operators satisfy two axioms and, as the examples k suggest, these are closely related to
group binary operators. One can think of a libra as a group without a specific identity element, just as one
can think of an affine space as a vector space without an identity element. The idea of a libra seems to
have first appeared in print in [Certaine] and has gone by various other names such as “groud”, “heap” and
“torsor”. The name “libra” has been adopted here because the different libra operators may be thought of
as defining different types of equilibria.?

The operators x, however, do not constitute a principal motive for treating libra operators here. One
such motive is that the quinary operators discussed in (1.2) and (1.3) are much more easily explained and
handled when the concept of a libra operator is available, as will be seen in Section (4). The fundamental
properties of libras are introduced in Section (3), and further properties given in Sections (5) and (7).

(1.6) Transformation Libras Many mathematical objects serve an important role as domains for

3 This is explained in Section (11).



various families of functions or operators. In the case of a meridian, perhaps the most signal such family
is that consisting of what we shall term Mébius transformations. In its guise as a projective line equipped
with homogeneous coordinates [x,y], these transformations go under several names, such as homographic
transformations, bi-linear transformations or linear fractional transformations, and are represented as as
quotients of linear terms:

AX +B

(VA,B,C,DeF:AD#BC) [X,Y] < 5.
If A, B,C, D are points in F as above, we shall denote the corresponding transformation as (é g) Thus

if a point P in the meridian has homogeneous coordinates [X,Y ] we can use matrix notation to compute
the homogenous coordinates of the image:

A B . A Bl||X
<C D) (P) has coordinates [C’ D] [Y} =[AX+BY CX+DY]. (1)
Of course the representation é g of a Mobius transformation is only unique up to a constant factor of

the coefficients A, B, C' and D. Consequently the family I"(M) of all such constitutes a three dimensional
object.

The matrix equality of (1) suggests the greater generality of viewing Mobius transformations not just
as functions from a meridian onto itself, but as a family I'(M, N) of functions from one meridian M onto
another meridian A'. This prima facie rather naive suggestion proves to be fruitful, in that it leads to a
detailed understanding of the topological nature of I'(M) as a model of three dimensional projective space.
This serves as the other principal motive for exploiting libras, for I'(M) regarded rather as a family I'(M, N)
of functions from one meridian M onto another N, becomes a libra rather than a group. The development
of the structure of I'(M,N) is carried out in Section (8) as well as a characterization of precisely which
libras are isomorphic to such families.

Fig. 8: Section of Quadric Surface over the Real Field

(1.7) Quadric Surfaces Let S denote a three dimensional projective space over a field of charac-
teristic not equal to 2. A bijective projective mapping ¢ from S to its dual space consisting of the family P
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of all planes in S, has an adjoint mapping ¢~ sending B to S and defined by
(VPeP) {67(P)}= () olp).

pEP
The mapping ¢ is called a polarity provided ¢~ o¢ is the identity map on S. We shall say that a line K
is quadric relative to the polarity ¢ provided that, for each xeK, K is a subset of the plane ¢(x). If a
polarity has at least three pairwise disjoint quadric lines, we shall call it a quadric polarity, and the set of
all points xc S such that xc¢(x) is called a quadric surface.

It is well-known that each quadric surface Q is a union of two disjoint families of lines € and R. In
fact each of these families is a partition of Q. Furthermore each pair of lines, one from € and one from R,
intersect at exactly one point — and each point on the quadric is the intersection of exactly one such pair
of lines. These families of lines are called reguli, and each line in a regulus is called a rule.*

It is also well-known that to each triple of pairwise non-intersecting lines in S corresponds exactly one
quadric polarity for which the three lines are rules in one of the reguli. A line in S is in the other regulus
precisely when it intersects each of the three defining lines of the first regulus.

(1.8) Involutions of Quadric Surfaces Suppose that Q is a quadric surface and that its reguli
are € and PR. If P is a plane in S not tangent to Q, it intersects Q in a conic. This conic is a meridian
(being projectively equivalent to a circle), and so the map sending each Xe € to the intersection point of
X with P induces a projective structure on €. Furthermore it is independent of the particular P used in
inducing it. Thus € may be regarded as a meridian, and the same is true for fR.

Fig. 9: Associating a Regulus to a Conic Section

Each point a of S which does not lie on Q induces a natural involution of Q: through each point x of
Q passes exactly one line also passing through a, and this line intersects Q in exactly one other point y
(unless the line is tangent to the quadric).®

4 COf. [A. Seidenberg] §13.2.
5 These and related transformations of the quadric are examined in Sections (9) and (10).
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Fig. 10: Transformation of Quadric Surface @) by a Point a not on the Surface
Such a point a also induces a natural transformation of € onto R: through each rule X of &€ passes
exactly one plane on which a lies. The intersection of this plane with Q is the union of X with a rule Y of
the regulus 8. What is more, the family of all such transformations thus described is precisely I'(€, 9R).

Fig. 11: Transformation of Rules on a Quadric Surface @) by a Point a not on the Surface

A converse to this fact is also true: that if M are A are isomorphic meridians, then the libra I'(M, N,
together with the cartesian product MxA, can be identified in a natural way with three dimensional
projective space, where M xN corresponds to a quadric surface. These facts are set forth in Section (10).

(1.9) Apology The author freely admits that he is not familiar with much of the extensive literature
regarding projective geometry — and does not claim credit for any results contained herein which have been
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obtained earlier and elsewhere. The aim of this paper is rather to illustrate the beauty and variety of what
we call here a meridian.

Due to the not inconsiderable amount of notation and terminology introduced, indices of notation and
terminology have been included at the end of the paper.



2. The Quadriad Structure of a Meridian

(2.1) Permutation Notation Let T be a set {#,0,, &} with four distinct elements. We shall
write II for the group of permutations of Y. We denote the transpositions as follows:®
0= {(#, Q) [V, 8],[0,0), [, &I}, ={(#,8],[0, 01,10,V [, &]},
@]={(#,0), [V, Q) [0, ], [, B}, ={(®, N, [0, ], [0, 0], (&, O},
@] = {[#,&],(0,0), [0, 0], [, ]}, = {(®, D], (O, 0[O, &), (&, O},

and write I, for the the collection of these six. We denote

[40I08] = [aT] o [04] = [O#] o [40] = {[#, V), [V, #],[O, &), (&, O},
[MI08] = [a0]o [08] = [Va]o[40] = {[#, O], (D, %], (O, &), (&, U]},
(4200 = [ad] o [00] = [D0] o [ad] = {[ M, ], [V, O], [0, V], (&, &1},

and write 1Ty for the collection of these three.” We denote

[@00] =[00]o [80] = {(#, VL[V, O, [0, 8], [, &)}, [400] = [80]0[00] = {(M, O, [V, 4], (O, V], [, &I},
[@oR] = [Oa] o [ad] = {(d, V], [V, &], [, O, [, M)}, [48T]=[ad]c[0a] = {(M,&],[V, &],[O, O], [, U]},
[@oa] =[0a] o [ad] = {(M, 01, [V, V), [O, ], [, 4]}, [483]=[08]c [80]= {(M,&],[V, V][O, N], (&, O]},
m—-o:{[Q,M,[@,OMO,M,M,WL 0] =[0alo[00] = {[M, #],[0, &],(0, V], (&, O},
and write II; for the collection of these eight. We denote

[#008] = [4s]o [ad] o [40] = {[#, V], [V, O, [0, &), (&, #]},

[a087] = [#0]o [as]o [a0] = {[®, V), [0, &],[O, &), (&, O},

(@08 = [ad] o [A0] o [40] = {[#, O, [V, &, [0, V), [, ]},

[@0&0] = [a0] o [Ad] o [40] = {[#, O, [V, &), [, %], (&, TV},

[®00] = [#T] o [A0] o [&] = {[M, &), [V, O, (O, M), (&, D]},

axi0]=[a0]o[ad]o[ad] = {(#, %], [V, 8], (0, V), (&, O},
and write Iy for the collection of these six.

The remaining element of II is the identity permutation. We shall denote it by
LYR
Each permutation p of T partitions YT into the family of orbits of that permutation: we shall denote
that partition by [P]. For example we have

[A08] = ({M, 0}, {0, &}} and [T = ({4, 9,0}, {#}}.

(2.2) Quadriads For a set M with at least three points, we write MY for the set of functions from
T to M. We shall commonly express the values of elements t of MT using subscripts: ta, to, to, and tg,.
We denote®

ML, = (T = M: #{t,: beT} > 2},
={t|T > M: #{t,: beT} =3}
and M ={T = M: #{t,: be Y} =4}.
The permutations of T act on the elements of ./\/l;r+ through composition. For instance, for te MJ, we have
(to[aTl0M]) s = to,
(to ovm)@ = ta,
(to[ATI0R]), = tg,
(to

and [MOIOM]) g, = to.

(2.3) Postulate I Suppose that the set MY, is equipped with an equivalence relation ~. We shall

6 For an ordered pair of points  and y we shall use the notation [z,y], and for the value of a function f
at an argument x we shall use the notation f(z), that we may reserve normal parentheses () for groupings.
" These three, together with the identity permutation of Y, make up the so-called Klein Four Group.

8 We denote the cardinality of any set S by #S.



postulate four properties for ~. The first states that equivalence classes are invariant relative to each of the
four permutations of the Klein Four Group:

(VfEM;)(VXEHOQ) tox~t. (1)

(2.4) Definition Let A be in T and let {b,f, 1} consist of the other elements of Y. If
(Vte MY )(V A, B,CeM distinct)(Nse M) s~t 5, =A, s3=B, s,=C

we shall say that A complements ~ on M.

(2.5) Theorem Suppose that A complements ~ on M. Then any other A" €T also complements ~
on M.
Proof. Let t be in M3, and let A, B, C'e M be distinct. Let A" €Y be distinct from A and let b, § and
# be such that Y={A" b, b, #}. It follows from (2.4) that there is a unique element s of MJ, such that

s, = A, if A#D,
sy = B, if AFY,
sy = C, if A#Y,
A, i A=D
sy =4 B, if a=p
C, if A=t

and s ~ t. If y is the element of Iy that interchanges A and A’, then Postulate I ((2.4)) implies that
5 ~ soy. It follows that

t~soy, (soy),=a, (soy)y=b and (soy);=c.
QED

(2.6) Definition Theorem (2.5) means that if any element of T complements ~ on M, then all do.
In this case, we shall say that ~ is complemented on M.

(2.7) Postulate II We postulate that the equivalence relation ~ is complemented on M.

(2.8) Notation We shall denote by
M

the family of ~-equivalence classes. For each triple (b, 4, 1) of distinct elements of T and each triple (A, B, C)
of distinct elements of M, it follows from Postulate IT and Theorem (2.5) that there is a unique function
[A B C} which sends each m et to the unique x € M such that

bt b
{b,A), (4, B],(8,Cl, (A, X]}em where T = {b, 4,5, A}.
We shall write Mor (9%, M) for the family of all such functions and define
I(M,~)={¢pob': ¢,0cMor (9, M)}. (1)

(2.9) Definitions and Notation We shall call elements of I'(M, ~) projectivities.
For te M7 let t denote the subset {b,f} of Y such that t,=t;.
We shall say that two elements t and s of M3, are compatible if the relation
{{ta, 54 ], [to,50], [to, 50 ], [ta, 5a ]}
is a bijection of {ta,tv,ts,ta} onto {sa,50,5¢,54}. Evidently t and s are always compatible if they are
both in MY, and they cannot be compatible if one of them is in MJ and one in MJ . If they are both in
M}, then they are compatible precisely when t=s.

(2.10) Postulate III Our third postulate is that compatible equivalent members of an element of
Dt be related by a single projectivity:

(Vt,5€ MJ, compatible) t~ s <= (3 pecl(M,~)) s=¢ot. (1)

(2.11) Notation In the following theorem and elsewhere in the sequel we shall adopt the notation

(VA,B,C,DeM) (A,B,C,D)={(# A}V, B[ Cl (% D]} (1)
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(2.12) Theorem® Let A, B,C'e M be distinct and R,S,TeM be distinct. Then there exists a
unique ¢ I(M,~) such that

#(A) =R, ¢(B) =8, and ¢(C) =T. (1)
Proof. We first establish the existence of such a ¢ satisfying
¢(A) =R, ¢(B) =S, and ¢(C) =T. 2)

Case [A,B,C)=[R,S,T]): Let ¢ be the identity function on M.

Case (A,B,C)=[R,T,S): Postulate I implies that (A, A, B,C) ~ (A, A,C, B), whence follows from
Postulate III the existence of ae€ I'(M, ~) such that a(A)=A, a(B)=C and «(C)=B. Evidently (2) holds.

Cases [A,B,C)=(T,S,R] and [A, B,C]=[S,R,T]: The proofs are similar to that of the immediately
previous case (A, B,C)=[R,T,S).

Case (A, B,C) = [S,T, R): As above, we choose ae ['(M, ~) such that a(A)=A, a(B)=C and o (C) =B.
Postulate T implies that (B, B,C,A) ~ (B, B, A,C) whence follows from Postulate III the existence of
Bel(M,~) such that 8(B)=B, f(C)=A and B(A) = C. Let XeM be distinct from A, B, and C.
Postulate IIT implies that

(A,B,C, X) ~(a(A),a(B),a(C),a(X)) = (A,C,B,a(X)) ~ (B(A), B(C), B(B), Bla(X))) =
(C,A,B,Boa(X))=(S,T,R,Boa(X)).
Postulate ITI now implies that there exists ¢ such that (¢(A), ¢(B), ¢(C),d(X))=(R, S, T, foa (X)), whence
(2) holds.

Case [A,B,C)=(T,R,S): The proof is similar to that of the case (A, B,C]=[S,T, R).

Now we demonstrate the uniqueness of ¢. Let 6 be another element of I'(M,~) such that §(A)=R,
0(B)=S, and 0(C)=T. Let X be any element of M not in {A, B,C}. We have by Postulate III

(R,S,T,¢(X)) = (0((A4),0(B),¢(C), ¢(X)) ~ (A, B,C, X) ~ (0(A),0(B),0(C),0(X)) = (R, S,T,0(X)).
QED
(2.13) Notation Each element of MY is in exactly one of the following sets:'°
= {ge M3 : g {{#, O} {0, &}}},
= {ge My : qc{{4, 0}, {0, &}}},
= {ge My ge{{#. &}, {V, 01}

(2.14) Theorem Each of the sets [40[0%] [#0]0d] and [#%][00] is in DT,
Proof. Let r and y be in . Define

. {zc if r = {4, 0}, b if p= (4,0},

ro@ird ifp= {0 &), MV = {nom if r={<, b}
Thus ¢” and " are compatible.

By the fundamental theorem there exists a unique ¢l (M, ~) such that ¢(r'v) =90, ¢('s)=9%,
and ¢ (r's) =H's. By construction we have r'q=rv and n'a=n0. It follows that §"=¢or". By Postulate III we
have " ~ ¢". Since r ~ " and § ~ y* by Postulate I, it follows that r ~ . Thus is a subset of some
element of IT.

To show the reverse inclusion, we consider an element ¢ of , an element 3 of M; equivalent to
r, and deduce that 3 must be in [#2T%#]. Choose b, £,0€Y such that 3,, 3; and 3, are distinct. If r4 =1 and
{0} C {b, 8,0}, orifr,=xg and {O, &} C {b,4, 1}, let t = r[AMTT] — else let ¢" = r. Then #{r},r%,r4}=3
and @7 is in [40]0#%]. The fundamental theorem implies that there exists ¢pe I'(M, ~) such that

@)y =35, O(")g =3y and O(X'); = 35 (1)
Let A be such that {b, 4,1, A}=T. Postulate II implies that 3, is the unique element of M such that
{(,35): (#,35), (8,35), (8,32)F ~ 0 (2)
Postulate III implies
;/ ~ ¢ © K/ = {(bvﬁb)a (Hvéﬁ)a (hvéh)a (Aa d)(x,A))} (3)

9 We shall refer to this as the fundamental theorem.
10" Recall that for te MY, t is the subset {b,#} of T such that t,=t;.
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From (2) and (3) follows that 3, =¢(r'a). From this and (1) follows that 3=¢oyr’.

Since, by Postulate I, 1" is in [AZ[C#], either Ya=ro or r'c =r's. Consequently, either 34 =30 or 3, =34
Thus 3 is in . It has now been demonstrated that is in 9.

That [#0[0%] and [##[00] are in DT, can be shown by analogous arguments. QED

(2.15) Theorem The family I'(M, ~) is a group of transformations of M.
Proof. Let ¢ and 6 be in I(M, ~) and let t be an element (a, b, ¢,d) of M} . From Postulate III follows

t~fot~¢ofot.
From Postulate III follows that there exists a unique ye (M, ~) such that

yot=¢ofot
Let X be any element of M and set § = (a,b, ¢, ). As above we can find je I'(M, ~) such that
dos=¢ofos. (1)

We have 6(a)=0(sa)=¢00(sa)=¢ob(a)=pobl(ta)="(ta)="(a). Similarly we have §(b)=~(b) and d(c)=~(c).
The fundamental theorem implies that v=4. It follows that

1) = 0() = d(sa) 2L G0 b(sa) = 60 6(x).
Thus the element ~ of I'(M, ~) is just the composition ¢o0.
By definition there exist «, e Mor(Mt, M) such that d=aoft. Thus ¢ '=Boa ! and so is in
Mor (99, M). We have shown that (M, ~) is a group. QED

(2.16) Notation Recall that for distinct A, B, C'e M the function [‘3 ]j f] sends each element m of
M to that single element T of M such that (T, A, B,C)ecm. If A, B and C' are distinct elements of M and
U, V and W are distinct elements of M we apply the fundamental theorem (2.12) to obtain a unique

element [g g Ig] of I'(M) such that
Uvw (A) = Uvw
ABC 7 |ABC

uvvw

}[B]:V, and [ABC

Jicr=w. )
(2.17) Theorem Let M satisfy Postulates I, IT and III, and suppose that M has at least three

distinct points. Then
(M, ~) ={¢|M — M a bijection: (VteIN) t~ pot}. (1)

Proof. Suppose first that ¢ in I (M, ~). Let te Mt and choose A, B, C, D e M such that (4, B,C, D) = t.
Since {A, B, C, D} has at least three elements, the fundamental theorem implies that ¢ is the only element
of I'(M, ~) of which the composition with t is gpot=(¢(A), ¢(B), ¢(C), (D)). It follows from Postulate 11
that t ~ ¢ot.

Now we suppose instead that ¢ is in the right-hand set of (1). Let A, B, and C be distinct elements
of M. Let D=¢(A), E=¢(B) and F=¢(C). Since [g g g} is in (M, ~), we know from the preceding
paragraph that, for generic XeM, (A,B,C,X) ~ (D,E,F, [ﬁgg] (X)). But by assumption we have
(A,B,C,X) ~ (D,E,F,¢(X)), which thus implies
DEF
ABC
By Postulate IT ((2.7) and (2.6)), it follows that ¢(X) = [ & 5] (X). Hence ¢ is just [} £ L] and so is in
I(M,~). QED

(2.18) Theorem For distinct A, B,CeM, [3 f f] is the unique element of Mor(Mt, M) which
takes [42[0#] to A, [42[0#] to B, and to C.
For a, 3,7e Mor(9t, M), the function yo3 ' o« is again in Mor (M, M).
Proof. By definition, <[A B C] [) ,A,B,C)isin [#2[2#]. Since B+#C we have A= [A B C] (LER)R

(D.E,F, [ } (X)) ~ (D, B, F,6(X)).

9 o & 0o &
That B= [‘3 lj S] ([42[0%]), and C'= [é f f] ([#2[22]) follow from analogous reasoning.

Evidently we have

Rer )=V @
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If there were another element ¢ of Mor(9t, M) distinct from [A B c] which sent to A,

OO s

to B and to C, then [A B C] 0¢~ ! would be an element 6 of (M, ~) distinct from the identity

transformation. But this WouldO boe *absurd since 6 would leave A, B, and C fixed, and the fundamental

theorem would be violated. This shows the uniqueness of [‘3 f f]

Suppose that a sends [#40[0&] [40]0&], and [4%]00] respectively to A, B and C respectively, that 3 sends
them to R, S and T respectively, and that v send them to U, V and W respectively. Then

ABC 1 uvw
_{@Oﬂo} and ~yof _[RST]' (2)
bet Uvw Uvw Uvw
X = A, Y = B 7z = .
nsa W Y= hgy B mz= )
From the fundamental theorem follows that
XYZzZ| |[UVW 3)
ABC| |RST]|
Thus
1 by (2) |[UV W ABC| vy [XY Z ABC XY Z
Yo Toa o == o = .
RST (VIROSF ) ABC (VIR VIR X

This demonstrates the second part of Theorem (2.18). QED

(2.19) Theorem Let x be a permutation of Y. If t ~ 5 in MJ,, then tox ~ sox as well.
Proof. If t and s are compatible, by Postulate III, s=¢ot for some ¢ € [ (M, ~) and so sox=¢potox ~ tox,
again by Postulate III.
If t and s are incompatible, then Theorem (2.18) implies that both t and s are in the same element of
A = {|90]08] [40]0] [#%[00]}. The permutation x evidently takes each element of A to another element of
A. Tt follows that tox ~ sox. QED

(2.20) Notation For te MY, we shall write L] for the element of 9t of which t is a member.

(2.21) Corollary and Notation Each permutation x of T induces a well-defined bijection of 2t

as follows:
X[ > [t — ltox| e M. (1)
Proof. This follows from applying (2.19) to (2.20). QED
(2.22) Notation We shall write I'(99%) for the set {a~toj3: a, Fe Mor (9T, M)}.

(2.23) Theorem The family I'(90) is a group under composition, and is isomorphic to I (M, ~).
Proof. For any < Mor(9t, M) the function
I(M,~)3 ¢ 0 ogpohe (M) (1)
is bijective and preserves the composition operator: thus it is an isomorphism of groups. QED
(2.24) Corollary (V,B, €M distinct)(VR, S, Te Mt distinct)
(Foel(M)) o(A) =R, ¢(B) =6, and ¢(¢) = T. (1)
Proof. This follows from applying (2.23) to the fundamental theorem (2.12). QED
(2.25) Discussion It is a direct consequence of Postulate I that, for each xcIlpe, X is the identity

transformation.
For II, and II; we have

M) =08 = 8008 = [0800], [#0] = [O8] = [Aooh] = [@k00] and  [A&] = [00] = [M0h0] = [M0h0].

Furthermore

leaves fixed and interchanges [40]O&] with [4&[00],

leaves fixed and interchanges with [4&[00]
and [#&] leaves fixed and interchanges [4210&] with [#40]0&].
For IT; and we have

[400] = [#&0] = [O&] = [#0H] and [#00] = [A0S] = [O0O] = [ARd].
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Specifically

sends [#0[0&%] to [A&]00] to [#40]0%] and then back to [40[OM]

and

450)] sends [42]0%] to [40]0%] to [4%][90] and then back to [42[0&].

(2.26) Definition One consequence of the fundamental theorem is that no projectivity, other
than the identity transformation, can have more than two fixed points. The fundamental theorem also
implies that every two points are fixed under some transformation, but per se it does not insure that there are

projectivities with a single fixed point. We shall call a projectivity with a single fixed point a translation!!.

(2.27) Example Thus far nothing has been postulated about M which implies that M has more
than 3 points. In fact, if A, B and C are any three distinct points, then the sets M={A, B,C} and
IM={[a[CH] [4C|O%] [##]0O]} satisfy Postulates I through III. In this simplest of all cases it follows from
the fundamental theorem that I'(M, ~) (as well as Mor(9t, M) and I'(91) ) have exactly 6 members.
Specifically here we have

The transformations , and @ are translations. This is however atypical, and our fourth postulate
infra will invalidate this example.

(2.28) Notation and Definition For any positive integer n, we write I"(M) for the set of
n copies
HH . . . .
peI (M, ~) such that ¢o...o¢ equals the identity transformation ¢ (and does not for any smaller positive
n) — I'™(IM) is defined analogously. An element of I'”2(M) will sometimes be referred to as an involution.
The identity transformation [#4] is the sole member of I''(M1). The fundamental theorem provides
numerous elements of I'?(M): in particular 4], [#2], and [#&]. The transformations and are in
I'3(90), again by the fundamental theorem.

(2.29) Theorem Let A, B, C and D be four distinct points of M. Then there exists ¢eI’*(M)

such that ¢(A)=B and ¢(C)=D.
Proof. By Postulate I we have (A, B,C, D) ~ (B, A, D, C) and by Postulate III there exists ¢ € [(M, ~)
such that ¢(A)=B, ¢(B)=A, ¢(C)=D and ¢(D)=C. Since ¢o¢ agrees with the identity element of I'(M, ~)
on A, B and C, it follows from the fundamental theorem that it is the identity: that ¢ is in I(M). QED

(2.30) Theorem Let ¢ be an element of I'(M, ~) and let A, Be M distinct be such that ¢(A)=B
and ¢(B)=A. Then ¢ is in I’*(M).
Proof. If M has only three points, then the conclusion follows from Example (2.27). We presume then
that M has at least four points and that ¢ & I'*(M). Then there exists C, De M distinct from A and B
such that ¢(C)=D and ¢(D)#C. By (2.29) there exists e I’>(M) such that #(A)=B and #(C)=D. From
the fundamental theorem (2.12) follows that §=¢, which is absurd. QED

(2.31) Theorem Let 2, B, €Mt be distinct. Then there exists §e I'*(M) such that H(A) = € and
6((B) = ‘B.
Proof. By (2.24) there exists ¢ € I'(9%) such that
o(([AL28]) = 2, ¢(([4Z128]) = B, and ¢(([482]) = ¢

The element of I'(OM) fixes [420%] and interchanges [40[0%] and [4%[00]. Thus we may let 6 = po@dlog L.
QED

(2.32) Corollary Let A, B,CeM be distinct. Then there exists f (M) such that §(A)=C and
6(B)=B.
Proof. Apply (2.23) to (2.31). QED

(2.33) Theorem Let ¢ be an element of I'(M, ~) not in I'>(M). Then ¢ is the composition of two
involutions. In particular, if C'e M is such that ¢ (C)#C and if fe (M, ~) satisfies

B67H(C)) = 6(C), B((C)) = ¢~ (C) and B(C)=C, (1)

11 An element of I'(91) with a single fixed point will also be called a translation.
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then the transformations 3 and a=¢of are in I’ (M) and ¢=aof.

Proof. That £ is in I’*(M) follows from (2.30) and (2.33.1). We have

a(C) =¢(B(C)) =¢(C)  and  a(6(C)) = ¢(B(6(C))) = (o™ (C)) =C
which with (2.30) implies that « is in I*(M). That ¢=aog follows from the definition of o. QED

(2.34) Theorem Let ¢,0c*(M) and P,QeM be such that ¢ and # agree on both P and Q.
Suppose that P is distinct from both @ and ¢(Q). Then ¢=6.

Proof. Let T'e M be distinct from P and Q.

We first consider the case wherein both P and @) are both left fixed by ¢. We have ¢ (T')#T by definition
of I(M). Tt follows that (P,Q,T,¢(T))e M} . Postulate I implies that (T, ¢(T), P,Q) ~ (P,Q, T, ¢(T)),
and so Postulate IIT implies that there exists pe I'(M, ~) such that

p(T) =P, plo(T)) =Q, p(P) =T, and p(Q) = o(T).
Similarly, there exists ve I'(M, ~) such that
v(T) =P, v(0(T)) =Q, v(P) =T, and v(Q) = 0(T)
Both the transformations = 'ogou and v~ !ofov evidently interchange P and @ and leave T fixed. Thus the
fundamental theorem implies that p~togpopu=r"'ofov. Consequently they have the same fixed points.
The fixed points of the first are t and ¢(7'); those of the second are T and 6(7"). Hence ¢(T')=6(T). Since
T was taken arbitrarily, we have ¢=0.

Now we consider the case wherein ¢ (P)#P. Then ¢ and 0 agree not only on P and @, but also
O(¢(P)) =0(0(P)) = P =¢(o(P)).

By the fundamental theorem they must be identical.

The demonstration of the remaining case, wherein ¢ (Q)#@Q), is analogous. QED

(2.35) Theorem If #c (M) is distinct from ¢e (M) but has a fixed point in common with ¢,
then ¢o# is a translation.'?

Proof. Choose PeM such that ¢(P)=60(P)=P and suppose that QQ e M satisfies ¢p06(Q)=Q. Then
?(Q)=0(Q). If Q were distinct from P, then Theorem (2.24) would imply the absurdity that ¢=6. QED

(2.36) Discussion and Definition We have yet to introduce the fourth postulate for M and ~.
It will be closely connected with the existence of what we call harmonic pairs and quadric cycles.

An element t of M} will be said to be a quadric cycle provided their exists ¢ e I(M, ~) such that

6ot =toaal

In this case the transformation ¢ must be in 114(./\/1) because popopop evidently leaves ty, to, ts, and tg
all fixed.

A ordered quadruple [A, B,C, D] such that B=¢(A), C=¢(B), D=¢(C), and A=¢(D) is a ¢-orbit.
Clearly, necessary and sufficient conditions for [A, B, C, D] to be a ¢-orbit are for [B,C, D, A], (C, D, A, B],
and [D, A, B,C] to be ¢-orbits. Replacing ¢ by its inverse ¢, we see also that [A, B,C, D] is a ¢-orbit
if and only if (D,C, B, A} is a ¢ '-orbit. If T is a point in a quadruple ¢-orbit, we shall say that T and
¢o@p(t) are symmetric orbit points. Obviously the set of orbit points of an orbit is a union of two pairs
of symmetric orbit points. We shall say that a pair {{A4,C],[B, D]} is a harmonic pair if A and C are
symmetric orbit points, and if B and D are symmetric orbit points, both with respect to a common element
¢ of (M, ~) (which ¢ is necessarily in I'*(M)).

12 ¢f. (2.23).
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Fig. 12: A Quadric Cycle [A, B, C, D] and Harmonic Pairs {(A,C],[B, D]} on the Circle

(2.37) Theorem Let A, B, C and D be distinct elements of M. The the following statements are
pairwise equivalent:

(i) (A, B,C, D) is a quadric cycle;
(ii) {[A,C),[B, D]} is a harmonic pair;
(iii) (Voel(M,~)) {(¢(A),o(C)],[¢(B),¢(D)]} is a harmonic pair;
(iv) (3¢el?(M)) ¢(A)=A, ¢(B)=D and ¢(C)=C;
(v) 3a,BelZ(M)) [A] A, a(C)=C, B(B)=B, B(D)=D and aof=foa.
Furthermore, if {{A4,C],[B, D]} is a harmonic pair, then
(vi) (30l (M N) a translatlon) 9(A)=A, 07 (C)=B, and 6(C)=D.
Proof. (i)<=-(ii): This follows directly from the definitions.
(ii)<=(iii): That (iii) implies (ii) follows when « is the identity transformation. Suppose that (ii) holds
and that ¢ (M, ~). Since (i) and (ii) are equivalent, there exists 6 €I (M, ~) such that
fo (A B,C,D)=(A, B,C, D) o[&00&].
Thus
(600006710 (6(4),6(B),6(C),6(D)) = dobo(A,B,C,D) =

¢o(A,B,C,D)o[4csl = (¢(A),d(B),d(C),¢(D)) o[4004),

which means that (¢ (A), @ (B),¢(C),d(D)) is a quadric cycle. Since (i) and (ii) are equivalent, it follows
that {{¢(A),¢(C) ), (¢(B ) (D) ]} is a harmonic pair.

(i)==(iv): Let neI’*(M) be such that not = to[&oo&l. By (2.29) there exists 6 I’*(M) such that
6(A)=D and 6(B) = C. Then

nof(A) =0(D)=A, nof(B) =n(C) =D, nob(C) =n(B) =C, and nof(D) =n(A) = B.

Letting ¢=nof, we see from (2.30) that ¢ is an involution.

(iv)=(v): Applying (iv) twice we obtain a in I*(M) such that

a(A) =A, a(C)=C, a(B)=D.
Applying (2.32) we choose SeI'2(M)
B(A) =C, B(B) = B, and 3(C) = A.
Then
aof(A) =a(C)=C and aof(C)=a(d)=A
which by (2.30) implies that
aof
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is an involution: that is, cofB=LSoaq.
(v)=(i). We let o and § be as in (v). Since « is not the identity, the fundamental theorem
guarantees that a cannot fix B. However

Bla(B)) = a(B(B)) = a(B).
The fundamental theorem also guarantees that S only fixes B and D — consequently
a(B) =D = «(D) = B. (1)
A By (2.29) there exists fe I'*(M) such that §(A)=D and 6(B) = C. Letting ¢=a 08 we have
6(A4) = ao0(4) =a(D) ZL B, ¢(B) =ao0(B) =a(C) Z2 C,
o(C)=aobh(C) =a(B) @ p o oand ¢(D) =aob(D) =«a(A) v A,

which implies (i).

We have now shown that (i) through (v) are pairwise equivalent. It but remains to show that (iv)
implies (vi). By (2.32) there exists ave (M) such that a(A4)=A, o(C)=D, and a(D)=C. Letting §=ao0¢
we have

0(A) = aod(A) L) n(4) = A

and . :
9(B) = ao¢(B) LY (D) = C, and 0(C) = a0 6(C) 2L o (C) = D.

From (2.35) follows that 0 is a translation. QED

(2.38) Theorem Let ~ be an equivalence relation satisfying Postulates I, II, and III. Then the
following two statements are pairwise equivalent:
(i) (V7 a translation)(VaeI?(M):(3A,BeM : 7(A)=A=a(A) and 7(B) = a(B))) Toaecl*(M);
(i) (VA,CeM distinct)(V 7 a translation: 7(A)=A) {A,71(C),C,7(C)} is a quadric cycle.
Furthermore, either of (i) and (ii) implies the following two statements:
(ili) (VA, B,CeM distinct)(3!' De M) {A, B,C, D} is a quadric cycle;
(iv) (Vpel*(M),BeM:$(B)=B)(3' DeM) D#B and ¢(D)=D;
(v) (V,0 translations)(V A, X e M: A=7(A) =0(A)#7(X)=0(X)) 71=0.
Proof. (i)==(ii): By (2.31) there exists ae I'*(M) such that
a(t71(C)) =C and «(A4) =A. (1)

By (i), Toa is an involution. We have

roa(d) XL d@ 4 o0 1(0) 22U 10) and Toa(C) =r(r1(C) XL ¢ (2)
Since Toq is an involution, we also have Toa (7(C))=7"1(C). This, with (2), and in view of and (2.37.i) and
(2.37.ii), implies that {4,771 (C),C,7(C)} is a quadric cycle.

(i)=(v): Let C=7(X) and choose « as in (1). From (1) and (2) we have

Toa(A) = A, Toa(X) =7(C), Toa(C) =C and Toa(7(C))=X. (3)
As above, we have
Boa(A) =A, foa(dH(C)) =6(C), foa(C) =001 (C)) =C and o (0(C))=0"1(C)
which can be rewritten as
foa(A)=A, foa(X) =0(C), foa(C) =C and foa(A(C))=X. 4)
From (4), (3) and the fundamental theorem it follows that Toaw = focv. Thus 7= 6.

(ii)==(iii) Choose X e M distinct from A, B and C. By (2.32) there exists ae (M) such that
a(A) = A and a(B) = X. By (2.32) there exists fe I'*(M) such that (4) = A and 3(X) = C. By (2.35)
the composition So« is a translation. By (ii),

(A,B,C,pBoa(C)] = [A, (/8004)_1 (C),C, Boa(C)] is a quadric cycle.
Let D=po«(C). Assume that there were F ¢ M distinct from D such that (A, B, C, E'] were a quadric cycle.
By (2.37.iv) there would exist v, de I*(M) such that
1(A)=A=4(A), ~(C)=C=46(C), ~(B)=D, and §(B)=E.
By (2.35) y0¢ would then be a translation, which has the fixed points A and C: an absurdity.
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(iii)=(iv) Let X be distinct from B. If ¢(X)=X, let D=X. Else we apply (iii) to obtain the unique
DeM such that (X, B,¢(X),D] is a quadric cycle. In the latter case (2.37.iv) implies the existence of
mwel?(M) such that

w(B)=B, w(X)=¢(X) and w(D)=D.

By (2.34) we have ¢=m. Thus we have ¢(D)=D. If there existed E distinct from D and B such that
¢(F)=FE, then the fundamental theorem would imply that ¢ were the identity.

(ii)==(i): From the above we know that (iii) holds, and so (iv) holds as well. Let f=aoToa. Since A
is the only fixed point of 7, it follows that «(A) is the only fixed point of 8: thus 6 is a translation as well.
From (ii) we know that [A,7 1 (B), B,7(B)] is a quadric cycle, which with (2.37) implies that

[A,7(B),B,7(B)] is a quadric cycle (5)
as well. From (ii) also follows that[ A, 0~ (B), B,0(B)] is a quadric cycle. Rewriting this last, we see that
(A, 7(B), B,6(B)] is a quadric cycle. (6)

From (iv), with (5) and (6), follows that 7—!(B) = §(B). We already know that
7 1A) = A=aoroa(A) =0(A) and 7 '(7(B)) = B = aor(B) = aoroa(r(B)) = (r(B))
and so it follows from the fundamental theorem that 7= = 6. Thus, if + denotes the identity mapping on

M, then
L =700 =ToaqoToOx —> Toaeﬂ2(/\/l).

QED

(2.39) Postulate IV The fourth and last postulate will be that, whenever 7 is a translation with
fixed point A, then, for any other point B distinct from A, the ordered quadruple [A,7 1 (B), B, 7(B)] is a
quadric cycle.

(2.40) Definition An equivalence relation ~ on a set M satisfying all four postulates (2.3), (2.7),
(2.10) and (2.39), will be called a meridian equivalence relation for M.
The set 9T will be called the intrinsic meridian model.

(2.41) Notation It follows from Theorem (2.38.iv) than each of the transformations'? , and
[A&] have fixed points other than |A0[O&] [#010&] and [A%[00] respectively. We shall denote these other fixed
points by [#010s] |40 0&] and [#%i00], respectively.

(2.42) Example The clements [401 0] [4010M] and [4%19¢] may not be distinct. Suppose that
M has exactly four elements A, B, C and D. Let ~ be the equivalence relation on MJ, of which the
corresponding partition has the following four elements:

[aolCa] [aZ[0%] [#&07] and MY

Then

mi={[ac[0s] [acTOR] [a&[00] [a0T O8]}

and

{[&TT 78]} = {[aTT08]} = {[#&T00]} = M.

(2.43) Theorem Let ~ be a meridian equivalence relation. The following statements hold:
(i) [AZEZ&]={te M) : {{ta,to}, {ts, ta}} is a harmonic pair};
(i) [AZIT&]={te M : {{ta,to}, {tv,ta}} is a harmonic pair};
(iii) [A*E00]={te MT : {{tm,ta}, {to,ts}} is a harmonic pair}.
Proof. Denote by X the set {te M] : {{ta,to}, {ts,ta}} is a harmonic pair}. Let t,seX. By the
fundamental theorem there exist 6 € (M, ~) such that

6(ta) = 54, 0(v0) = s0, and d(ve) = so.
From Theorem (2.37.iii) follows that
{{sa,50},{50,0(ta)}} is a harmonic pair.

13 Cf (2.21.1).
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From the uniqueness part of Theorem (2.39.iv) follows that tg =54 and so by Postulate III it follows that
t ~ . Thus & is a subset of a single member ) of 9.

Let {{A,C},{B, D}} be a harmonic pair. Then (A, B,C, D)cX, whence |<A,B,C7D>|=Q} We have
& ({4 B.C. D)y — ({4, B.C, D) o[&T))y _ (C, B, A, D)},

Since {{C, A}, {B,ﬂ}} is a harmonic pair, it follows that (C, B, A, D) is in X, and so |<C’ B, A, D>|=i{). We
shave shown that leaves 2) fixed. Thus, by definition, 2)=. Hence X C [#230#].

Let t be in [AZIT&]. By Postulate III there exists § € [{M, ~) such that t=6o(A, B, C, D). From Theorem
(2.37.iii) follows that {{ta,to},{to,ta}} is @ harmonic pair. Thus t is in X. We have demonstrated that
x=[avT7a].

The establishment of (ii) and (iii) is analogous to that of (i). QED

(2.44) Corollary Let ~ be a meridian equivalence relation. If any two elements of the set
{laios], [#0t oM [#%100]} are distinct, then all three are.
Proof. Suppose for instance that [#010&]-£|a0T 0] are distinct: that
{teM] : {{ta,to}, {ts,ta}} is a harmonic pair}£{te M7 : {{ta,tc}, {to,ta}} is a harmonic pair}. (1)
Applying to (1) we obtain
{te M : {{ta,to}, {ts,ta}} is a harmonic pair}#{te M7 : {{ta,ta}, {to, ts}} is a harmonic pair} (2)
and applying to (1) we obtain
{te M] : {{ta,ta}, {to,ts}} is a harmonic pair}#{te M} : {{ta,to}, {tv,ta}} is a harmonic pair}. (3)
Thus (2) and (3) yield [0 O®]A[ML0O] and [adi00]A[a0I0&]. QED
(2.45) Theorem Let ~ be a meridian equivalence relation. Let P be in M and let «a, 3,ve I'*(M)
agree on P. Then oo o~ either is the identity transformation or is in 172 (M).
Proof. For ooy to be in I’*(M) is equivalent to
aofoy=ryofoa.
If = or =~ the above equation is trivial, so we will suppose that a#£F#£v. Let @ be such that o (Q)#£5(Q).
By Theorem (2.29) there exists e I'>(M) such that §(P)=P and §(aof(Q))=7(Q). By Theorem (2.35) Boc
and yod are translations. Since they agree on P and both take on the value @ at aof(Q), it follows from

Theorem (2.38.v) that Soa=v0d. From this follows that yofSoa=4, which means in particular that yofSo« is
in I'2(M): it is its own inverse aofoy. QED

(2.46) Theorem Let ~ be a meridian equivalence relation. Let A, B,C,DeM be such that
{A,D}n{B,C} = (. Then there exists a unique element [A B] of I’(M) such that

DC
AB AB
{DC}(A]:Dand [DC}[B]:O. (1)

Proof. If A#D and B#C, this is just (2.29). If #{A, B,C, D} = 3, then this is just (2.32). If A=D
and B=C, and if F is any distinct third point, it follows from (2.38.()iii) that there exists M € M such that
{l{A,B],[E, M)} is a harmonic pair. From (iii) of (2.38) follows that there exists a unique [é g} eI?(M)
such that (1) holds. QED

(2.47) Discussion We could as this point enter further into the the description and classification
of the elements of I'(M,~). However there is an alternate characterization of the meridian equivalence
relation which seems a more appropriate setting for that program. We shall set the foundation for this
characterization in the next section.

(2.48) Historical For each quadriad te MJ, we can form the pair Wurf(t)={(to, to ], (ta,ta ]} of
ordered pairs. We note that
(Vs,te MJ,) Wurf(s) = Wurf(t) <= s = to[ATA

Because of Postulate I it follows that, whenever QJurf(s) =2Jurf(t), then s ~ t. This means that in obtaining
Mt we could alternatively have placed an equivalence relation on the family

Wife = {{{A, B),(C,D)}: A,B,C,DeM and #{A, B,C,D} > 2}.
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This is the program followed by Karl Von Staudt in [Von Staudt] pp. 166 et seq. and later by Veblen and
Young in [Veblen & Young] §55. The latter authors used the terms throws for what Von Staudt called Wiirfe
and marks for the (equivalence class) elements of 9T. None of these authors however begins with a system
of postulates as was done here.
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3. Libras (Part I)

(3.1) Introduction The meridian equivalence relation appears naturally out of a particular algebraic
operation. Its introduction will be much simplified if we bring to hand a more fundamental notion which
requires introduction here. The basic notion behind it is a set of scales — hence the appellation: “libra”.
For brevity however, we shall take a short cut past the scales, leaving those for the appendix: Section (11).

(3.2) Definitions Let L be a set and |[,, ||[LXLxL — L a trinary operator on L for which the
following holds:
(Va,bel) |aab)=b=|baal M)

and
(va7 b’ C? d76 G L) LLa7 b’ CJ7d7 eJ = La7 b’ LC’ d’ eJJ' (2)

Then [,, | will be said to be a libra operator and L, relative to |,, |, a libra.
A subset B of a libra will be said to be balanced provided |a,b, ¢ is in B whenever a,b,cc B.

(3.3) Theorem Let |,, ||[LXxLxL — L be a libra operator on a set L. Then
(Va,b,c,d,ecL) la,|d,c,bl,e| = [[a,b,c],d,e]. (1)

Proof. We have

a by (3.2.1) by (3.2.1) by (3.2.2)

la,b,b] 22D 14 |c,c,b]] la,b, ||c,d,d], c,b]]

by (3.2.2) by (3.2.2)

|la,b, |c,d,d]],c,b] [[|a,b,cl|,d,d],c,b] |la,b,c|,d,|d,c,b]]

whence follows by (32 by (3.2.2
la,|ds b)) 222 |||a,b,c],d, [d,e.b]], |d,e.b], ] 2E22

lab.el.d, [ [d.e,b], [d.e,b,e) | 2L

|la,b,c|,d,e].
QED

(3.4) Convention The various compositions of libra operators with libra operators, in view of
(3.2.1), (3.2.2) and (3.3.1), may be greatly simplified: we define

la,b,c,d,e] =||a,b,c],d,e] = |a,|d,c,b], e]. (1)
Each such composition may be converted to a form
la1, az, [as, as, [ -+ |Gn—2,an-1,an] - ]]] (2)
for n a positive odd integer. We shall at times adopt the abbreviation
lay, az, -+, an] (3)

for (2).

(3.5) Example Let A be an affine space over a field F. Then the translations of A form a vector
space V over F. The translation of a point a € A by a vector v € V is denoted by v+ a. To any two distinct
points a,b € A corresponds a unique vector (which we denote by b — a) such that (b — a) +a = b. Then

la,b,c)] =(a—b)+c¢ (Va,b,ce L)

defines a libra operator. We have d = |a, b, ¢| precisely when the points a, b, ¢ and d describe the points of
a parallelogram.'4

(3.6) Example Given two sets X and Y of equal cardinality we shall write J(X,Y") for the set of
all bijections of X onto Y. The set J(X,Y) is a libra under the canonical libra operator

(Vf,9.h €IX,Y)) Lf.g.h)=Ffog  oh. (1)
Any balanced subset of J(X,Y") will be called a libra of operators from X to Y.

The family Mor(9t, M) of (2.8.1) is a balanced subset of J(9T, M), and so is a libra of operators from
M to M.

14 Taken in clockwise, or counter-clockwise order.
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1.4,B,C]

Fig. 13: Affine Libra Operator

(3.7) Theorem Let |,, | be a libra operator on a libra L and let e an element of L. Then the binary
operation = -y = |z, e,y| is a group operation on L, relative to which e is the identity and

(Vz e L) |ex,e] is the inverse of x.

Proof. For x,y,ze L

by (3.2.2
(m y) TR = H_xaevijevzj ¥ LZL’,Q LyveazJJ =T (yz)v
by 321) by (32.1)

x-e=|z,er¢e] le,e,z| =e-x,

v leze) = e e,z e) ] ZEZE ||z ee, | pe) ZEZD g g o) E2D

and

by (3.2.2) by (3.2.1) le, 2, 2] by (3.2.1) .

le,z,e| -z =|le,z,e], e x| le,z, |e, e, z] |

QED

(3.8) Theorem Let G be a group with binary operation -. Define the trinary operator |,, | by
la,b,c]=a-b"t-c
for all a,b,ceG. Then [,, | is a libra operator.
Proof. For r,s,t,u,veG,
|r,s,8) =r-st-s=r=s5-5"'-r=|ss57]
and
L7, s, tlu,v|=@-s7tt)-uto=r-s7t(t-ut-v) = |8 |tu,v]].

QED

(3.9) Definition The libra operator defined in (3.8) will the called the group libra operator.

(3.10) Definition A function f from one libra L; to another libra L, which preserves the libra
operator is called a libra homomorphism. Thus a libra homomorphism f is characterized by

(vaab’CELl) Lf[a]af[b]af[c” :f[LaabaCJ]' (1)

A libra homomorphism which is bijective is a libra isomorphism.

(3.11) Theorem Let G and H be two groups, and let f be a group homomorphism from G to H.
Then f is also a homomorphism of libras.
Proof. For a,b,ce G we have

Lfa), f(b), f(&)] = fla)- f(B) " fle) = fla-b~'-c) = f(la,b,c]).
QED

(3.12) Definitions and Notation A libra L will be called abelian if |a,b,c|=|c,b,a] for all
a,b,ce L. Evidently L is abelian if and only if each of its corresponding groups is abelian.
For a,be L we define the functions
oML >z — |a,x,b] € L, .p|L >z |z,a,b] € L, and ;M\|L >z — |a,b, x| € L.
The functions ,p, and Ay, respectively, are called right translations and left translations, respectively.
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When L is abelian, left translations are right translations, and vice versa, and so in this case we simply call
them translations. When L is abelian, the functions ,m, are called (inner) involutions.

(3.13) Theorem Let |,,| be an abelian libra operation on a set L. Let IT(L) denote the set of
inner involutions on L. Then
(i) each function in IT(L) is its own inverse;
(ii) (Va,beL)(3 felI(L)) f(a)=b;
(ii) (V f,g,hell(L)) fogohell(L).
Proof. For r,s,t,u,v,w,xclL

ws 0, (@) = [ 18], 8] = | Ly, ) B2 [, s, 5] 252 o
oo (r) = |7y s) ZE2
and, if we let a=|r,u,v] and b=|w,t,s],
by (3.3.1) by (3.3.1)

P O $7y © Ty (x) = |7y |ty |0, 2, w], ul, 8] Ly [t w, |2, 0,u]]],s]

|7y |2, v,u], |w,t,s]] = |r,u,v,z,w,t, 8| = ||r,u,v],z, |w,t,s]]| = 7.

It remains only to show that .74 is the only element of IT(L) which sends r to s. Suppose that ;m, is
another such. Then s=|¢,r, u], whence, for each xc L,

by (3.3.1) LT

s (T) = LraanJ = Lrvxa Ltara UJJ LT,t,:L’J,’UJJ =

r, L2, b, 7], ) 223D e p] | 222D

[, x,u] = ¢y (2).
QED

(3.14) Corollary Relative to the trinary operator
(L)< I (L)xII(L) > ((f,9,h) = fogohelI(L),
II(L) is a libra itself.
Proof. This follows from (3.13.i) and (3.13.iii). QED

(3.15) Theorem Let II be a family of bijections of a set S such that
(i) each function in IT is its own inverse;
(ii) (Va,beS)3 fell) f(a)=b;
(iii) (V f,g,hell) fogohell.
Let T={fog: f,gell}. Then
(iv) (Vf,g,h,kell:(3scS) fog(s)=hok(s)) fog=hok;
(v) (Va,beS)(IameT) ampla)=b;
(vi) T'is an abelian group under composition.
Proof. If fog(s)=hok(s), then ho fog(s)=k(s) and so (iii) and (ii) imply that ho fog=k. Thus (iv)
holds.
Let f be the function in IT which leaves a fixed and let g be the one which sends a to b. Then gof (a)=b.
That go f is unique with this property follows from (iv), which proves (v).
For f,g,h,kell we have (fog)o(hok)=(fogoh)ok which is in T by (iii). That fo f is the identity
function ¢ follows from (i). For f,geIl, we have (fog)o(gof)=¢ by (i).'> Thus T is a group.

For f,g,h,kell we have (fogoh)_1=hogof. By (i) and (iii) this implies that
fogoh=hogof.
Consequently
(fog)o(hok)=(fogoh)ok=(hogof)ok=ho(gofok)=ho(kofog)=(hok)o(fog)
which proves (vi). QED
(3.16) Theorem . Let II be a family of bijections of a set C such that

(i) each function in I7 is its own inverse;
(ii) (Va,beC)3 fell) f(a)=b;

15 By 1 we mean the identity function.
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(iii) (V f,g,hell) fogohell.
For all a,b,ceC we denote by ,¢. the function in II which sends a to ¢, and define |a,b,c| = 4. (b).
Then |,, | is an abelian libra operator on C.

Proof. Let a, b and ¢ be generic elements of C. We have
I_avaabJ =a¢pla) =b and I_avbv bJ =a0p(b) =a
by definition, which is just (3.2.1).

Let a, b, ¢, d and e be generic elements of C. Let T be as in (3.15). For all ,yeC, let ,7, be as in
(3.15.v). It follows from (3.15) that

(vxEC) a¢zob¢m[b] =a= (vxec) a¢xob¢m = bTa (1)

and

(Vaxel) soeo0,04(d) =e= (VaxeC) 00,04 =4Te. (2)

Letting u=y7, (c) and v=47.(c), we have

llabycl,dye] = late 0 vde(c), dye) 222 |yra(c),dye) = u,d,e) =

by (3.15.vi) by (1)

uPe © u(bd[u] AU dTe (u) = dTe © bTa[C] bTa © dTe[C) = pTa (V) a®v 0 pPy (U] =

la,b,v) = [a,b, are ()| 22EL [a,b, cpe 0 chalc)] = a,b, e, dye] |

which establishes (3.2.2). QED

(3.17) Example Let P be the real projective plane, let C' be some conic in P and let N be some
line in P. Each point ge N not on C' corresponds to an involution X on C' defined as in the figure below:

1 N

Fig. 14: Involution of a Circle by a Point on a Line.

In the next figure we take three points a, b and ¢ in N and find the element |a,b,c| of N such that

la,b,c]" = doéoé, by picking points x and y on C' at random, and checking that the results are the same for
each.
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Fig. 15: Libra Operator Induced on a Line by a Circle.
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4. Meridians

(4.1) Definition Let M be a set with at least four elements, and define
MO ={[A,B,C,D,E) € MXMXMxMxM: {A, E} #+{B,D}}.

Suppose that a quinary operation

A B
M®) 5(AB,C,D,E] | C |e M
D FE
satisfies, for all (V (A, B,C,D,E),[R,S,T,U,V) e M®)
A Bl |E Bl |B A
C |=| C |=| C |, (1)
D E |D A |E D
AC’B} F ifFe{AE}N{B,D} (2)
= i € ) n ’ y
D E
-AAB- E if{AE}n{B,D}=0 (3)
= i y N ; =Y,
D E]
A B A B
} ¢
D E = E B, (4)
R R
D S D S
and ) )
A B A B
R S
D E| D E A B
(A B R S
T = T . (5)
D Ej U
A B A B]| D E
U v
LD E] D E|
Then we shall say that the quinary operator is a meridian operator and that M, relative to [:-:], is a
meridian.!6
Condition (1) is an abelian or commutative condition, which immediately implies several others: to wit
A Bl |A Dl |B FEl |E Dl |D Al |D FE
C |=| C |=| C |=| C |=| C |=| C_| (6)
D El |B E| |[ADH |BA E Bl |A B
16

meridian. .. 4.[Ellipt. for meridian circle or line.] a. Astr. (More explicitly celestial m.) The great
circle (of the celestial sphere) which passes through the celestial poles and the zenith of any place on the
earth’s surface ([Oxford Eng. Dict.]).
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Condition (3) is reminiscent of (3.2.1) and condition (4) is reminiscent of (3.2.2). Applying the commutative
conditions (1) and (6) to (2), (3) and (4), we obtain as well

E B A E| |A B E B E E A FE
D A D B E C E D B D D FE
and
A B
ACB c
D E|=||A D . (8)
R R | E
S E S FE

If M and N are two meridians and f|M — N satisfies
A B
(VA,B,C,D,Ec M®) f(| C

D El |pp) B

then f is a homomorphism of meridians. Condition (4) just states that each mapping

A B
Ma3X—=| X |eM
D FE

€ M is as

is a homomorphism of meridians. The next theorem shows that each mapping M > X — [DC

well.

To assist in the the proof of that theorem and elsewhere we define, for B and D fixed in M, the auxiliary
trinary operator }f,,? on {x € M: B#£X+#D} by

TA,CE7 =

ACB} .
ol 9)

It follows from (2) and (3) that it is a libra operator — from (1) follows that it is abelian.

(4.2) Theorem Let [:-] be a meridian operator on a set M. For [R,S,T,U,V] € M®) and
B,C,D,EcM

(R B s B
c c
D E|  |D E RS
T B T| B
C = U
D Ej C
U B 'V B] D E
c c
D E D E
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Proof. Upon replacing E by C, (4.1.5) implies

(A B A B
R S
D C D C A B
A B] R ﬂ
T = T
D C| U
A B (A B D C
U 1%
D C D
Applying (4.1.5) once more we have
i A B
A B A B
R S
D C D C
D E)| D E 4 5]
A B] A B
A B R S
T - T
D C U
D E D C
A B A B D E
A B A B
U 1%
D C D C
D E D E

Abbreviating the libra notation f,,JD of (4.1.9) to [,, |, the above becomes

LA, [A,R,C], E] [4,14,5,C], E]

ALAT.CLE] _ A, LA,[RTSVJ,C | E]
A |A.U,C).E) ALAV,C),E| v

which by (3.3.1), (3.2.1) and the fact that [,, | is abelian, reduces to
|T,C.E]| =

R S
T |,C.E|
\U,C, E| \V,C, E| v

which is just the equality we set out to establish, but in libra operator notation. QED

|R,C,E| |S,C, E|

(4.3) Theorem Let [:-:] be a meridian operator on a set M. For (R, B,C, D, S) € M®) and A, E € M
such that {A, E}#{B, D}, we have

Proof. From Theorem (3.3) we have
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A B
R B B B D D B B D D B B D D R B
=1 1ARCI,SEr = (A, LS,C,R1,E; = 1A, L\R,C,S1,E1 = DCS

S
D B D E

QED

(4.4) Definition and Notation Let X be any set and IT a family of self-inverse bijections of X
such that

(VA,B,D,E € X:{A,EYn{B,D} =0)3![225| e m) [328|(4) =FE and [83E|B)y=D; (1)
(VA€ X)(Va,B,7€ IT: a(A) = B(A) =7(4)) aoBoyell; (2)
Va,eIl) aofoaell (3)

In this case we shall say that IT is a meridian family of involutions of the set X.

(4.5) Theorem Let M be a set and let IT be a meridian family of involutions of M. For
(A,B,C,D,E) € M® define

a4 B [[ERoy, it{aByn(B,D} =0,
DCE =94 A, if A=B or A=D;
E, if E=B or E=D.
Then [:-:] is a meridian operator on M.

Proof. Sy For (A,B,C,D,E]e M®) we have

A B L B

o -E e -Elo -]
and

A B B A

=R =[ERo =| ¢ |

% Follows directly from the definition of [:-:].

B9, et B and D be in M, and let [T p={[B0H] : A, FeM and {4, E} N {B,D} = 0}. Let
Mp p={XeM: B#£X#D}. It follows from (4.4) that, if we replace IT in (3.16) by IIp p and C in (3.16)
by Mg p, then (i), (ii) and (iii) of (3.16) are satisfied. By (3.16), the operator

ME.pxMppxMpp 3 [AC E) < |AC E|=[35C) e Mp.p (1)

is a libra operator. Consequently,

(VA,EEMB,D)

A B
A }LA,A,EJME
D E

which is (4.1.3).

% For A,C,E,R,SeMp. p we have
ACB 5 AC’ B
D Bl |29 4,0, E|,R S| 2822 14 ¢ |E,R,S|| 2L . [ERB}.
D S DS
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% From (4.4.3) follows that, for all a, fell, aofo« is in II. Letting az and BE, we

obtain

B [ARB.] B (R) B(R) (V) AVB
o Do = o0 DO O = (O = -
D E| D E
and :
B (ASB] B (S) B(S) (U) AUB
oo = X0 Do OoX — (xO = =
D E D E
whence follows that
[A B} A B
R |0 V
D FE| |D FE
aofloa = . (2)
A B| |A B
S | U
D E||D E
Consequently
'[ARB' 'ASB}'
A B||A B
D E__ __D E [ R }H[ V} A B
A B D E|DE by (2) R S
T = ((T)) aofoaoa(T) = aof(T) = T
1D E| A Bl [A B v
A B A B S | U D E
U \%4 D E||D E
D E D E]

which is (4.1.5). QED
(4.6) Definition and Notation Let [:-:] be a meridian operator for a meridian M. We define

B

A
(VA,B,D, Ee M:{A,E}n{B,D}=0) [Bop|M > X <—>[DXE eM

and for B,C, D, E € M such that E ¢ {B, D}

=7 X B
|M9Xf—>DCEeM.

Functions of the form are called meridian involutions and functions of the form gi% are called

meridian lations. We shall write I7(M) for the family of all meridian involutions and A(M) for the
family of all meridian lations. We write I'(M) for the smallest balanced subset of J(M, M) containing
A(M) U II(M) as a subset.

(4.7) Theorem Let M be a meridian and [:-}] its meridian operator. Then, for M, B,C, D, EcM
such that {B,C} N{D,M} =0 and {B,E}n{D,M} = 0,

[be] = [Boxd o [B25
Proof. For X ¢ M we have
[Beflo[B2Slo = U, UBx.cl BV = Ux,0.BY = [EE| x).
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QED
(4.8) Corollary The smallest balanced subset of J(M, M) containing IT(M) as a subset is I'(M).

(4.9) Theorem Let M be a meridian and [:-] its meridian operator. Then IT(M) is a meridian
family of involutions on M.

Proof. Let ¢ € IT(M). Then zz)= for some A, B, D, Ec M. For X ¢ M we have

B X B
[ A } B by (4.1.3) E - X
D X D E
E E
D E

A B
ABb
o (X)) = X by (4.3)
vesvr-| [
D

which establishes that ¢ is self-inverse.

Let A, B,D,EecM satisfy {A,E} N {B,D}=0. From (4.1.3) and (4.1.7) we know that (A]=E
and [B]—D Suppose that ¢(A)=F and ¢[ ]-D for some other ¢cII(M). Choose R,S,U,VeM

such that ¢= We need to show that ¢= so, without loss of generality, we may suppose that
S¢{A, B,D,E}. As we are dealing with an involution, since ¢(U) =S, it follows that U & {A, B, D, E} as

well. We have

4AE =F and IRAV =[E0]4) = 04) = E.

By (3.13.ii) it follows that {A,X,ES={R,X, VY for all XeM. This just means that ¢=[Rc0|=[355] So it
will suffice in proving (4.4.1) to show that =. We have

BBDY =D and 188U =[E55B) = ¢(B) =D
and so by (3.13.ii) it follows that LB X, Di= LS X, US for all X e M. This means that E SHU It follows

that gb—, and so (4.4.1) is verified.

Let A, a, §, and «y be as in the hypothesis to (4.4.2). Let Bc M be distinct from A. We define D = «(A4),
E=a«a(B), M =53(B), and N =+(B). By (4.4.1) we know that

a=[525] p=[52Y] and =
For X e M we have
B A
B A A A D A A D D A D
Boy(X) = [DXN} = LB, LB,X,N?,MJ =1L \B,B,X1,NNMy = LX,N,M)
D M

whence follows that

aofory(x) =[RoBltx.NMT) = 1B, L x,NM BT = 1 B.X, INMES.
If CE?N,M,EJD, this just means that ao So ’y=, whence follows the conclusion of (4.4.2).

Let a and 8 be in II(M). Then there exist A, B, D, E, R, S, U,V e M such that a=[30F] and =
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By (4.1.5), for X e M,

A B A B
R S
A Bl |IIDE DFE
R S A _B]
A«FE R«
ols X) = X = X
BoD -<—>U( ) [U ‘J [D 5
D E [A B} (A B}
U 1%
D E D Ej
A B A B A B (A B
Setting M=| R || N=| S || P= U |, Q=| V |and Y=a(X) we obtain
D FE D FE D FE D FE
(M N
@o(X) =| Y, — [VoBloa(x).

It follows that aoﬂoa=, which establishes (4.4.3). QED

(4.10) Theorem Let ~ be a meridian equivalence relation for a set M. For (4, B,C, D, E) in
M) such that {A, EYA{B, D} let

[ACB} {[ggm it {A,E}N{B,D} =0, [pc]el?(M), [pc](A) = E, and |5 &](B)=D;
=4 A

N if Ae{B, D};

E if Ec{B,D}

(where [g g] is as in Theorem (2.46)). Then [:-1] is a meridian operator, relative to which IT(M)=I2(M)
and I'(M) =I(M, ~).

Proof. Let IT = I'>(M) in Theorem (4.5). Then condition (4.4.1) holds by the definition of I*(M),
(4.4.2) holds by Theorem (2.45), and (4.4.3) holds since (M, ~) is a group!”. It follows from Theorem (4.5)
that [:-:] is a meridian operator on M.

That IT(M)=I%(M) follows from Theorem (4.9).
From (2.33) follows that I'(M, ~) C I'(M]). Thus (2.15) implies that I'(M)=I(M,~). QED

(4.11) Theorem Suppose that we have a meridian operator [:-;] on a set M with at least four
elements. Let O, 1, and oo be three distinct elements of M. For XY, R, Sc M, none of which equals oo,
define

X oo S 0
X+Y[ 0 }, andR-S[ 1 } (1)
o Y

s R|

Then F = {X eM : xz#oo}, relative to these two binary operators, is a field with additive identity 0 and

multiplicative identity 1.
For (R,S,U,V)eF with R-V#£S - U, let

R S _ g?gi‘s/ if XeF;
wxem (g p)w={e" 370 ®
where the value in either case is co when the denominator is 0. Define
R S .
F(Oj,oo)(M) E{(U V): (R,S,U,V)eF with R-V#£S - U}. (3)

17 ¢f. (2.15).
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Then T0.1 00 (M) = T(M). (4)

Proof. Since T,,,7 is an abelian libra operator, it follows from Theorem (3.7) that + is an abelian
group operator with identity 0. Since ©,,,7 is an abelian libra operator, it follows from Theorem (3.7) that
- is an abelian group operator with identity 1. It remains to show the distributive law. We shall adopt the
common practice of suppressing the “dot” in products.

For A, B,C e M such that B#o0o#£C and co£A#0

B 0] '001 0]

B o 00 A__ oo A
0 00 AB ~

A(B+O):Lo 0} ACEN 1 U1 17 = AB + AC.
1 loo A oo AC
o A 0o 0] 'c] 0
loo Al [oo A
Thus F is a field.
Our next task is to show that F(O,],oo) (M) C I'(M). (5)

A function of the form F 3 X — AX+B € F, for A, Be F is called an affine function — this function is the

restriction to F of <‘81 ]]3) Consequently we shall call functions of the type ]0% 5 affine elements
fIr We shall call the functi 0 1 the i i frI S RS t affi
of 10,1 00)- We shall call the function (1 e inversion of I 1 . Suppose { ., ;| is not affine.

Then we may choose D e F' such that DU =R, after which we choose A€ F' such that S=DV + A. We now

evidently have
R S\ (A D R 0 1 o Uu v
U v) \0 1 1 0 o 1/

Thus, if we can show that affine elements of F(O 1.00) and the inversion are in I'(M), we will have demon-
strated (5). The equality

N

0 1 0 00,0 00 1

oo S

shows that affine functions are in I'(M). To show that the inversion is in I'(M), it will suffice to show that
it equals . By definition, % is the unique element whose product with X is 1. But

X | 0

1 0

X -850 (x) :X-[ X }: [1 Xo} —ooxn 1 xa% o xiax1%on,

o

oo 1

Thus %= o1 (X), and so (5) holds.

To complete the proof of (4), it will suffice to show the opposite inclusion to that in (5). In view of
(4.8), that will follow once we have shown that each element of IT(M) is in F(O 1,00) (M). We consider then

for generic A, B,C, De M such that {4, B} N{C, D} = (. We consider several cases serially:
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Case: A=D = oo or B=C' = co. Without loss of generality we presume A=D = oco. We have
— + — + — +
( ) B]C> (00) = o0 and ( N C) (B)= -B+B+C=C = ( N C]B> —[E22]

Case: #{Xec{A,B,C,D}: X = 0o} = 1. Without loss of generality we presume that A=o0o. We have

D CB-CD-DB D CB-CD-DB DB+CB-CD-DB
(1 g )[oo]—Dand(1 D >[B]_ = —C—
D CB-CD-DB
(p cr-cpom) [
Case: o {A, B,C,D}. We have
AD-BC  (A-B-C+D)AD+(BC-AD)(A+ D) B
(A-B-C+D BC-AD (4) =D and
AD-BC  (A-B-C+D)AD+(BC-AD)(A+D) B
<A—B—C+D BC-AD B =C =
AD-BC  (A-B-C+D)AD+(BC-AD)(A+D)\ _[i5D
(A-B-C+D BC-AD N '
It follows that (4) holds. QED
(4.12) Theorem Let M be a meridian (relative to a meridian operator [:-:] with at least four

elements. Let 0,1,00€M be distinct, and we shall adopt the notation of Theorem (4.11). The cross-ratio
relative to (0,1, 00) is defined by (VA, B,C,De M:#{A,B,C,D} > 2)
(C-4A)(D-B)

Ay Hfoo¢{A B ,C D} C#B and D#A;
00, if C=B or D=A;
0, ifC=A=ccorD=DB=o;
A B ), ifC=D=ccor B=A=o;
[C D]] 010 | B if A= ooand oo {B,C, D} and C£B; 1)
. &4, if B = oo and co{A,C, D} and D#A,;
b=5 if C' = oo and coZ{A, B, D} and D#A;
&=, if D = oo and co¢{A, B,C} and C#£B.
Define ~ on M3, by
T to ta 150 sa
(Fosety) trse L- t<>:|](0,1,oo) - [[54- 50]] 0.1,00) ®
Then
(i) ~isa merldlan equivalence relation for M;
(i) (M) =T(M,~);

(iii) IT(M F2(M)
(iv) (VA B CeM distinct)(V R, S, T e M distinct) (' ac ['(M)) «(A)=R, a(B)=S and «(C) =T}
(v) ~ is independent of the choice of 0,1, 00 M distinct.
Proof. That Postulate I (2.3) holds is immediate from the definition. It also follows from the definition
of ~ that each element X e is of the form

Ry = {te MY |[f’ “}] - R} (3)
& 0,1,00)
for some Re M. Solving the equation in (1) for t., we obtain
to - (ta —ta) te-(tg —t
%:<®étu“ oétw@)my
It follows that
Mor(IMt, M) = {M > Ryy — a(R) e M: ac'(M)}. (5)
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From (5)) and (2.8.1) follows that

IM,~)={aop: a,fecI' (M)} =T'(M)
which establishes (ii), as well as Postulate II (2.7) and Postulate III (2.10). That (iii) holds is now evident
from (ii) and the definitions of I7(M) and I*(M).

That (iv) holds follows from the fundamental theorem (2.12). This fundamental theorem (iv)
along with Postulate III implies (v).

Let 7€ (M) be a translation in the sense of (2.26). Let a be any element of (M) which agrees with

7 at its fixed point, and at some other point. In view of (v) we can choose 0, 1 and oo such that
a(oo) = 7(00) =00, «(0) =7(0) =1. (6)
R S

Choose R, S,T,U c M such that 7= (T U

). That 7(oo) =co implies that T=0 so that we may, and shall
presume that U=1. Thus

70)=R-0+S=1= §=1.

The equation RX + 1 = X has the solution R‘—_Il if R#1. But 7, being a translation, fixes only co. Thus R

must be 1:
(11
=10 1)

The transformation « being an involution, must be of the form ( B ) for A, B,C' e M. We have

Cc -A
oo =a(o) = B=0

1=a(0) = (‘é _BA> (0) = %.

and

Thus we may take A = —1 and B = 1. We have
(TN (-1 1Y _ (1 2
o= o o 1)7 o 1
which last is evidently an involution. This, with (2.38) establishes the validity of Postulate IV (2.39). QED

(4.13) Theorem Let (F,+,-) be a field with additive identity 0 and multiplicative identity 1. Let
oo any point not in F and let M={co} UF. For (R, S,U,V)eF with RV#SU, let

R S R-X+4+S if XeF:
VXeM X) = XtV ’ 1
(v XeM) (U V>[] {5 if 2=c0 ®
where the value in either case is oo when the denominator is 0. Let

(M) = {(g 5) . R+V = 0 and RVASUY.
Then I7(M) is a meridian family of involutions on M.
Proof. For R, S,UeM such that SU 4+ R2+#£0

R S\ _(R SY\_(R+SU RS—RS\_ (10
U -R U -R) \UR-RU US+R?>)~\0 1

which shows the mapping is its own inverse.

Let A, B, D and FE be as in the hypothesis to (4.4.1). For R, S,U, X,Y e M such that SU + R?+£0, the

equation <g _SR) (X) =Y resolves into

U=0 if X=00=Y;
R=UY if X = oo and YeF;
UXY=R(X+Y)+S if X,YeF.

Without loss of generality we need consider just the following cases: A=FE=co with B, De F; A=oco=DB with
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D,EcF;and A, B, D, EcF. The solution is where
R=1, U=0, S=— (B+ D) if A= F = oo with B, De F;
R=E, U=1, S=BD — E(B + D) if A= oo with B, D, EcF;
R=AE—-BD,U=A+FE—-B—-D, S=AU-R(A+E) it A/B,D,EcF.
Furthermore these solutions are unique up to a constant factor, which would not change the value of .
This establishes (4.4.1).
Let A, «, 8, and v be as in the hypothesis to (4.4.2), and let B = a(A). From (4.4.1) there exists
deIl(M) such that §(A)=1, 6(1)=A, 6(—1)=B, and §(B)= —1. Then doaod, o Sod, and doyod all

interchange 1 with —1. Direct calculation shows that there exist M, N, O, S € F such that a= (% _§4>,

N S (0] S . .
B= (—S —N)’ and B= (—S —O>' Direct calculation also shows
o fony = MNO(N — M — 0)5? S(MN +ON — MO) - S?
GOPCT= N\ _S(MN +ON - MO)+ 83  —MNO(N — M —O)

which is in [I(L). This establishes (4.4.2).
Let o and 8 be as in the (4.4.3). Choose A, B, D, R, S,U ¢ F such that

—-A B _ —-R S _
( D A) =« and ( U R) =4.
We have

cgoa_ (A BY, (=R SY,(-A B\ _ (-4 BY ( RA+SD —RB+SA)_
“eree=\pn A U R D A) D 4 ~UA+RD UB+RA )~
—A2R— ADS — ABU + BDR ABR — A?S + B?U + ABR
ADR+ D?S —UA%* + ARD A?2R+ ADS + ABU — BDR )~
This last is in I7(L), and so (4.4.3) holds. QED

(4.14) Remarks The circle of theorems (4.5), (4.9), (4.10), (4.11), (4.12) and (4.13) show that a
meridian as derived from a quadric equivalence relation, a meridian operator, a meridian family of involutions,
or from a field, is in each case essentially the same object. So far as we know, the equivalence of the latter
two characterizations is due to J. Tits ([Tits]).

(4.15) Notation Let M be a meridian. We shall denote by I'T' (M) the set of (meridian) translations
in I'(M):
I'T(M) = {ael'(M): « has exactly one fixed point}.

(4.16) Theorem Let M be a meridian relative to a meridian operator. Then

X B
I'TM)={M>3X < [BCE € M: B,C, EeM distinct}.

Proof. We first take three distinct elements from M, denote them by oo, 0, and 1, and define operators
+ and - as in (4.11.1). We have

X o0 00 00
(VXeF) O1 =X+1 and [ 0 }:oo.
oo

oo 1

X oo
0

o0

Evidently this function M 3 X — € M is a translation.

Now let Te I'(M) be a translation. We shall denote its fixed point by co. Let 0 be any other point
and denote 7(0) by 1. Adopting + and - to 0, 1, and oo, we define )M > X — X +1 € M for X F and
0(c0) = co. Evidently 6 is a translation and agrees with 7 at both co and 0. It follows from Theorem (2.38.v)
that 7=60. QED
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(4.17) Definition and Notation . Let M be a meridian relative to a meridian operator [:-:]. We
define the set of meridian dilations by

X B
TAM)={M>3X < [DCE € M: B,C,D, Ec M distinct}.

(4.18) Theorem Let M be a meridian relative to a meridian operator [:-:]. Then a necessary and
sufficient condition for e I'(M) to be a meridian dilation is for it to have two distinct fixed points.

Proof. If 0 is a dilation, then it is of the form M > X — € M. From (4.1.2) follows that ¢ fixes

X B
C
D FE

both B and D.
Suppose now that ¢ fixes two distinct points co and 0 in M. Let 1 any other point of M and define
operators + and - as in Theorem (4.11.1). Let E = §(1). We have

1702 a0 = 5(s0
e

1 o

1 |=E=0s(1).
0F

0
1 |[=0=46(0) and
0 F

€ M equals ¢ at three distinct points and, by the fundamental theorem,

X oo
The function M > X | 1
0 F

must be 6. QED

(4.19) Definition and Notation Let M be a meridian. An element of I'(M) which is neither a
translation nor a dilation will be called a meridian rotation. We denote the set of all rotations as follows:
T'R(M) ={pel'(M): p has no fixed points.}

(4.20) Theorem Let M be a meridian and let 6 be an element of I'(M). Then
(i) 0 is an involution<= (3 A, Be M distinct) 60(A)=B and 0(B)=A4;
(ii) 0 is a translation<=> (I 7,0 II(M) N T'A(M) with a single common fixed point) 6=7 o c;
(ili) 0 is a dilation<= ¢ I'T (M) and either 6 is an involution or

(Frell(M)N,0cIl(M) agreeing on two points) 6@=mwoo;
(iv) 0 is a rotation<=> either 6 is an involution with no fixed point or
FrelI( M) NTAM),cell(M) agreeing at no point) @=roo;
(v) TIM)=II(M) U {moo: mclI(M) NTAM),ccll(M)}.
Proof. % : Trivial.

& . This follows from (2.30).

% : If 6 is a translation with fixed point co, 0 is another point, and 1=60(0), then 0= (é } ) where

+ and - are as in (4.11.1). Since <1 _]> and (1 01) are in II(M) N I'A(M) and both fix oo, and

0 1 0
mce (F 1) =(1 1) (1 O have established the = part of (ii)
since O 1 = 0 _] O _1 , We nhave establisne € part or (11).
&: Trivial.

U9, Since 0 is a dilation, it has two fixed points by (4.18), and so cannot be a translation. We shall

presume that 6 is not an involution. We shall denote the two fixed points of by 0 and oo, write 1 for a

third point, and define + and - as in (4.11.1). If R=60(1) then 0= (]g (])) and so

R 0 0 1 0 1
00‘(0 1)(1 O)O(R o>'
Both factors are in I1(M) and <(1) é), which fixes both 1 and —1, is in T’A(M).
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& : Let =moo for m,0ecII(M) and suppose that 6 is not a translation and that 7 and o agree on
exactly two points A and B. If 7(A)=A and 7 (B) =B then, by (2.34), 7 would equal o and so m would be
the identity mapping, which is absurd. If 7(A)=A then 6 would be a translation (with fixed point A) and
so B=m(A)=0(A) is not A. Evidently 6(A)=A and 6(B)=B. Hence 0 is a dilation.

% : We presume that 0 is not an involution. Then there exist co, 1,0e M distinct such that 6 (oco) =1
and 0(1)=0. Let M=6(0). Direct calculation yields

0 -M M\ (M -M . 0 1
\-M 1) \1 -M 1 0/
Both factors are in I7(M) and <(1) é), which fixes both 1 and —1, is in I’A(M).

& : LetO=moo for m,oc lI(M), me 'A(M) and suppose that m and o agree on no point. Then woo
can have no fixed point, whence 6 is a rotation. This establishes the <= part of (iv).

Part (v) now follows from (ii), (iii), and (iv). QED
(4.21) Example We return to the example (2.42), which was a meridian M consisting of four
elements A, B, C' and D which we shall picture as four points arranged as the vertices of a square in a plane:
A B

Cc D.

It follows from the fundamental theorem that we may regard I'(M) as the group of permutations of these
four points. There are of course 24 of them, and we shall denote them with arrows to show the orbits of the
permutations.'® We have

OMNAM) ={ N , & , ¢ ; $, : }
©
IOM)NRM) ={ , i X}
<>
TM)={ |, < Tt o i T2 ML Z B DY | Nt}
RM)ynIXM)={+ +,+ t, X | K ,1+xX1t, X}
A C
(4.22) Example Let M be the real projective line. Then DEB is just u(A, B,C, D, E) of Figure

(1) in Section (1).

A C
(4.23) Example Let M be the circle. Then DEB is just (A, B,C, D, E) of Figure (4) in Section
(1).
(4.24) Definition Let M be a meridian relative to a meridian operator [:-:]. Any bijection from
M to M which preserves [:-;] is called an automorphism of M.

18 If a point is fixed, we shall picture the point without arrows.
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(4.25) Theorem Let M be a meridian relative to a meridian operator [:::]. Let 0, 1 and oo be
three distinct points of M and define F and operators + and - as in Theorem (4.11). Let ¢ be a field
automorphism of F, and let o be the bijection of M which fixes co and equals ¢ on F. Then « is a meridian
automorphism

Proof. For A, B,C, D, EcF such that {A, E}#{B, D} we have
( AE-BD ABD—i—BDE-ABE-ADE) A)
A+FE-B-D BD-AE -

A’E-ABD+ABD+BDE-ABE-ADE  E(A*+BD-AB-AD)

= =F
A2+ AE-AB-AD-AE+BD A2+BD-AB-AD
and
AE-BD ABD+BDE-ABE-ADE (B) = ABE-B?D+ABD+BDE-ABE-ADE B
A+E-B-D BD-AE o AB+BE-B?-BD-AE+BD N

D(-B*+AB+BE- AE)
-B2+AB+BE-AE

=D.

AE-BD  ABD+BDE-ABE-ADE
From (4.11) we know that A-E+B-D BD- AE

that it is in or II(M) as well. Thus we have

> is in or I'(M), whence follows

AE-BD  ABD+BDE-ABE-ADE\ [icE (1)
A-E+B-D BD- AE TlBep '
Since ¢ is a field automorphism, we evidently have
AFE-BD ABD+BDE-ABE-ADE 1 .
(VXe7) aO(A-EJrB-D BD- AE >OO‘ X) =

o

(AE-BD)- o' (X)+ ABD+ BDE- ABE- ADE] .
(A-E+B-D)-a-'(X)+BD- AE -

(a(A)a(E)-a(B)a(D))X+a(A)a(B)a(D)+a(B)a(D)a(E)-a(A)a(B)a(E)-a(A)a(D)a(FE)
(a(A)-a(E)+a(B)-a(D))X+a(B)a(D)-a(A)a(E)

a(A)a(E)-a(B)a(D) a(A)a(B)a(D)+a(B)a(D)a(E)-a(A)a
a(A)-a(E)+a(B)-a(D) a(B)a(D)-a(A)a(FE)

Computing as above we see that

(AE-BD ABD—i—BDE-ABE-ADE) 1 |e(a)ea(E)
« O o = )

A-E+B-D BD-AFE

which implies

05| _ [o(4)ea(E)
@ O|BeD| = a(B)(—)a(D) o Q.

Evaluating both sides of the above at C' and rewriting in meridian operator notation, we have

R=a(A),
A Bl [RS S=a(B),
al C =| T |, where { T=«(C),
DA U=a(D),
V=a(E).
Thus « is a meridian automorphism. QED
(4.26) Theorem Let M be a meridian relative to a meridian operator [:-:] and let « be a meridian

automorphism. Let 0, 1 and oo be three distinct points of M and define F and operators + and - as in
Theorem (4.11). Let 0'=a(0), 1"'=a(1) and co’=a(o0), and let F be the corresponding field with operators
4" and -". Then the restriction of « to F is an isomorphism of fields from F onto F".
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Proof. For A, Be F we shall write R for a(A4), S for a(B), T for a(0), U for (o) and V for a(1). We
have

R U] (A
a(A)+aB)=| T |=ao| 0 |=a(A+ B)
U S| lco B
and ) . i
ST B 0
a(A)-a(B)=| V |=ao| 1 |=alA-B).
U R| oo A
QED

40



5. Libras: Part 11

(5.1) Definitions and Notation Let |,, | be a libra operation on a set L. Recall that a subset B

of L is balanced if |z,y, 2] € B whenever z,y, z€ B. If B is a balanced subset of L, then, for all r,sc L
|r,s,B] ={|r,s,b]: beB}, |r,B,s] ={|r,b,s]: beB} and |B,r s|]={|brs|: beB} (1)
are also balanced. We call the sets |r, s, B] left translates of B and the sets | B, r, s| right translates of

B. We write
1Bl (2)

for the family of left translates of B and

[lisvlf

3)

for the family of right translates of B, respectively. Sets of the form |r, B, s| are called translates of B,
and the family of all such will be denoted by
B]. (4)

The elements of ‘

will be referred to as linear translates of B, and the other elements of as skew translates of B.
(5.2) Theorem Let B be a balanced subset of L. Then
() (VbeB) B = |b,B,bj;

(ii) 181U B c [B];

(iii) a translate of a translate of B is again a translate of B.
Proof. That |b, B,b|CB for be B is trivial. Let z,be B. Since B is balanced, we have |b, z,b| € B. Then

B|=1B1U

(isol]

(5)

o G20 g p o) E2D 1y p o) b,b) ZZEED 1p b, 2,b],b] € |b, B, b,
which implies that B C |b, B, b]. Hence (i) holds.
For r,seL and be B,
rys, B) 2 (1 s, b, B,b) | 22222 |1 5.6, B,b)]
and )
1B, r,s] 22 ||b,B,b],r,s] 2E22 14 B b, s]]
which implies (ii).
For r,s,t,uc L we have, for any be B
by (3.2.2) by (3.3.1)

|7, [t, B,ul, s] 2A0] |7, [t, b, B,b],ul,s] |, [, b, B],b,ul,s]
[|7,u,b],t,b,B],s]|||r,u,b|,B,|bt,s||,

whence (iii). QED

(5.3) Definitions By a homogeneous aggregate of translates, or more simply, an aggregate,
we shall mean a family 7 of balanced sets, each one of which is a translate of each other one, and each
translate of a member of T again a member of 7. It follows from Theorem (3.2) that the translates of
any balanced set comprise an aggregate, and that an aggregate is the family of translates of any one of its
members:

(VT an aggregate)(VTeT) =T. (1)

The family of all singletons is evidently a homogeneous aggregate of translates. We shall call it the
point aggregate of L.

(5.4) Theorem Let 7 be a aggregate and let B, C'eT. Then
(i) CelBll < BellCll;

(i) CEE — BGQ.
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Proof. If CcllBll then C = |r,s, B| for r,sc L. Then

15,7,C] = |s,7, [r,5, B | 222 | 5 r,7),5,

| by 321 p
which show that B ellCl. The reverse implication follows by interchanging the roles of B and C' in the above

B Ly 821) |s,s, B

Hence (i) holds.
That (ii) holds follows from an analogous argument. QED

(5.5) Definition We say that a balanced set B is normall¥ if each right translate of B is also a left

translate of B.
(5.6) Lemma We have the following for any libra L:

Va,bceL)(Ixzel) a=|z,b,cl;

(i) (

(i) (Va,b,ceL)3zel) a=|b,z,c|;

(iii) (Va,b,ce L)(3zeLl) a=|b,c,x];

(iv) (¥ BCL balanced)(Vb,yc L:beB) |b,B,y| = |B,b,y];
Ly, b, B] = |y, B,b].

(v) (VBCL balanced)(Vb,yc L:bc B)
9. . 1f ze L is such that a= |z, b, ¢|, then
la,c,b] = [|a,b, ¢, c,b] B2 12 b ¢, c,b]| 2EZD
so z is unique. That z=|a, ¢, b| satisfies a=|z,b,c] is a direct computation
% : If ze L is such that a=|b,z,c|, then

lc,a,b] = |¢, |b,x,c],b]
so z is unique. That z=|c, a, b| satisfies a=|b, x,c| is a direct computation

Proof.

by (3.3.1) e, e z],b,b)] by (3:2.1)

g : Follows by an argument analogous to that showing (i)

% : For ce B we have
b 3.2.1 b 3.3.1
[beoy) ZE20 15 0,5, ), y) 2222 |5 c,b),b,y) e | B, b,y

and
b 3.2.1 b 3.3.1
lesbyy) 282016 b e, b, y) 2E2D 1y 1boc,b),y) e[, B,y)

which shows (iv).
& The proof is analogous to that of (iv). QED
(5.7) Theorem Let B be a balanced subset of a libra L and let 7 be the smallest aggregate

containing B. Then the followings statements are pairwise equivalent

(i) B is normal;
(ii) each left translate of B is a right translate of B;

(iii) T is a partltlon of L;

(iv) |

(v) B=

(vi) (VAe ) A is normal.

Proof. Suppose that (i) holds. Let z,yc L and be B. By (i) there exist 7, sc L such that
[1b,y,x],b,B| = |B,r,s]. (1)

by (3.3.1)

By (2..1)) we have
b, |B,z,y],b, | 23D 16,y 2], B,b] 2E2Z) |y 2, b, B,b), b
1By, @), b, | B, b, b)) 2LC2D |1y, 2], b, B] 228 | By s 2)
by (2)

and so by (3.2.1) by (3.3.1)
|B,z,y| ===== [|b,b, | B,z,y]],b,b] === |b, |b,|B,z,y],b],b]

19 This term is carried over from group theory and chosen here for historical rather than descriptive reasons

A balanced subset is “normal” if it is a level set of a libra homomorphism
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by (3.3.1) by (5.2.1) 3.3.1)

b, | B, 7, 5], b] b, s,7],B,b] b, s, 7], b, B,b],b| B3

by (3.2.1)

LLb’S’TJ7b’ Lb7b’BJJ |_Lb7s7r7j7b’BJ'

It follows that (ii) holds.

Suppose that (ii) holds. Assume that (iii) does not hold. Then there exist A, CcT such that A#C and
ANC#D. In view of (3.3.1) we can choose u,ve L such that B = |u, A,v|. Let D=|u,C,v|. Then B#D and
BND#(. Choose b from BND and choose de D such that d¢ B. Since D=|d, b, B] is a left translate of B,
(ii) implies that there exist r,t€ L such that D=|B,r,¢]. Thus

deD = |B,r,t] 2820 1B |r0,0],¢] 2E3D | B b [b,r,t|] and beD = | B, b, [b,r,t]].
By (5.6.1) we can choose m,ne B such that d = |m,b, |b,r,t]| and b = |n,b, |b,r,t]|. We have

6,7, t] 22D 1 5,0, |7, b0, t) ZEED b0 n],b, (b, t] ]| ZE22 b0, [n,b, (b7, t]]|=[b,n,b]
which yields
d=|m,b, |b,rt]| =|m,b,|bn,bl| = deB.

Since this is absurd, it follows that (iii) holds.

Suppose that (iii) holds. Since IBI is a sub-family of 7 and Bl is also a partition, they must be the
same partition of L. Hence (iv) holds.

Now suppose that (iv) holds. Let A be in 7. Let b be in B. By (iv) there exist z,ye L such that
|b, A, b| = |x,y, B|. We have

ADLCED 1y h Al b,b)
by (5.6.iv)

by (3.3.1) by (3.3.1)

|b, |b, A,b],b| = |b, |z, y, B],b]
H_b,B,yJ,.’E,bJ |_|_B7b’yJ7x7bJ by 3.3.1) \_B7b7 Lyﬂc,bJJ by (3.2.1)

by (3.3.1 by (5.2.1) and by (5.6.iv
Lb,b, B, b, ly,z,b] | 2222 1b b, B, b, |y, z,b] | 222D 2nd W O8I |3 |y 2 b)),

This implies (v).

Now suppose that (v) holds. Let A be in 7. Then by (v) A is a right translate of B, whence follows
that B is a right translate of A. Suppose we have shown that each right translate of A is left translate of B.
Then A itself will be a left translate of B, whence follows that B will be a left translate of A — and so each
right translate of A, being a left translate of B, will be also a left translate of B. Thus, to show that A is
normal, it will suffice to show that, for each z,yec L, | A, x,y] is a left translate of B. To this end we let b be
in B and apply (v) to find r, se L such that | |b,y,z]|, A,b] = | B,r,s|. We have by (2.i)

Ay 221 b | Ay )b, b) B2 | (b A,y ) b) 22
b, [0,y 2], A, bJ,b] = [b, | B,r,s),b) 2L by (5.6.v)

which implies (vi).
That (vi) implies (i) is trivial. QED

L1b,s,r],B,b] L1b,s,r], b, B]

(5.8) Definition We say that a homogeneous aggregate of balanced sets is normal provided all of
its elements are normal balanced sets. By Theorem (5.7) an aggregate is normal if and only if any one of its
elements is normal.

(5.9) Definitions and Notation A libra homomorphism of L into a libra of operators?® from a
set X to another set Y is called a representation of L on X xY.2!. Here X and Y are referred to as the
representation spaces. If ¢ is the representation (homomorphism) and = an element of the representation
space X, it will be customary herein to write the value of ¢ at a by ¢,.

If a representation is injective, we say that it is faithful. If for all z€ X and y €Y there exists ac L such
that ¢, (r) = y, we shall say that the representation is homogeneous.
For a representation ¢ of a libra L on X xY and [z,y]e X XY, we shall use the notation

Ly = {ael: dul) = ). (1)

20 Cf. (3.6).
2L If X =Y, the representation is said to be on X
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and

T(bz{[mgy]: xeX,yeY}. (2)

(5.10) Theorem Let ¢ be a homogeneous representation of a libra L on X xY. Then T<Z> is an
aggregate of balanced sets.
Furthermore, the following statements are pairwise equivalent:
(i) T is normal;
(11) (Va,beL) ¢a = ¢b — (VTEX) (ba[m] = ¢b[T]7
(iii) (Va,bel) ¢q=¢p < (FreX) ¢do(x) = ¢p(2).
Proof. Let T be in T¢. Then there exist z€ X and yeY for which T'=[x i y]. Let a,beL. Let ue X
satisfy ¢ (u) =y. Then

(VCET) ¢\_a,o,bj [u] ¢

$a © ¢cil (06 (1)) = o (7) = \_aa T, bJ = [u = ¢a(117]]' (1)

by (3.6.1)

Now let S be any other element of T, so that there exist we X, z€Y such that S = [w ¢ z]. Choose de L
such that ¢4 (w) = y and choose ec L such that ¢, (z) = z. Then, by replacing T in equation (1) with S,
replacing a with d, and replacing b with e, we obtain

1d,Se] =[x Ly =T

This proves that T is an aggregate.

(i)=(ii): Let (i) hold. Let a,be L and x€ X and suppose that ¢, (x) = ¢p(x). Let ¢ be in X. Since
¢ ¢

T is normal, there exist r,sc L such that |r,s,[t = ¢q(t)]] = [¢ = ¢a(x)]. Since a is in [z 2 ¢a ()], there
exists celt ¢ ¢ (t)] such that a = |r,s,c]. We have

Ga(t) = Blrac) (1) = 6r 0 @5 (de(t)) = br 0 @5 (Pal(t)). 2)
Since b is in [x ¢ ¢a ()], there exists de(t ¢ @ (t)] such that b=|r,s,d|. We have

00 (1) = 8|, 4 (1) = 6067 (Bal1)) = 67 0 6,7 (60 (1) 2L 94 (1).

Thus (ii) holds.

(ii)==>(iii): Trivial.

(ili)==(ii): Suppose that (iii) holds, that m is in L and that ¢ is any element of X. Since ¢ is
homogeneous, there exists we L such that ¢, () = ¢y, (t). If @ and b in L satisfy ¢, () = ¢p(t), then

Plamuw] (1) = b0 © bm ™ (G0 () = ¢a © b (¢ (1)) = ¢a(t) =
& (t) = 6b 0 o™ (D (1)) = Bp© b~ (Pw (%)) = Plpmw) (7)
which by (iii) implies ¢|q,m,uw)| =¢Lb,m,
ba = LLba: dms Gw], Pw, dm] = [Pla,mw)> Pw, dm] =
L6 mse ] @wr O] = LU0t Sms Bl b 6] = 60,

wJ' Thus

which proves (ii).

(il)==(i): Let B be a generic element of 7'¢. Then there exist x€X and yeY such that B=[z ¢ Y.

Let R be any right translate of B. Then there exist g,r€ L such that R=|B,r, ¢|. Since all the elements of
B agree at x, it follows from (ii) that they agree on qbroqbq*l (z) as well — let ueY be this common value
and let v=¢, ! (u). Since ¢ is a homogeneous representation, there exists se L such that ¢(s),=y. For all
ac B we have

(bus,r,aj,r,qj () =o(s) o <//)r71 0 (g O d)ril © (bq[T] =¢(s) o ¢r71 (u) =y.

It now follows from (ii) that |[s,r, B|, 7 q]=[z ¢ y], whence follows that ||s,r, B],r,q] = B. We have
lr,s,B] = |r,s, [|s,r, B],r,q]) = |8, s, 7, B],r,q) = [Lr,s,s],m, B],r,q) = [, B],mq) = | B,7,q].
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It follows that B is normal. QED

(5.11) Definition We shall say that a homogeneous representation is normal if any of the conditions
of Theorem (5.10) hold.

(5.12) Theorem Let ¢ be a normal homogeneous representation of a libra L on X xY". Let r,s,teY.
Suppose z,me X and a,b, c,u, v, we L satisfy
r=¢q(x) = gulm), s =dp(z) = ¢p(m), and t = ¢c(z) = ¢u (). (1)
Then
Plap,e) (T) = Pluv,w) (M) (2)

Proof. Let d be any element of L and choose ec L such that ¢ () =¢4(m). Evidently
Olaset) (M) =7 = B (1), Blpey () = 5 = 6, (m), and Gle,e,q () = 1 = s ().
Since ¢ is normal, it follows from (5.10.ii) that Dla,e,d) = Pus Dlbye,d] =Pvs a0d D¢ ¢ q) = Pw. Thus
Pluv,w) (M) = @ |a,e,d],[be,d),Lce,d)| (M) =
Dla,e,dd,ebie,e,d) (M) = Plapcedl (M) = Plap,e) (T)
which proves equation (2). QED

(5.13) Notation Let ¢ be a normal homogeneous representation of a libra L on X xY. For r,s,teY
we define
\_I“, SJL/JQS = ¢La,b,cj () (VI6X7 a,bceL:r = ¢q(x), s = ¢p(z), and t = ¢c[7])

In view of Theorem (5.12), |, ’J<f> is a well-defined libra operation on Y.

(5.14) Theorem Let ¢ be a faithful normal homogeneous representation of L on X xY. Then, for

each [x,y] e X xY, the set [z ﬁ y] is a singleton. In particular
(VxeX) L3a< ¢.(x) €Y is a bijection. (1)

Proof. Let x be in X and y in V. Assume that there exist distinct elements a and b of [z i y]. Since
¢ is faithful there exists we X such that ¢, (w)#d, (w). Since a is in [z ﬁ y] N [w i @q (w)], it follows from
(5.7.iii) that [z ¢ yl=[w ¢ ¢a (w)]. Hence b is in [w ¢ ¢a (w)], which is absurd. QED

(5.15) Definitions, Notation, and Discussion . In the sequel we shall be much concerned with
representations which are not normal, and will treat these specifically in the following section. For this we
shall need some definitions.

Let |,, | be a libra operator for a libra L. The obverse of |,, | is the trinary operator defined by
(Vabee L) [abyc] = |c,bal. (1)
If p is a representation of L on (X xY), then the obverse of p is the representation of L on Y xX defined
by
(Voel) 7, =p . (2)

The obverse representation is a representation of L relative to the obverse operator [,,] — not relative to the
libra operator |, |%2
The symmetrization of L is the set Lx L equipped with the symmetrization operator |,,4:

(Via,z),[b,y), [e,a]eLxL) tla,z],(byl, (e, x]{=[[a,b,c], [2,y,2]]) = [[a,b,c], |2,y,2]].  (3)
The symmetrization of the representation p is the representation p of the libra L x L on (X xY)x (X xY)
defined by

(VeeX,yeY)(Vla,bleLxL) B,((z,y)) =[5y (1), palz)]. (4)

22 Unless they are the same of course, which is the case when L is abelian.
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Two representations ¢ on (X xY) and 1 on (M xN) are said to be equivalent if there exist bijections
u from X to M and v from Y to N such that

X O Y
(VaeL) na=vopgou " :wid H aclL v
M—" N
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6. Cartesian Aggregates

(6.1) Definitions and Notation Let 7 be an aggregate?® of balanced subsets of a libra L. By a
row of 7 we shall mean a sub-family R of 7 such that each member of R is a right translate of each other
member of R, and such that each right translate of a member of R is again a member of R. By a column
of 7 we shall mean a sub-family C of T such that each member of C is a left translate of each other member
of C, and such that each left translate of a member of C is again a member of C. Each row is a partition of

L, and each column is a partition of L.
We shall write & for the family of all rows in 7, and write [l for the family of all columns in 7.

(6.2) Theorem Let a,bel, XeXelll and YeYeE. Then
() {la,W,b]: Wex}=la,X b 24
(i) {[a, W,b]: WeY}=[la,Y,b]].
Proof. For r,se L holds
|_CL, |_T7S?XJ7bJ = I_a"X7 |_S7T7 bJJ = I_G,X, b7ba S, T, bj = H_a/7 Xa bJ7ba I_S,’I", bJJ
whence follows that {|a, W,b]: WeX}cla X,b] For ¢,ueL holds
LLavXa bJatauJ = La,X,b,t,u,b,bj = Lav LvauatJab;XJabJ
whence follows that [@,X,b] c{|a, W,b] : WeX}. It follows that (i) holds.
The proof of (ii) is analogous to that of (i). QED

(6.3) Notation Elements a and b of L produce bijections as follows:

a®b|T 2 B — |a,B,bl €T (1),
a@®b|llll > X — {|a,X,b]: XeX} e E, (2)
and -
adbE Y < {la, X,b]: XeY} el (3)

(6.4) Theorem For each beL and all r,s,teL

|7, s,t]@b = |r®@b, s©b, t@b].
Proof. . For SeT
(r@b) o (s@b) ' o (tdb)(S) = (r@b) o (s@b) ' ([t, S,b]) = r@b(|b, [, S,b],s]) =
Lr, [b, [£,5,b],s],b] = [, [b,b,S,t,5],b] = [r,s,¢,5,b,b,b] = [[r,5,t],5,b] = ([r,s,t]@b) (S).
QED

(6.5) Notation We define for a in L
a’=a®a and @ = a@a. (1)

(6.6) Theorem For a,b,ccL

la,b,c/® = [La b@ ®J]
Proof. For XeT
a®o b0 P(I1X1) = a® o bP0 2(||| |, b, al, la,b,c], X]|)) = a® o bPo 2(||c, b, a,c,b,a, X]|) =
@ ot?(le, X, a,b,c,a,b,c.¢y — @0 4P(Le, X,a,b,¢,a,b] ) — (@b, b, a, ¢, b, a, X, ¢, b|) =
O(la,e,b,a, X, ¢, b]| = La.b,e, X,a,b,c,a,a] = [la,b,c], X, |a,b,c]] = a,b, e @(1X1).)
B Cf (5.3).
X Cf. (5.1).
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QED

(6.7) Discussion and Notation The analogue of Theorem 6.6 for ®does not hold, and in fact, a

necessary and sufficient condition for |a, b, cj®t0 equal a0 bGyl o &is for la, b, c| to equal |c,b,a]. It follows
that, in general, {a®: ac L} may not be a balanced subset of the libra §(7,7). It is a simple exercise to
show that

(Va,b,m,n,r,s€L) (a®b)o (m®n)~"' o (r@s) = |a, m,r|D|b,n,s]|. (1)

It follows that {x@y: x,ycL} is a balanced subset. Since it contains {a®: ac L}, one may ask if it itself is
the smallest balanced set containing it. We shall return to this question in (9) infra.
For a,b,m,ne L we shall adopt the notation |a, m@n, b for (a®b) o (n@m):

la, m@n,b)|T 3 A<= {|la,m,x,n,b]: zcA} € T. (2)
For a,b,c,d,r,s,t,uc L and AcT, the computation
la, b@C, dJ o|r,s@t,uj (A) = |a, b@C, dJ [ LT, S, Aa t, UJ) = |_a, bv s, A7 t,u,c, dJ (3)

shows that
la,b@c,d) o |r,sDt,u) = [|a,b, 7], tDs, |u,c,d|| = |a, |s,r,b|D|c,u,t],d).
We shall write
Libra(7T) = {a®@b: a,becL} and Sroup(T) = {la,bDe,d|: a,b,c,decL}. (4)
Theorem (6.6) implies that £ibva(7) is a libra. Furthermore, Group (7)) is a group since equation (2) implies
that |a,a@a, a] is an identity for each ac L and equation (3) shows that, for all a,b,¢,de L,

la,bDc,d)” = |b,a®d, ¢|. (5)
(6.8) Definitions Let ¢ be a faithful representation of a libra L on X x Y. If
(Va,reX distinet)(Vy,seY distinet)(FacL) ¢q(x) =y and ¢ (r) # s, (1)

we shall say that ¢ is cartesian. In particular, a cartesian representation is homogeneous.
Theorem (6.4) says that, for each be L the function L 3 a — a®b € J(T,T) is a representation of L on

7. Theorem (6.6) says the the function sending each aeL to a® is a representation of L on ([, ). This
latter will be called the left 7-inner representation of L.

6.9) Theorem Let p be a cartesian representation of a libra L on X x Y. Define?*
p
plX 32— {x L yl: yeY}and v]Y 3y — {[x L yl: xe X}

Then p is equivalent to the 7-inner representation ©:

(VaeL) a®=vopgoput :wid K ael v (1)

)

(75) ———E(7p)
Proof. We must show that () is an element of [l (7Tp) for each ze X. Let y be in V" and a,be L.
Then, letting k=pg0ps ' (v),
la,b, [ £ )] = {[a,b,t) : pe(2) =5} = {pa) o pu o 1 pela) =y} = [1 £ ).

Let s be another element of Y. Let u be in [z L y] and, exploiting the fact that p is cartesian, find ve L
such that p, (z)=s. Since p, (z) =y, we have, for all tc L such that p;(z)=y

pu o pu=l o prle) = pola) =5
whence follows that |v, u, [z L yl| =[x £ s]. Consequently p(z) is in [ (7).
That each v(y) is an element of E (7p) is shown by an analogous argument. QED
(6.10) Theorem Let p be as in Theorem (6.9). Then

X 0f (5.8).
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(i) (Va,beL distinct)(3TeTp) acT and b T;
(ii) (VTeTp)(Va,bel) |a,T,b]=T <= a,beT.
Proof. We first prove (i). Since p is faithful, there exists € X such p, (2)#pp (2). Setting y=p, (), we
have a €[z L y] but b¢ [z L y].

We now prove (ii). If a,beT, then it is trivial that |a,T,b]=T. We show that the reverse implication
holds. Suppose that |r,T,s|=T for TeTp and some r,se L. Then [r,t,s|=u for t,ueT, and so r=|u,s,t],
whence follows that » must be in T if s is in 7. Similarly, s must be in 7" if r is in 7. Thus we may presume
that neither r nor s is in 7. Choose [x,y]e X x Y such that T'=[z 2 y]. Let m=p,(z) and n=ps~!(y).
Because p is cartesian, there exists te L such that p; (2) =y and p; (n)#m. Then ¢ is in T and so in |r, T, 5]
as well. Thus t = |r,w, s| for weT, and so w = |s,t,r]. Consequently

y=puwl(x) =psop~ op(x) =psop " (m) #ps(n) =y
which is absurd. This establishes (ii). QED

(6.11) Definition We shall say that an aggregate T is cartesian if both the conditions of Theorem
(6.10) are satisfied:

(Va,be L distinct)(3TeT) acT and bgT (1)

~VTeT)Va,bel) |a,T,b]=T <> a,becT (2)

(6.12) Theorem Let T be a cartesian aggregate on a libra L. Then
(Va,b,c,deL) [a,b) =[c,d) <= a®b= c@d. (1)
Proof. We have
a®b=cOd <= VXeT) l|a,X,b|=|c,X,d] <=

(VXeT) X=|bbX a,a=|b,[a,X,bl,a]=[b, |e, X, d],a]=|b,d, X, ¢,a) <220
VXeT,zeX) X=|bd,z X,z c,a] <XC v x T 2eX) |bd,z], |z, ¢ a]eX. 2)

If a#c, then by (5.2.) implies that there exists C'e T such that ce C and a € C. If a®b=c@d, then (2) implies
that there exists y<cC such that

le,e,a] =y = a=yeC : an absurdity.
It follows that a@b#c@d. An analogous argument shows that if b#c, then a®@b#c@d. QED

(6.13) Theorem The following are equivalent assertions for an aggregate T of balanced subsets of
a libra L:

(i) VBeT and z,yeLl) [z,B,y]=B <= z,ycB;
(ii) (3BeT) (Va,yel) |z,B,y|=B < z,ycB;
(

(iii) 3BeT) IBIN B={B};
(iv) (VBeT) IBIN B={B}.
Proof. That (i) implies (ii) is trivial.
Suppose that (ii) holds for Be7T. Suppose that |r,s, B|=|B,t,u] for r,s,t,ucL. Let be B. Then,
letting x=|r, s,b| and y=|b,t, u], we have

|z,b,B] = |r,s,b,b,B] = |r,s,B| = |B,t,u] = |B,b,y].

111

Th
e by (5.2.1)

B=|bz,z,b,B| = |b,x,|x,b,B]| = |b,x, |B,b,y]| |b,z, ||b, B,b],b,y|| =

[b,2,6, B,b,b,y] = |[b,2,0], B,y].
By (ii) we have y, |b,x,b] € B. Consequently |r, s, B]=|z,b, B]=B, and so IBIU E={B}. Hence (iii) holds.
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Now suppose that (iii) holds for BeT and that C is any other element of 7. Then there exist z,ycL
such that C'=|z, B,y]. Suppose that |r,s,C|=|C,t,u| for r,s,t,uc L. We have

|_B7 Lr,s,xLxJ = Ly,y,B,ags,nxJ = Ly7 |_7‘7S, L‘T7B7y“7xj = |_y7 \_T,S7CJ,$J =
Lya LC,u,tJ,xJ = I_yv LLm,B,yJ,u,tJ,xJ = I_y7t7u7vavxva = \_yv Ly,u,tj,BJ.

It follows from (iii) that | B, |r, s,2],z]=B. Thus
C = Lx’B’yJ = |_x’ LB7 |_r’ S’xJ7xJ7yJ = Lw71’7r787x7B7y = LT,S, Lx’B’yJJ = LT7S7CJ'

This implies (iv).

Finally, we suppose that (iv) holds and let B be any element of 7. Suppose that B=|z, B,y| for z,yc L.
For be B we have
[b,z,B| = |b,z, |z, B,y|] = [b,x,z], B,y]] LLb, @z, [b, B,b],y] = |b,x,2,b,B,b,y] = [B,b,y].
From (iv) follows that |b,x, B]=B. Hence |b, z,b|=d for some dc B, whence x=|b,d,b| c B. Tt follows that
B=|b,z, B]=|B,b,y| which implies that y=|b,b,y|€|B,b,y|=B. This means that (i) holds. QED

by (5.2.)

(6.14) Notation If two sets R and S have a singleton for their intersection RN .S, we shall denote
the element of the singleton by R A S:

RNS={RAS}. (1)

(6.15) Theorem Let 7 be a cartesian aggregate on the libra L. Let A, Bellll and C, D¢ =. Then
AN C exists (1)

and

ANC=BAD <> [AC)=B,D]. (2)

Proof. Let A be in A and ¢ in C. Since T is an aggregate of balanced sets, there exists x € L such that
|z, A,x| = C. For any ac A we have

C=lz,Az| 2 G20 |z, la, A, al,z] = ||z,a,A],a,2] = |C,z,a] = |2,0,A] = ANC # .
That ANC is a singleton follows from (6.13.iv). This establishes (1).

2, . Let A=ANC = BAD. Then A s in A and B so Al = A = B. Similarly, 4 = C = D. Thus
(A,C]=(B,D].
& Trivial. QED
(6.16) Theorem Let T be a cartesian aggregate on the libra L. Then the 7-inner representation is
cartesian.

~

Proof. Let x,yc L be distinct. Choose BeT such that zcB and y ¢ B. Then 22(IlBl)= |z,B, x| =
but, for be B,

(lisol]

Since y is in |y,b, B] but not in B, we know that |y,b, B|#B. It follows from Theorem (6.13.iv) that

E;ﬁ |y, b, B]. Thus 2P#£y®. Tt follows that the representation is faithful.

Let A and B be distinct elements of 171 and C and D distinct elements of i’ Choose a from AAC
such that it is not in B A D. Then a®(A)=C but a®(B)#D. QED

(6.17) Discussion Theorems (6.9) and (6.16) imply that the cartesian aggregates of a libra L
correspond exactly to the equivalence classes of cartesian representations of L. Along with the diagram of
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(6.9.1), we have its obverse?®:

X Pa 1% be Dy %
(VaeL) H v and M v (1)
& &
I (75) = (7p) M (7)) ———E(7,)
Each column C of T intersects each row R of T in exactly one element:
{CAR}=CNR. (2)

Thus A may be viewed as a bijection from CxR onto 7. The operator @ is actually a representation of the
symmetrization LxL of L on T x T, and it is equivalent to the symmetrization p of the representation p:

XxY P X xY
ixv pixv
(VlabeLxD) (7, <E(7y) (7% E(7) )
\ A
T a®b T

(where puxv((z,y))=p(z),v(y)])). It is a corollary to Theorem (6.12) that

the symmetrization representation p of LxL on X xV is faithful. (4)

The cardinality of [l is the same as the cardinality of E: we define the dimension of 7 to be this
cardinal number. Thus the cardinality of T is the square of its dimension.
For ae L we define the diagonal of 7 determined by « as
\a\ = {AeT: acA}. (5)
The cardinality of such a diagonal is the dimension of 7.
A diagonal \a\\ can be used to give form to an aggregate in the sense that it associates to each column

a row, and vice versa. A column C is a partition of L and so has exactly one element which contains a: this
element is C N \a\|. Thus we have the bijections

”]]BC%EEE‘andEBR(—)HRﬂ\\a\\HEﬂ]]. (6)
If {A;}ien is a well ordering of \\a\\,tTenthe aggregate 7 may be visualized as the elements of a matrix:
A AN . AL ALA
A A A A Aa A
: : . : (7)
Ay AL An A4y A,

Once an aggregate is visualized as a matrix, one can depict the actions of the operators @y and 2 for

2 Cf. (5.15).
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x,ye L. Let, for instance, B be an element of 7 and b an element of B. Then x¢|xz,b, B] and ye | B, b, y] so

Byl ... B ... ... |Bbaz| ... B
: : : c | and | : : : (8)
«®y(B) ... |x,b,B] ... ... AB) ... |x.b,B]

In the case x=a, there exist indices 4, j€ N such that | B,b,a]=A; and |a,b, B]=A, and so the second of the
above matrices becomes

A ... B
B ... A

We say that B and a®(B] are symmetric with respect to \a\\. More formally, two elements B and C of T
are symmetric relative to the diagonal of 7 determined by a if C=|a, B,a]?®.
We shall say that B and C in 7 are skew provided that

B # C and IBIl # ICI; (10)

and we shall say that B and C are a-skew provided that they are skew and that they are not symmetric
with respect to a.

For each x e L, the operator x®permutes the elements of the matrix, sending columns to rows and rows
to columns. The matrix in (9) suggests Theorem (6.19) infra.

(6.18) Example We return to the example of (4.21) and (2.42). The libra I'(M) is precisely the set
of bijections of its four point domain domain M={A, B,C, D}. We denote by p the identity representation

of I'(M) on M. Evidently T has sixteen elements: [A £ Al [A £ B],...and [D L D]. We have, for instance,
p p p P p
lia 2 Bl = a2 41142 B4 L C) (4 £ D]y

and

AL B _qal B BLB,cLB,DLB).

If we set a = , then

Va\ = {42 B],BL 4, [cLD]DLC)

and a corresponding matrix is

A2B BLB) [c£B) DZB
AL24 BEL2A 24 LA
A2p) BLD) [c£D) D2D
120 BLo ©c2c DL

Obviously the dimension is 4.

(6.19) Theorem Let x be in L and T be a cartesian aggregate for L. Then

(i) (YA, BeT) a9A)=B < zc(IAIA B)N (IBIA A);

26 QOr, equivalently, B=|a,C, a].
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(i) VAGT SA) =4 = ze A < O(IAl)= A.

Proof. : Suppose that x®[A =B for A,BeT. Let a be an element of A. Then
B:m®(A = |z, A, z] M |z, |a, 4, al,x] = ||z,a,A],a,2] = |x,a,A] = | B,z,a]. (1)
We have _
x=|z,a,a] €|z, a,A] == LACHYTPN N B (2).

Now let b be an element of B. Then
A =20 dHA) = UB) = |z, B,z 229 14 b, B,b,2) = ||2,b,B],b,x] = |A,z,b] = |z,b,B].

This implies that x=|,b,b] € |z, b, B]=IBI A A which, with (2) yields ze (1Al A B) N (IBIA A).

[isvlf

&2 Suppose now that z¢ (I4I A B) N (IBIA A). Let a be in A and b be in B. That z is in 141l A

implies that |x,a, A|=|B,b,z|. That x is in IBI A Z implies that | A,a,2|=|z,b, B|]. We have
|B,b, [z, a,x|] = [|B,b,x],a,x] = |[x,0,A], 0, 2] = |2,0a,[A,a,2]] = |2,q, 2,0, B]| = |[2,a,2],b, B].
The only right translate of B which is also a left translate of B is B itself. Thus
B =|B,b, |z,a,z|] = (F¢,deB) c=ld,b,|z,a,2]| = |z,a,2] = |b,d,c]eB.
Consequently we have
a:®[A |z, A, x|]CB = x®[A

which proves (i).

When A=B we have (1Al A E) N (IBIA g)=A N A=A. Thus the first “<=" of (ii) is a special case of
(i)-

If x is in A, then
2204l = 7,4, 7] =

[N

Suppose, on the other hand, that « (HAH] z and let ac A. Evidently z¢ |z, a, A] so
x=|z,z,z]c|x, |x,a0,A],z] = |z, A, 0,2,2| = |x,0,a,A,a] = |x,a,A].

Thus |z, |z,a,A], 2| = 2 |z, a, A]) is both a right coset and a left coset of A. Hence it must be A. Thus
xe|x,a, Al = A. This finishes the proof of the second “<=" of (ii). QED

(6.20) Definition Let Xellll U E and zeL. Since X is a partition of L, we may define
rAX =Y where xcYcX.

(6.21) Theorem Let 7 be a cartesian aggregate for L and let a,be L. Then a@®b agrees with a® on

[ and a@®b agrees with b2 on =.
Proof. For T' € T and teT,

aé(HTH) ={la,|m,t,T|,a]: meL} ={|a,T,|t,m,a]|: meL} ={la,T,n]: necl} =
{la, T, [t,m,b]]: meL} = {|a,|m,t,T],b]: meL} = a®b(ITI)
and

¥T) = {[b, |T,t,m),b] : meL} = {|[b,m,t],T,b]: meL} = {|n,T,b]: neL} =

)-

\HH

{lla,m,t],T,b]: meL} = {|a, |T,t,m],b] : meL} = a@b(
QED
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7. Libra Polarity

(7.1) Definitions and Notation In examining the structure of a libra, the concept of a “polar” is
sometimes of use. The polar of a subset S of a libra L is defined as follows:

S°={xeL: (Vse8) |x,sz|=s} (1)
We shall usually abbreviate {i}° to i” in the case of a singleton, and we shall abbreviate the polar (S°)° of
a polar to S°°.
Polars are not necessarily balanced. In fact we have

(7.2) Theorem Let B be a balanced subset of a libra L and ACL. A condition both necessary and
sufficient for B N A° to be balanced is for BN A° to be abelian.
Proof. Let a,b,ce BN A°. For ic A we have

li, la,b,c],i] = [i,¢,b,a,i] = [4,¢,4,4,b,4,4,a,i]| = ||i,¢,1],|%,0,], [4,a,i]| = |c, b,a]
which implies that |a,b, c| is in i precisely if |a,b,c]=|c,b,a]. QED

(7.3) Theorem Let S be any subset of a libra L. Then
(i) VTcS) S°cTe;
(ii) S°° is the intersection of all polars containing S
(iii) S is a polar <= S§=5°°;
(IV) Gooo =SO;
(v) (VT,SCL:TcS°) Trecse.
Proof. ‘% : That (i) is true is follows directly from the definitions.

g,):> : That SCS5°° follows from the definition of polarity. Thus (i) implies that S°°°CS°. That S°cS°°°

follows directly from the definitions. Thus (iv) holds.

o, . Suppose that WCL and that SCW®°. From (i) then follows that W°°cS°. From (i) and (iv)

follows
SOO C WOOO — WO
which proves (ii).

g : That SCS°° follows from the definition. If S is a polar, then S°°CS by (ii), and so S=5°°. That
S is polar if S=5°° is trivial. This proves (iii).
% : We have

TcS® :>by @ seecT®? :>by @) T°°c§e°° :>by (i) T°°cS°.
QED

(7.4) Theorem Let A and B be balanced polars. Then
A= B° <= B=A°= AU B is balanced.

Proof. Suppose that A=B°. Then A°=B°°. Since B is a polar, (7.3.iii) implies that B=B°°. Hence
B=A°.

That B=A° implies A=B° follows by an analogous argument.

Let z,y,2z€¢ AUB. If z,y,z€ A or x,y,z€ B, then |z,y,z| would be in AU B since both A and B are
balanced. Thus, without loss of generality, we can and shall suppose that z and y are in A and that z is in
B. We need to show that |z,y, 2], |z,2,y] and |z,z,y]| are in AU B — however, since z is in the polar of A,
these are all the same. We have, for any ac A we have (since Theorem (7.2) implies that A is abelian)

I_a’ |_$7ya ZJ’G/J = |_a/7z7 |_y7',1"’ aJJ = I_a7 Z? Laa$7yJJ = |_a/7Z7 a7$7yJ =
la,a, 2,2, y] = a,0,2,2,y] = |a, 0, 2,9, 2] = [2,y, 2]
It follows that |z,y, 2] is in A°=BCAU B. QED
(7.5) Theorem Let A and B be balanced polars of one another. Let a be in A and b be in B. Then
B=la,b Al (1)
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Proof. From (7.2) we know that

A is abelian. (2)
Let ¢ and d be generic elements of A. Then of course
a,c,de B°. (3)
We have
. by (3) by (3) —
ld, |a,b,c|,d| = |d,¢,b,a,d] == |d,c,a,d,b] == |d,d,a,c,b| =|a,b,c] =
dela,b,c|]°=B = ACB. (4)
For ee B, we have
e=le,a,a] 22 |a,e,a] € |a,b,A] = B C |a,b, Al. (5)

Inclusions (4) and (5) imply (1). QED

(7.6) Definition We shall say that a libra L is polar provided that there exists ae L such that no
proper balanced subset of L contains a” (as a subset).

(7.7) Theorem Let L be a polar libra and let u and v be elements of L. Then there exists neN
odd and {z;}!=7cu® such that
|1, 22,. .., 2] = 0.
Proof. Since no proper balanced subset of L contains a” as a subset, and since
{lt1,t2,-.-,tn) : n € Nodd and {t;}}=7 C a"}

is a balanced subset of L containing a”, there exists neN odd and {t;}{=7Ca” such that

[t1,to, ..., tn] = |a,u,v]. (1)
For i=1,2,...,n let x;=|u,a,t;|. Then
|21, @2, 3, oy 1, Tn] = [|u,a,t1], |u,a,ta], lu,a,ts], ..., |u,a,th—1], |u,a,t,]] =
|u,a,t1,ta, a,uyu,a,ts, ... ty—1, 0,0, u, 0ty | = |u,a, [t1,te, ..., tn]] = |u,a, |a,u,v]|] = .
Furthermore, for each ic{1,...,n},
by @

lu, 25, u] = |u, |u,a,t;],u] = |u, t;, a,u,u] = |u,t;,a]
and so {z;}i=7cu”. QED

|u,a,t;] =z

(7.8) Example We return again to the example of (2.42), (4.20) and (6.18). We shall compute some
polars of subsets of I'(M) for this example.
First, we write

for the identity permutation of the four corner points. Direct calculation shows that its polar is the family
of involutions of I'(M):

o

{~ , v ¢ : ¢, ; , P, XK (D)

We have
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which shows that is not balanced. From (7.2) we know that it cannot be abelian either.

We choose one of the elements of this polar at random, say ¥, and observe that
L <« ) N = X (2)
Replacing serially by the elements of (1) in (2), we can compute the polar of X
L =
{ f k) y\‘ ) T x T 9 J( X J( K >§ ) §< ) k) ¢ :t ) }' (3)

From (1) and (3) we have

Direct calculation shows that this polar is balanced. If its polar were also balanced, then (7.3.iv) and (7.5)

would show us how to calculated it: we could take  *  for A and for B and use (7.5.1). We

would obtain

. : — —
{ , X e = , X, T, +}
Direct calculation shows that this is in fact the case: we have
{ , N , , K T3 =/ X T, 1 L}
and
+— - — g 0
{ A Y B BN F .+ L (5)
— e “ :
From (7.4) and (5) we know that
— — g a <
{ S T, 1 i, , Ne , , B o
= < o o <>

is balanced.
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8. Meridian Libras

(8.1) Discussion In the cross ratio definition of a meridian of Section (2), the set Mor(:t, M)?"
was seen to be a libra?®. In general, the set of isomorphisms from one meridian onto another, if non-void, is
a libra. Such libras have an intrinsic characterization, which is the subject of the present section.

(8.2) Notation . If A is a subfamily of an aggregate T of a libra L, and a and b are in L, we define
la, A,b] = {|a, A,b]: AcA}. (1)

(8.3) Theorem Let T be a cartesian aggregate of balanced subsets of a libra L such that 7 has
dimension?? at least 4. Suppose further that there exists a € L such that
(i) (vBeT) BnNa"is balanced and has more than one element;
(ii) (Vv B,CeT distinct and a-skew) BN CNa” is a singleton.
Define

([ E{aéoxé:zeau}. (1)

Then I7([ll) is a meridian family of involutions on [Ill.
Proof. For z,ae L such that |x,a,z|=a, we have

(a@)ox@) (a®ox®) o (x@oa@ox@)wa@ B _ Do @

~ -~

which shows that a® o 2 is an involution. R R

Let A,B,D,ellll with {A, €} {B, D}=0. If [a, AN a®(&),a]=B A a® (D), then (6.15) implies that
E=D, Wthh is absurd. It follows that A A a®(€) and B A aA[D] are distinct and skew, and so (ii) implies
that (.A/\a €))n (B/\a (D))Na” is some smgleton {]} Thus a%0;® sends A to £ and BtoD. If any other

peII(lll) did the same, smcegf)can be written as Ok® we would have ke(A/\a &))n (B/\a (D))Na”,

whence k=j and ¢=d . This establishes (4.4.1).
Let P and Q be in U]] Suppose that £, ’776617(']]]] and that §(P)=~(P)=6(P)=Q. By (1) there exist
b,c,de L such that a 0b® B a®o®=+ and d Od® 6. Let P be the element of P which contains a and let

Q@ be in Q. Let R=|Q| A £ We have

QI = Q = B(P) = a®b2(IPI) = a®(1b: Pb]) = ||, |b, P,b),a]] =

ILP, b, alll = [|ILP, a, b]|

— |P,a,b]€|QIN P = |P,a,b] = |QI A P = R.

We have b = |a,a,b| €| P,a,b] = R. Similarly, ¢ and d are in R as well. Thus

be,deRNa” 2 (b c,d| e RNa”S by (72) [b, ¢, d] = |dyc,b). 2)

Hence

- —1 - -~ -

(@010 (@0 ®)  o(@@0d)(P) = (@Pot)o (o)  o(@®od®)(IPI) =
HLav |_bv |_a|_cv LaLd7RdJ,aJ,cJ,aJ,bLaJH = HLHmb,a,c,aJ7d7Pj,d,a,qa,b,aJH =

by (2)

I1b,¢,d,a,a,a, P,a,a,a,d,c,bl| IL|b,¢c,d],a, P,a,l|b,cdll| @ Ila, |b,¢,d], P,,|b,c,d],a]| =

@0 |a,b,c|2(I1P1) = a®o a, b, c|O(P)
This shows that (4.4.2) holds.
Let 3 and ~ be in IT([lll). Choose b,cea” such that B=a®o b@ and y=a% o . We have

Loyt oﬁ—a o0 ®0d@0a@ot®= @0 tP0 @0 td = @ OLbch® (3)

2T Cf. (2.8).
5 Cf. (3. )

29 Cf. (6.17) for definitions of “dimension” and “a-skew”.
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Furthermore

\_a’ Lb7 C? bJ ) aJ = |_a7 b? C’ b’ aJ = I_a’ a’ b? C’ bJ = |_b’ C? bJ :> Lb7 C’ bJ eaD

which, with (3), implies (4.4.3). QED

(8.4) Definition and Remarks A cartesian aggregate of balanced sets satisfying (i) and (ii) of
Theorem 7.1, and of dimension at least 4, will be called a meridian aggregate.

It follows from Theorem (8.3) and Theorem (4.5) that [lll is a meridian when 7 is a meridian aggregate.

~

Evidently £ is as well, with meridian family of involutions {a® o 2%: zea}.

(8.5) Example Let S be three dimensional real projective space, and let Q be a quadric surface
in S in the sense of (1.7). We shall regard Q as a circular hyperboloid extending vertically as in Figure
(8).30 We write L for the complement of Q in S. We write M for the family of rules of Q which go up
counter-clockwise, and we write NV for the family of rules of Q which go up clockwise. Each elementa of L
corresponds to a mapping p, of M onto N as in Figure (1.11). We shall show in Section (10) that these
mappings form a libra, which libra operation carries over to L in exactly one way so that p is a meridian
representation. The elements of the associated meridian aggregate ¥ are then intersections with of L with
planes in S tangent to Q. Each such tangent plane intersects with Q in two rules, one from A and one from
N.

Fig. 16: Some elements of M and N

30 If S carries homogeneous coordinates [z, ¥, z,t], the solution to the equation z? + y? = 2% + t? gives
such a quadric surface.
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Fig. 17: Plane B Tangent to Q (element of ¥) at Point q

Fig. 18: Plane B Tangent to Q (element of ¥) cutting Polar of a Point b

(8.6) Theorem Let T be a meridian aggregate of balanced subsets of a libra L. Then, for all be L.
(i) (YVBeT) BN is balanced and has more than one element;
(ii)) (VB,CeT bskew) BNCNbH is a singleton.

Furthermore, if @ and I7([lll) are as in (8.3.1), then
(iii) H[ﬂ]])={yéo xé: x,yeL and zcy"}.

If Lisa pol@r lib}"a, than we also have
(iv) DMy ={b20a®: zeL}.
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Proof. Y% : Let B be in 7. Let a be as in (8.3) and let b be a generic element of L. Since |a,b, B]
is in 7, (8.3.1) implies that |a,b, B] Na” is balanced and has and least two elements. Thus there are two

elements r, s€ B such that |a,b,r| and |a,b, s] are in a”. We have
|b,r,b] = |b,7,b,a,a] = |b,|b, |a,b,7],a]] = |b,a,|a,b,r|] =|ba,abr]=|bbr|="1 (1)
It follows that r, and by analogy s, are in b”: B Nb” has at least two elements. If ¢ is any other element of

B Nb° we have
la, |a,b,t],a] = |a,t,b,a,a| = |a,t,b] = |a,b,t| = |a,b,t] ca’.

By (8.3.i)) we know that [|a,b,r]|, |a,b,s],|a,b,t]]| is in |a,b, B] Na”. Thus there exists uc B such that
la,b,u]ea” and
la,b,u| = ||a,b,7], |a,b,s], |a,b,t]] = |a,b,r 8b,a,abt] =]a,b,rsbbt]=]ab,]|rst]].

Thus u = |, s,t] and, as with 7 in (1), we have u in b”. It follows the (i) holds.

8. . Let now B and C be in 7 and b-skew. Then la,b,B| and |a,b,C| are |a,b,b|-skew: i.e they
are a-skew. By (8.3.i) |a,b,B| N |a,b,C] Na” is a singleton. Hence the intersection of B=1b,a, |a,b, B]],
C=|b,a,|a,b,C]]|, and b"=|b,a,a|" is a singleton. This proves (ii).

S That 17 ¢ {yPoa®: x,ye L and xey”} is trivial. Suppose that x,ye L and zey”. As in the first
paragraph of this proof, we can show that |a,y,z] is in a”. We have

~ ~ ~ ~

yPo1®?=a%0a®0 yéoxéu aéo a,y, v ° = yéo xéeﬂ(ﬂ]]],
which establishes (iii).
% : By Theorem (4.20) we know that I'([lll) is the smallest group of bijections of [l containing
(. 1t follows immediately that rdy ¢ {béo xé: xeL}, so to establish (iv), it will suffice to show,

for any e L, that 2o 22 is a composition of a finite sequence of elements of IT([lll). From Theorem (7.7)
follows that there exists neN odd and {t;}:{=% C b° such that

Tr = Ltl,tg,...,th.

We have - R - R - R - .
Boa® 88 1261, P0t,P0t3%0... 0ty 1P0t,O =
- ~ -~ ~ —1 ~ ~ ~ ~ —1 ~ ~
(bPot1P) 0 (BP0t o (BP0t3P) 0...0(P0t,1P) o (BP0t
QED

(8.7) Theorem Let M be a meridian. Then I'(M) is a polar libra®! relative to the canonical libra
operator [,,, |.
Let ¢ be the identity representation of I'(M) on M x M. Let T be an abbreviation for 7, as defined
in (5.9.2). Then 7 is a meridian aggregate.

The identity representation is equivalent to the 7-inner representation®? 72 of I'(M) on 7 x =7.
Proof. By Theorem (2.15) I'(M) is a group. Thus I'(M) is balanced relative to the libra operator

"_7’7J]'

Define the bijections

;1,||]]]9“[mén]H<—>n€Mandy\§9[m n] < me M. (1)

Then, for acI'(M) and me M,

voa®o ! (m) =ve a(|[m L mi| = v([a(m)

which establishes the equivalence. QED

(8.8) Definition, Notation and Discussion Let L be a libra containing a meridian aggregate T
of balanced subsets of L. It being somewhat cumbersome to deal with [l and E, we shall deal at times with

3L Cf. (7.6).
32 (Cf. (6.8).
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a representation p of L on a product M x /N equivalent to the T-inner representation. Such a representation
will be said to be characteristic. We reserve p|llll = 1/ and v|= — N to represent the bijections such that

~

pa=voadPopu ! (Vael). (1)
For a given ac L it is sometimes expedient to form the representation
[al _
P=pa top (2)

of L on M. We shall say that %’ is the a-representation founded on p. In this case we shall sometimes
denote one element of M by oo, write F' for the complement of {oco} in A/, and then choose two distinct
elements 0 and 1 of F'. We shall use the field operations of addition and multiplication defined in Theorem

(4.11) as well as the matrix notation ( ) for elements of the set I'(M) defined there, which by (8.6.iv), is

evidently just the set {%‘x : ke L}. Such a choice of 0, 1, and oo will be called choice of a basis for M.
From (8.3) we know that M is a meridian where

M) = {3 . zea”) and I'(M)={3,: zcL}. (3)

(8.9) Theorem Let 7 be a meridian aggregate of a libra L, let p be a characteristic representation

on L on M xN, and let %’ be the corresponding a-representation. Then

(1) (Va,b,c,u,v,weM:#{a,b,c}=#{u,v,w}=3)(3zel) %’,I (a)=u, %’m (b) =v and I,%,w (¢) =w;
(i) (Va,b,ceM,r,s,teNeft{a,b,c}=#{r.s,}=3)F wel) pyla)=r, p()=s and p, (c) =t;

(iii) (V. Ay, Az, Age [l distinct)(V By, By, Bse E distinct)(I zeL) 2P(A4;) =B; fori=1,2,3.
(iv) (YA, B,CcT pairwise skew) AN BNC is a singleton.

Proof. & . Follows from the fundamental theorem (2.12) applied to (8.3).

% : Let [u”l}7wJE[’r‘,S,tJ and apply (1)

g : Follows from the fact that p and the left inner representation are equivalent.

&) . Let A, B,CeT be pairwise skew. Then IIAl, IBIl and ICI are distinct, as are

[N
lIsv]]

and E By

)

and 22(IC1) = C. By Theorem (6.19.ii) this

[iself

(iii) there is a unique 2 € L such that z2(IlAl) =Z, Z2(I1BI) = c

~

A, y2(IBI) =

(isol]

implies that z€ ANBNC. If any other ye L were in ANBNC, then we would have yP(lAll)

and yé[HC )= E, which would violate the uniqueness of x in this respect. QED

(8.10) Lemma Let 7 be a meridian aggregate of a libra L, and let l,?:), be an a-representation for
ac L. Let be L be distinct from a. Then there exists a choice of basis and ¢, < F' such that, if

A= {( ‘ Tj) ce,deF and €2 # qrd*} and B = {( © __7;]) e,deF and €2 # qrd®},

qd qd
then
(Vu,ve A distinet) {u,v}° =B, (1)
(Vg,heB distinct) {g,h}° = A, (2)
A° =B and B° = A. (3)

Furthermore, these choices can be made such that
@l 1 7\ . 5 @ (0 r\. 5
pb<q ]) ifba andpb(q 0) if bea”. (4)

Proof. Suppose first that bca”. Let 0 be any element of M and set co=p;(0). Let 1 be any third
element and define ¢=1 and r=p, (1).

% Now suppose that b a”. It follows from (4.20) that there exists we IT(M) with fixed points and
oeclIl(M) such that %’b=7r oo. Let 0 and co be the fixed points of m, and let 1 be any third element of M.
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1 0
Then 7= (O 1

). Since o is self-inverse, there exist 7, j, k€ F' such that o= ( Lo ) We have

ko —i
m /10 i i\ _ (i
Po =m0 = (o —1) ° (k —7:) - (—k 7>
The hypothesis that b¢ a” insures that i cannot be 0. We let ¢==" and TE%. It is now evident that (4)

holds.
% Whenever u,ve A, direct calculation shows that

B C {u,v}°. (5)
Let u,ve A be distinct and choose d, e, s, te F' distinct such that
@] _ e rd 2 2
Pu= <qd . ) and  e“Fqrd?, (6)
[a _ t rs 2 L2
Dyp= (qs ; ) and  t°Hqrs®. (7)
Let p be a member of {u,v}° and choose w, z,y, z€ M such that
@ _(w = )
Pp= ( ) z) and  wz#zy. (8)
We have
L, p, ) =p = e rd ofw TN _ (w w) (e rd 1
P p gd e y oz T \y =z qgd e
ez—rdy rdw—ex\ [ ew—qgdr —rdw+ex )
qdz—ey ew—qdr ) \ —qdz4+ey ez—rdy |’

ez —rdy rdw—ex

Equation (9) implies that the matrix {q Az — ey ew — qdz

} is a non-0 multiple k& of the matrix

—?Zdz zd:y) (;dg ,,.d;x) ] . If k= —1, then
ez —rdy= — ew + qdx (10)
and if k# — 1, then
rdw — er=0=qdz —ey and ez —rdy=ew — qdx. (11)

If =0, then (11) and (6) imply that w =0 = z and ry=qgz: thus

@ _(w xz\_(0 Z\N_(0 ry\_(e rd)_d@
pp_(@/ Z>_<y 5>_(qy 0>_(qd 6)“' (2

If e£0, then (11) and (6) imply

d d d d d. o d.
r=r—w, y=q—-z, z2=r-y+w—qg-r= z=rq(-)z+w—qr(-)vw =
e e e e e e
2 d? by (6
(1= —=5rg)z=(1—-—q)w 2O, e == rdy =
e e
d
@ woorsw) (e rd) _@
7, = (qgw )= () =R (13)

Since w is not in {u,v}° and p is, it follows from (12) and (13) that (11) cannot hold. It follows that (10)
must hold, and so

e(z + w) = d(qz + ry) (14)
holds. An analogous argument, using v instead of u, yields
t(z +w) = s(qz + ry). (15)
From (14) and (15) follows that either
z+w=0=qr+ry (16)
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or

e d
e_a 17
T = (17)
If (17) held, then
@ (e rd)_ Lopd\ [t rs\ _@
Pu=\qd e qgd %) \gs t =P
which is absurd since %‘ is faithful. Tt follows that (16) holds and so
@ _(w z\_(w =ZF\_[(aqw -—ry
Pr=\y - y —w @y —quw)’
which in turn implies that p is in B. Thus {u,v}° C B. This, with (5), establishes (1).
% Whenever g, he B, direct calculation shows that
Ac{g, h}°. (18)
Let g, he B be distinct and choose d, e, s, t € F' distinct such that
[a _ € —rd 2 2
P (1 ) ana e, (19)
%'(h)= ( ! —rd) and  — t3£qrs®. (20)
qs —t
Let p be a member of {g,h}° and choose w,z,y, z€ M such that
@ _(w = )
Pp= (y z) and  wzF#xy. (21)
] |=p e —rd ofw T\Na_fw z\ (e —rd 1
9,p,91=P qd —e y oz y oz qd —e
ez+rdy —ex—rdw\ _[(qdr+ew —ex—rdw (22)
qdz+ey —qdr—ew ) \ qgdz+ey —ez—rdy

ez+rdy —ex —rdw

Equation (22) implies that the matrix [qdz+ey —qdz — ew

} is a non-0 multiple & of the matrix

qdxr + ew —ex —rdw -
gzt ey —ex— rd,y]' If k=1, then
ez + rdy=qdz + ew (23)
and if k%1, then
—ex —rdw=0=qdz+ey and ez+rdy= — qdr — ew. (24)

If =0, then (24) and (19) imply that w =0 = z and ry= — ga: thus

g _(fw x\ _ 0 7%1/ (0 —ry\ _ e —rd @
2= (0 )0 ) -0 ) (5 -5 )

If e#0, then (24) and (19) imply

d d d d., d.,
r=—r—w, y=—q—-2, 2=—-r-y—w—q—xr = z=rq(—)z —w+qr(-)w =
d? d?
(1= —=5rg)z=—-(1~-—gnw LRGN —rdy =
e e
d
@ ([ w -—rgw) (e —rd) _@
Pr= <q‘jw —w > N <qd —e ) Py (26)

Since w is not in {u,v}° and p is, it follows from (25) and (26) that (24) cannot hold. It follows that (23)
must hold, and so

e(z —w)=d(qgz —ry) (27)
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holds. An analogous argument, using h instead of g, yields

t(z —w)=s(qx — ry). (28)
From (27) and (28) follows that either
z—w=0=qx—1rYy (29)
or
e d
T (30)

If (30) held, then
@ (e —rd)_ dff —rd\ [t —rs\ @
Pa=\qd —e gd -4 )7 \gs —t = Pn
which is absurd since l;l:)‘ is faithful. Tt follows that (29) holds and so

@ _(w z)\_(w % _(aw Ty
r=\y - y w @ quw)’
which in turn implies that p is in B. Thus {g, h}° C A. This, with (18), establishes (2).

% That BCA° follows from direct computation. Let g be in A°. Since a and b are in A, it follows

that ¢ is then in {a,b}°, which by (1) is just B. Thus A°=B. That B°=A is proved analogously. QED

(8.11) Theorem Let 7 be a meridian aggregate of a libra L. Let a and b be distinct elements of L.
Then
(i) {a,b}° has at least three elements;
(ii) {a,b}° is balanced;
(iii) (Vx,ye{a,b}° distinct) {z,y}°={a,b}°°;
(iv) (Ve,de{a, b} distinct) {c,d}°={a,b}°.
Proof. % : Let 0, 1, oo, A, B, ¢ and r be as in Lemma (8.10). Then both %'a= (

in A and distinct. It follows from (8.10.1) that
{a,b}° = B. (1)
1 0 1 —r 1 r .
We may and shall presume that —1#£gr#1. It follows that (U 1 ) , ( ) and ( 1 ) are distinct
elements of B. This with (1) establishes (i).

1 0

@]
0 1) and p, are

8, . Follows from (1) and direct computation.
8 . Let & and y be distinct elements of {a,b}°. We have

{a,b)° by (8.10.1) B—s {a,b}° = B° by (8.10.3) A by (8.10.2

L {z,y)°
which is (iii).

g : In (iii) we now replace z and y by ¢ and d, and then replace a and b by x and y: which yields
that {c,d}°={z,y}°°. Hence {c,d}°={a,b}°, which is (iv). QED

(8.12) Definition and Notation For distinct a and b in a meridian libra L we shall denote the set
{a,b}°° by a,b and shall refer to it as a line trace. We adopt the notation

L(L) = {a,b: a,beL distinct}.

(8.13) Theorem Let 7 be a meridian aggregate of a libra L. Let K be an element of £(L). Then
(i) K°isin L(L);
(ii) K°°=K;
(i) K N K°=0;
(iv) K U K° is balanced;
(v) if x,ye K are distinct, then T, y=K.
Proof. Y% : Let a and b be distinct and such that {a,b}°°=K. By (8.11.i) and (8.11.iii) there exist

64



distinct z, y € {a, b}° such that {a,b}°°={z,y}°. Thus
9 = ,9)%° = {a,0)°° = K°
which establishes (i).
8, . That (ii) holds follows from (7.3.iv).
89, . If 4 were in K N K® there would be another element b of K and we could apply (8.10) to obtain
disjoint line traces A = K and and B=K°°: which is absurd.

8. . That (iv) holds follows from Theorem (7.4).
g : Let x and y be distinct elements of K. We have

by (8.11.iv) {Jj, y}O=KO — T y={x, y}OO=KOO by (8.11.ii) K,

a:,yeK by (ii) K°°
which establishes (v). QED

(8.14) Theorem Let 7 be a meridian aggregate of a libra L. Let a be an element of L and B an
element of 7. Then
(i) Bna”eL(L);
(ii) ae B <= (BNa")° C B.
@ @]
Proof. There are two cases to consider: either B=[0 L 0] for some Oe M, or B=[0 2 oo] for distinct 0
and oo in M.

[a
Case I: B=[0 £ 0] for some 0 M. Choose 1 and oo in M distinct from each other and from 0, and let
F={ze M : z#}. Since %’a= <(1) ?), we have
{%z;xeBmaD}:{G _01>:'reF}. (1)
1 0

Let u,ve BN a" satisfy %’u= <(1) 01) and %v= (1

[L@ w x| d J [z oz
Puly 2 ) Pud =y w
which implies that

[al w X [al w X z X w X

and, similarly,

[a w T [a w T Z—T x w T
leU,<y Z)mJI—(y 7><:>(E|A,6F.k?7'50) (Zﬂ/_m_w m+w)_A,-<y Z)

which implies that

1). For w, z,y, ze F we have

O

(u,0)° = {teL: @reF) 9 = (1 2)} 2)

T

It follows from (1) and (2) that @, v=B Na". Furthermore a is in B and, from (2),
@]
(BNa®)® = {u,v}° c [0 2 0] = B.
Thus (i) and (ii) hold for Case I
@]
CaseIL: B=[0 L oo] for 0,00 M distinct. Choose 1€ M distinet from 0 and oo and let F={zec M : x#co}.
We have

r

{%’x:xeBﬂaL}:{<[1) 0>:reF}. 3)
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Let u,ve BN a" satisfy %’u= ((1) é) and %’v= <(1) _01> For w, z,y, ze F we have
[a w o xr\ 4@, [fw x L wo o—y\_ ., (w T
Bo (0 D) Bu= (0 D) arersizo (1 )i (U0

and

IL%U,(“” ﬁ),%UJJ:(“” I):»erF: k#0) (:’?” ‘”)=k~(“’ l)

y y oz T —z
which implies

(wop =trers Grer) Bi= (5 V) ()
It follows from (1) and (2) that w,o=B N a”. Furthermore a is not in B but is in (B Na")°. Thus (i) and
(ii) hold for Case II. QED

(8.15) Corollary Let 7 be a meridian aggregate of a libra L. Let K be an element of £(L) and let
A be an element of 7. If K N A has at least two elements, then K CA.
Proof. Let a be in K° and let b, ¢ be distinct elements of K N A. From (8.14)(i) follows that AN a” is
in £(L), and from (8.13.v) follows that K=b,c=ANa”. QED

(8.16) Corollary Let 7 be a meridian aggregate of a libra L. Let A be an element of 7. Then
A°=().
Proof. Assume that a is in A°. It follows that A Na"=A, and so (8.14.1) implies that A is in L(L).
From (8.10.iii) follows that a ¢ A. Let b be in A. Then |a,b, A| contains a and so is not A. From (7.2) we
know that A is abelian. For ¢,de A we have

|d, |a,b,c],d] = ||d,e,b],a,d] = ||b,e,d],a,d] = |b,c,d,d,a] = |b,c,a] = |a,b,c]
which means that de |a, b, A|°. This implies that AC|a,b, A|°. Since left translates are pairwise disjoint, it
follows that A=|a,b, A], which is absurd. QED

(8.17) Theorem Let 7 be a meridian aggregate of a libra L. Let A and B be distinct skew elements
of 7. Then
(i) AnBisin L(L);

(i) (AN B)°=(1AI A B) N (IBI A A).

Proof. Let a be in A. There exist coc M and ne N such that A=[c L n]. We have pg, (c0) =n so
[a

@] _ _
Pa(0) = (pa™" 0 pa) (50) = (pa™") (1) = 00 = A = [0 £ ],
@
There exist 0, 1€ M such that B=[0 L 1]. Since A and B are skew, neither 0 nor 1 can be co. We have
(VzeANB)3reF) o) = <’U }) (1)

Let r and s in L satisfy

@ _ (0 1), @ (11
Pr=N\o 1) ™=\ 1)

Direct calculations show that a necessary and sufficient condition for z€ L to be in r” N s is for there to be
we F' such that

@ 1 w
Thus 7, 5={zecL: (1) holds} and
7,5° = {xeL: (2) holds}. (3)
The first of these two equalities implies that 7,5=A N BeL(L). The set of xc L satisfying equation (2) is
[a @] o .
just [ 211110 £ sc)=(141 A B) N (IBI A A). From this and equation (3) follows that
(ANB)° = (1Al A B)N (IBIA A).
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QED

(8.18) Corollary Let 7 be a meridian aggregate of a libra L. Let A and B be skew elements of 7.
Then

{reL: B=|z,A,z]} = (AN B)°. (1)

Proof. This follows from (6.19.i) and (8.17.ii). QED

(8.19) Theorem Let T be a meridian aggregate of a libra L. Let K be an element of £(L). Then
the following four statements are pairwise equivalent:
(i) 3AeT) KUK° C A
(ii) (3AeT) K C A and K° N A#D;
(iii) (N BeT) K C B;
(iv) (FAeT) {EeT: KnE=0}={De AUIAI: D#A}.
If these four statements hold, then
(v) (VneK) Knn°=0.

Proof. (i)=(ii): Trivial.

(iil)==(iii): Suppose that (ii) holds and that a is in K° N A. We have KCa” N A and so by Theorem
(8.14.i), K=a" N A. If |a, A, a] were not A, they obviously would be a skew pair and so Theorem (8.17.i)
would imply that K=AN |a, A, a], which would imply that ac K N K°, which would violate (8.13.iii). It
follows that A=|a, A,a]. Thus, if B were any element of T distinct from A, then B and A would be a-skew,
and so Theorem (8.6)(ii) would imply that A N B Na” were a singleton: an absurdity. Thus (iii) holds.

(ili)==(iv) and (i): Suppose that (iii) holds. Let 0, 1, co, ¢ and r be as in Lemma (8.10). Since a is

@
in B and %‘[a] is the identity mapping, there exists mec M such that B=[m L m]. If m were in F', then for

all e, de M such that e?#£qrd?, ( ¢ rd

gl e ) (m)=m. This is evidently impossible, so m must be co. It follows
that g=0+#r. That

{DeBUIBI: D+# B} C{EeT: KNE =0}

[is]]

and Bl are partitions of L. Let E<7T have void intersection with K, and
o [a
assume that F is in neither Bl nor E Then there exist j, ke F such that E=[j £ k]. But

follows from he fact that

<

—_

=V 1 k—j\,. .
k=i, () = 0 1 (j)=k= KNE#0: a contradiction.

It follows that (iv) holds. It follows from Lemma (8.10) that the image by %’ of anything in K° is of the

@
form (8 __Cf ) and so it is evidently in [co L oo]=B. Thus (i) holds.

(iv)==-(iii): trivial.
(i)==(v): Suppose that (i) holds. Since Al and Z are partitions of L, it is trivial that

{DeAUIAI: D# A} C {EeT: KNE =0} (1).
Suppose that BeT is neither a left nor a right translate of A. Let a be an element of K°. Since a is in A,
we have A=|a, A, a| which implies that A and B are not a-skew. By (8.6.ii) we know that a" N AN B is a
singleton. But a” N A=K, which implies that K N B is a singleton. Thus the set containment symbol in (1)
can be replaced by an equals symbol. Thus (v) holds. QED
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K

Fig. 19: A Parabolic Line K and its Polar Showing the Rules of their Plane

(8.20) Definition We shall say than an element of £(L) which satisfies (8.19.iii) is parabolic. If
KcL(L) is contained in more than one element of 7 we shall say that it is elliptic. If K€ £(L) is neither
parabolic nor elliptic, we shall say that it is hyperbolic.

Fig. 20: An Elliptic Line K and its Polar

(8.21) Theorem Let T be a meridian aggregate of a libra L. For K € L(L), the following are pairwise
equivalent statements:
(i) K is elliptic;
(il) #{AecT: K C A}=2;
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(iii) (3A,BeT) K=ANB;
(iv) K° is elliptic;
(v) (3A,BeT skew) K={xcL: |z,A,x|=B}.

Proof. (i)<=>(ii): Suppose that (i) holds. Assume that A, B,CcT are distinct and that K is a subset
of each. Since Al is a partition of L, A is its only member with L as a subset. Consequently neither B nor
C is in I All; whence follows that IIAll cannot equal IIBll nor can it equal IICl. Similarly, | Bl cannot equal IICII.
Since [l £ is a meridian, it follows from the Fundamental Theorem that there exists exactly one element

of L such that z2(141)= 4, 22(1Bl)= B, and 22(ICI)=C. Evidently each ke K can serve for & in these

last three equalities, and by (8.11.i) K has at least three elements: an absurdity. Thus (ii) holds. That (i)
implies (i) is trivial.

(il)=(iii): Suppose that (ii) holds and that A and B are the elements of T of which K is a subset.
From Theorem (8.17.i) we know that A N B is a line trace and so, by (8.11.iv), it must be K. Thus (iii)
holds.

(iil)=(i): trivial.

(i)<=(iv): Suppose again that (i) holds, and let A and B be the elements of Tx. From Theorem (8.17)

we know that K°=(IAI'N B) N (IBIN A). This implies that {41 N B,IBIN A} ¢ TK®. It follows that
(iv) holds. Since K'=K°°, we also have that (iv) implies (i).

(i)=>(v): Suppose that (i) holds and that A and B are the elements of Tx. Assume K NC=0 for CeT
but that C & Tx. Let a be in K°. We saw above that |a, A,a|=B and so the pair A and C are a-skew. It
follows from Theorem (8.6.i1) that a® N AN C is a singleton. But a” N A contains K, and so by (8.14.i) is
precisely K. It follows that the singleton a” N AN C must be in K, which is absurd. We thus have

{CeT: KNC =0} c{DeT: K° C D}. (1)
On the other hand, if D in Txo contained an element of K, Theorem (8.19.ii) would imply that K were

parabolic. It thus follows that the containment symbol in (1) may be replaced by an equality symbol.
Consequently, (v) holds.

(iv)<=(v): From Theorem (6.19.ii) and Theorem (8.16.ii) follows that, for any skew A, BT
{weL: |2,A,z] = B} = (IAIA B) N (IBIA A) = (AN B)°.

Thus (v) is equivalent to the statement that K'=(ANB)° for some A, BeT. If K° is elliptic, then K°=ANB
for some some A, BeT by (iii), which in turn implies that K=K°°=(A N B)°. On the other hand, if (vii)
holds, then K°=(AN B)°*°=AN B and so K° is elliptic. QED

(8.22) Discussion Let K be an elliptic line trace. Then K° is elliptic too and so there are precisely

two elements A and B of T containing K° as a subset: in fact we have K°=A N B. Let C=IAl A E and

D=IBI A Z Then C' and D are the two elements containing K as a subset: K=C N D. We have

{(XeT: KNX=0}={XclCIlUCUIDIUD: X ¢ {C,D}}={XelAlUBUICIUC: X & {C,D}}.
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Fig. 21: A Hyperbolic Line K and its Polar

(8.23) Theorem Let T be a meridian aggregate of a libra L. For K ¢ £(L), the following are pairwise
equivalent statements:
(i) K is hyperbolic;
(ii) K° is hyperbolic;
(iii) (VAeT) KN A#D;
(iv) (VAeT) KnNAis a singleton.

Proof. (i)<=(ii): Suppose the (i) holds. From (8.19.i) follows that K° cannot be parabolic. From
(8.21.iii), we know that K° cannot be elliptic. Thus (ii) holds. That (ii) implies (i) follows now by inter-
changing the roles of K with K°.

(iii)==(i). Suppose that (iii) holds. That K cannot be parabolic follows from (8.19.iv). That K cannot
be elliptic follows from (8.21.iv). Thus (i) holds.

(i)==(iv). Suppose that (i) holds. Let a and b be distinct points of K. Let 0 be any element of M and

let ooz%lb(O]. Then there exist 7, s,/ F' such that %’b= <2 é) It follows that

5 [
K°®={zeL: (3p,qeF) /’w:(—qsp—pr —qp>}

From this follows that
K=K*={xeL: (3w,zel) %‘x = <Zl; w—Zrz)}'

@] @

Let A be any element of 7. Then there exist m,neM such that A=[m 2 n]. Evidently a is in [m 2 n]
[a

whenever m=n. If any other ke K were in [m £ n] for m=n, then all of K would be as well, and so K would

not be hyperbolic. Thus we may and shall suppose that m#n. If m=oco we set z=[ and w=I[ + rn to obtain
[a [al

zem £ n]. If n=oco we set w=l and z= —m to obtain x € [m £ n]. If neither m nor n is co, we set z=m —n
@

and w=sm — rn — [ to obtain ze[m 2 n]. It follows that (iv) holds.
(iv)==(iii): Trivial. QED
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(8.24) Theorem Let T be a meridian aggregate of a libra L. Let a be in L and b be in a”. Then

(i) " Na”cL(L);
(ii) (Veeb”Na”) ¢ Nb”Na” is a singleton {d} and b=|c,a,d];
(i) if a, b is elliptic, (ceb” Na”)(Tdec® Nb" Na”) a,c is elliptic, ¢, d is elliptic and b=|c, a,d];
(iv) if a, b is hyperbolic, (Fceb” Na”)(Idec’ Nb” Na”) a,c is elliptic, ¢,d is hyperbolic and b=|¢, a, d].

Proof. Let 0e M be such that %’b does not fix it. Let ooz%lb[()] and choose 1€ M distinct from 0 and
co. Then there exists ec M such that

n=(0 ) )
b e 0 ’

e xeaumbu}z{( v _‘@) L z,yeF). 2)

—ey

It follows that

This implies that
65— @ (1 O @ (0 1
b"Na” =c¢,d Wherepc<0 1) amdpd(6 0>

which proves (i). That (ii) holds now follows from direct calculation.
If a, b is elliptic, then it is contained in two elements A and B of 7 and so in particular a,bec A N B:

there equal m and 1 distinct in M such that %‘b (1)=1 and %‘b (m)=m. Thus

@ 01\ @ 1 0 @ 0 1
=\1 o) Pe= o 1) @mdra={_ o)
@ @ =
Evidently @20 £ 0] N[00 £ o] and so @€ is elliptic. Evidently ¢, dc[1 2
that ¢, d is elliptic. Thus (iii) holds.

If a,b is hyperbolic, then it is contained in no element of 7. In particular, the equation t=%’b[t] =%

@
L

—1]N[=1 = 1], which implies

has no solution for ¢. From equation (2) we know that %’C is of the form (—iy _yl> and %’d is of the form

(_CS :7 ) The equation %’d (1) =%’C (t) resolves into e - t2= — 1. Hence the ¢, d is hyperbolic as well. If we
[a [a

L0 >, then evidently @, ¢ C [0 L 0] N [oo L o] and so @, ¢ is elliptic. This

0 -1

choose ¢ to be such that %’C= (
establishes (iv) QED

.25 eorem Let e a meridian aggregate of a libra L. Let e a line trace and a an element
8.25) Th Let T b idi falibra L. Let K be ali d 1
of K. Then

(ke K distinct from a : kea”) <= K is not parabolic. (1)

Proof. = This follows from (8.19.v).
<= Let be K be distinct from a, and suppose that K is not parabolic. If b is in a”, we are done, so we

shall presume that b is not in a”. By Lemma (8.10) there exists an a-representation %’, a choice of basis, and
q,r€F such that
e rd @ 1 r
K{<qd 6).c,deF}, and pb<q ]).

Evidently an element of K is in a” if and only if it is of the form (S (r)) For this it is necessary and
sufficient that ¢7#0#r. But one easily checks that
[@ [a
g=0=KcC[olx] and r=0=Kc[020
both of which are absurd, since K is not parabolic. QED

(8.26) Theorem Let a and b be distinct elements of L. Then
(i) a,bis hyperbolics=> (F¢,dea”) a,c is elliptic, ¢, d is hyperbolic, and b=|¢, a,d];
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(ii) a,b is elliptice= (3¢,dea”) @,¢ is elliptic, ¢, d is elliptic, and b=|c, a, d];
(iii) a,b is parabolic<=> (J¢,deca") a,c is elliptic, ¢,d is parabolic, and b=|c, a,d];

Proof. Suppose first that b is in a”. If a,b were parabolic, then Theorem (8.19.v) would imply that
bea"Na,b=0: an absurdity. Thus a, b is either hyperbolic or elliptic, and so (ii) and (iii) follow from Theorem
(8.24.iv) and (8.24.iii) respectively.

In the remainder of this proof we shall suppose that b is not in a”. Suppose that a,b is elliptic. Then

a, b is contained in two distinct elements of 7, which means that p, and %’b agree on two distinct elements
of M. This means that %‘b has two fixed points, and so is a dilation. By (4.20.iii) there exist 7, o€ IT(M)
agreeing on two distinct points of M and such that « is a dilation and such that %‘b=7roa . Choose c,dea”

such that I%’c=71' and %’d=a. We have
@ @ @ @ @ [a
".pcvpavde:pcopd:ﬂ—oo—:pbﬁb:chanJ' (1)
Since %’C=7r has two fixed points, it agrees with %‘ at two points — hence the line @, ¢ is elliptic. Since %’C and
%’d agree on two distinct points, it follows that c, d is elliptic. This proves (ii).

Now suppose that a, b is hyperbolic. This means that a and b are in no common element of 7 that %’b
leaves not point fixed, and so is a rotation. By (4.20.iv) there exist 7m,c€II(M) agreeing on no point of M,
such that 7 is a dilation, and such that %‘b=7roo . Choose ¢,dea” such that %’C=77 and I,%'d=a. As before, it
follows that (1) holds and that @, ¢ is elliptic. This time however, ¢, d is hyperbolic since %’C and %’d agree on
no point of A/. This proves (i).

Finally we suppose that a, b is parabolic. This means that a and b are in a single element of 7: that

a and %’b agree on at a single point of M: that %’b has exactly one fixed point: that %’b is a translation. By
(4.20.i1) there exist m, o IT(M) with a single common fixed point of M, such that 7 and o are dilations, and
such that %’b=7roo . Choose ¢,dea” such that %’C=77 and %’d=o. As before, it follows that (1) holds and that
@, ¢ is elliptic. This time however, c, d is parabolic since %’C and %‘d agree on a single point of M. This proves
(iii). QED
(8.27) Corollary Let a be an element of L. Then
L={lz,y,2]: x,y,zca’}.
In particular, L is a polar libra.33.

Proof. By Theorem (8.24) there exist b, ¢, dca” such that b=|c, a,d]. It follows that a=|d,b,c|. Corol-
lary (8.27) now follows from Theorem (8.26). QED

(8.28) Discussion The final three theorems of this section will be needed infra in discussing the
connection of L with three dimensional projective space.?*

(8.29) Theorem Let A be in T and let K and V be distinct line traces in A. Then either K
intersects V' or _
(3XelAlUA) K°UV®CX. (1)

Proof. Let a be in K. Referring to the notation of (8.8) we let co=pu (IIAll). We have

Blo0) = (@1 () = v(a®(1A1) = v(A)

and so
[al

oo £ o) = (7 (00)) A (7" (pa () = IAIA A = A.
Let b be an element of K distinct from a and let ¢ be an element of V not in K. Then c#a and so there

exists some point 0c F' such that 12%’6[0] is not 0. Let sz%’b(()] and rzlfj)b[l] — 5. Then we have

@ (1 0 d@_’r's
Pa=\0o 1) 24P =\0o 1)

33 Cf. (7.6).
34 Cf. Section (10) infra.
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If r=1, then I,%'a and %‘b agree only at the one point co of M, which implies that K is parabolic. Direct
calculation shows that

{a,b}°={zeL: (3teF) %’(g;)=<_01 i)}andK=a7b={xeL:(3teF) @)= (é i)} 2)

If r#1, then %’a and %’b agree also at the point +*— and so K is elliptic with

K ={zel: (3teF) '%x:<t+(10‘t)r (1‘1“3)}. 3)

Recalling that 1=%’c(0] we choose ge F' such that %’C= (g 1) Let d be an element of V' distinct from

u v

0,and choose u,v e F' such that %‘(f ( ) If g=u, arguing as above we find that V is parabolic and

0 1
c¢,d={zeL: (3teF) ',%'x:<g §>} (4)
@ @ o o
If g#u, then p,. and p, agree also at P and so V is elliptic and
cd={zel: 3ter) Y = (“”(})*) B+ (1= ““)}. (5)
Case I: (2) and (4) hold. Here (1) holds with X=A.
1—u
Case II: (2) and (5) hold. If yc L satisfies I%Iy= (1) " ), then ye K NV.
1—g B B
Case III: (3) and (4) hold. We have (g 1—1"x> = (t+ (10 hr @ 1t)5> when t={—".
Case IV: (3) and (5) == ;":i. If I/E),C( 1) equals (I;:'llt’ then
%’ S %‘ S %’ v—1 p v—1
K = ) — ﬂ ‘ = ‘ pumy = m . = . = V
[oo = o] [1—7’ 1—7'] [0 = o] q—u q—u]
which is absurd. Thus e#f where f E%’c( ) and (’—” l . We have
[al [al [al [al

K=[cZcx]neleand V =[cLo]nelf]

which implies
[@ [@ [@ [al
L

Ko=[o2en[e 2 ) and VO =[x £ f]n[e £ ]
@
which in turn implies (5) where X= [e = ool
Now we suppose tha q:i. Then e=i — v + 4=s is not 0 and we may define fg—%iﬂl and

t=lelemwtu-r q“):'“ ” to obtain
t1+(1—tl)r (1—751)5 o t2q+(1—t2)7lr t2—|—(1—t2)1}
0 1 N 0 1 '
QED
(8.30) Theorem Let a bein L and let K and V' be distinct lines in in a”. Then either K intersects

V or
(FXeT) K°uV°cCX. (1)

Proof. The line trace K° contains a and so by (8.10) there exists a choice {0, 1, 00} of basis for M and
q,r e such that

{@x: rxeK} = {<q7/ __7;/> s x,yeF and x2#qry®). (2)
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.. t .
Let ¢ be an element of L° distinct from a, and choose t,u,v,weF such that %’c = (7 u). Since

V ={a,c}°, direct computation shows that if t£w,
@ i fuwytvr (t—w)z . ) o\ N2
{pp: 2V} = {<(1‘ — W)y —uy— (UI) s x,yeF and (uy + vx)® + (t — w) zy#£0}. (3)
ug+or  —r(w—t)
qw—1t) —(ug+or)
with (2) and (3) shows that d is in K N'V. If (ug + vr)?=rq(w — t)?, we have the following cases:

Case ¢=0: Since (uq + vr)?=rq(w — t)?, we have v=0 as well. This implies that I%‘c[oc] =00, whence

[

follows that V° C [0 £ o). If ¢ €L is such that I%’(c’)= <(1) ,1

If (ug+vr)?#rq(w—t)? then there exists d e L such that %’d = ( ) . Direct computation

>, then the fact that ¢=0 implies that ¢ is

@]
in K°. Since ((1) 71) (c0)=00= <(1) (1)) =%’a, it follows that K C [ 2 .

Case r=0: Since (uq+vr)?=rq(w —1)%, we have u=0 as well. This implies that %’C (0) =0, whence follows
[al
Iz

that V° C [0 = 0]. If ke L is such that %,k= ((11 (1)), then the fact that »=0 implies that &k is in K°. Since
1 0 1 0 @ D
( ) (0)=0= ( ) =D, it follows that K C [0 L 0].
g 1 0 1
Case 7¢#£0: From (ug + vr)?=rq(w —t)? follows that ’E=(q%)2 Let ec L satisfy %’e= (2 6) The

equation %’e () =z for x € I is the same as :1:2=§. Thus it has the solutions z= + }1% In particular we

xr
1 ugtor p 1 ug+vr

@]
], which since a is there as well, implies V° C [+ %" 21 YItvr] - On the other
q w—t qg w—t

have 66[(1 w—t = q w—t
hand we have

< t u ) (1 uq + or _ 1 uq + or Euq + or

v uq + ur w uq + or
+ u:(,qi)z + iqi

vow/ g w—t q w—1 q w—t q w—t q w—t

T w uq + vr t uqg + vr r uq + ur U
’U*:*q . —u<:>'vf:q77fq
q q w—t qg w—t q q q

@
£

1 ugtor 1 ugtor

. @ .
¢ w—t 7 w=t |]. Since p, is as well, we have

which last is obviously true. It follows that %‘C is in |
@]

Ve c [}1% £ %%] We have established (8.30) for the case t#£w.

10

0 -1

computation shows that d is in ¢”, and so, since it evidently is in a”, d is in V. QED

Suppose that t=w. Choose de L such that %’d= ( ) From (2) we know that d is in K. Direct

(8.31) Theorem For each acL, we have
a”® = {a}. (1)
Proof. That aca”® is trivial. Assume that there existed b in a“° distinct from a. Then
abea by (7.3.i) and by (7.3.iv) amc{a7 b}o _ {a7 b}ooo by (7.3.i) and by (7.3.iv) {a7 b}""C{a}

which by (8.13.i) implies that the singleton {a} has a line as a subset: an absurdity. QED

oo
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9. Product Libras

(9.1) Discussion, Definitions and Notation Let L be a libra. The injection
L>x<— [x,x) € LXL

of L into its symmetrization libra?® Lx L is only an isomorphism if L is abelian. When L is non-abelian, the
subset {{z,z]): ze L} is not balanced, but one may consider the intersection of all balanced subsets of Lx L
containing it:

LXL = {}lz1,21), .-, [Top—1,Tar—1)]: {5 ?ﬁIICL keN}. (1)
From (5.15.3) we have
LKL = {{|21, .., ¥2k—1], [T2k—1,-- ., 21 ] ) s {2:}78 7 CL, keN}. (2)
Reversing the order of the elements of the sequence in (2), one sees that
LRXL = {(z,y]): ly,z]) € LKL}. (3)
Related to LKL is the subgroup of J(L, L) generated by {,m,: zeL}:3¢
LOL = {4,T2,0- - Oy Tam_, : Lxi} 2T CL, keN}. (4)

Expanding, one also has

LeL ={| c{ai )7L, keNY. (5)

T 3
L1y T2k —1 T2k —15-+,T1

(9.2) Theorem For any libra L, LKL is a normal balanced subset of LxL.
Proof. For m,n,lecL,

|-{m7n13 [lvlLLgL-l = {F[manL [LZL {x17I1J7' ) {IQn—laan—l}ﬁ: {xt}?gl_laneN} =
{H_malvxla CIIR 7x2n71JJ7 |_x2n717~ .. ,{I?l,l,’fLJ : {'Tl 122;17n€N} =
{lIm,l, z1,l,m,m, 1, ... om L xon—1,l,m,m,l]], [l,n,n,l,zapn_1,l,m, ..., ,n,n,l,x1,l,n]: {a:i}?gl_l,neN}=

{tLLm,y1,m), .y s yan—1,m),mu L, [ ns [0 Yan—1, 1), Ly, n) | {widit Y neNY =
{Uzts - 22n-1,m, ], |L,ny zop—1, ..., 21 ) : {2 ?Zl_l,neN} =

{Flar,z1), ..., [@on—1, m2n—1 ), [myn), (L1 {23727 neN}Y = LKL, (m, n), [1,1]4.

We have shown that every left coset of LKL is a right coset of LKL. QED

(9.3) Example We return to the example of (2.27): M = {a, b, c} for distinct points a, b, and ¢,
and L=I"(M) is the family of permutations of M. We abbreviate:

_ abe _ ach = cba _ bac _ bca nd A= cab
“Slavel” “lavel| “lave|l” Tlabel” lavel ® “labcel’

There are two non-trivial balanced subsets of L: A={«, 5,7} and ©={:, A, p}. Direct calculation shows
that
{lx;x): xeL} U(AxA)U (O©xO) is a balanced subset of LxL

and that
{lx,x): xeL} U (AxA)U (OxO) = LKL # LxL.

(9.4) Theorem If LKL=LxL, then

(Va,yeL)Fo € LoL) ¢(x) =y. (1)
Proof. Let m and n be in L. By hypothesis and (9.1.4) there exists keN and {z; fifCL such that
[m,n} = [Lxl,...,zkj, Ll‘k,...,fﬁlJJ.
Consequently
I_:cl,.u,kaFka,...,xlj [n] = I_.’L‘l, ey Ty |_a?k, cee 7.’L‘1J,xk, ceey $1J =
35 Cf (5.15).

36 Cf. (3.12) for the definition of ,m,.
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|21,y Thy X1y e e oy Thy They -+, T1] = |21, ..., 2] = M.

From (9.1.5) follows that (bEL e o] isin L&®L. QED

L1, Theseers

(9.5) Lemma Let L be a meridian libra and let s,z,ye L be such that

sTs (y) = . (1)
Then there exist r,t € L such that
'[7"77"},[575L[tat]‘|:[%Z/J~ (2)
Proof. By (8.26) there exist
t,rew"” (3)
such that
[t,s,r] =y. (4)
Then by (1 by (4 b
T y (1) ls,y, s] y (4) Ls, |t,s,7],8] = |s,7,8,¢, 5] LAON ls,s,r 8,7 = |rs,t].
Thus
[x,yJ = [I_’I",S,tJ, \_t,S,TJJ = |'[T7TJ7 [S7SJ7 [t7t1+
QED
(9.6) Theorem Let L be a meridian libra. Then

IXL=LxL <= (Vx,yecL)(3¢ € LA®L) ¢(z) =y. (1)
Proof. In view of (9.4) we need only show that LIKL=L holds if (9.4.1) holds.
We presume then that (9.4.1) holds, that m and n are generic elements of L, and proceed to deduce
that [m,n] is in LKL. Towards this end we select ¢ as in (9.4.1) and then apply (9.1.5) to obtain kN and
{z;}2%71CL such that

M= 4,y Ov v Ogpy Mgy, (M) == M =4, Ty 0. .04 Ty (0). (2)

We define by = n and, for i=1,...,2k — 1 we shall abbreviate ,,m,,0...04,, Tz, _, to b;. From Lemma (9.5)
we know that

(Vi=1,...,2]€—1) [bi,bi_1J€L|X|L. (3)

It follows from (9.1.5) that
(V’L=1,,2/€—1) [bZ,thJGLgL (4)

Since LKL is balanced, it follows that |(bg,b1 ), [b2,b1],. .., [bog—2,bar—3], (bak—2,bak—1]q is in LKL. Fur-

thermore

by (9.1.2)

F(bo, b1, [b2,b1], ..., [bag—2, bax—3], [bar—2, b2k — 1]4
(b0, b2, ..., bak—2, b2 2], [bag—1,b2k—3,...,b1,b1]] = [bo, bag—1]) = [n,m]
and so [n,m] is in LKL. From (9.1.5) follows that [m,n) is in LKL. QED
(9.7) Example Let M be the circle meridian and let L=I'(M). Each projectivity in I'(M) either
preserves or reverses the orientation of the circle M. Involutions which have two fixed points reverse the

orientation. Let m be a projectivity which preserves orientation and let n be a projectivity which reverses
it. Assume that (m,n] were in LKL. By (9.1.3) there would then exist k€N and {z;}?*7'CL such that

m = L$1,...,[E2k_1J and n = L$2k_1,...,171J.

But each of the compositions |z1,...,Za,—1] = 10...029,_1 and |Zag_1,...,21| = Tog_10...0x1 has the
same number of preservation and reversal components as the other. Hence m and n either both preserve the
orientation of M or reverse it: an absurdity. It follows that

LXL # LxL. (1)

We shall see infra that in this example LXIL has exactly one coset.

(9.8) Example Let M be the sphere meridian and let L=I'(M). Let m and n and be distinct generic
elements of I'(M). Then T, 7 is either elliptic or parabolic, there being no hyperbolic lines in this example.

76



Suppose that 7,7 is elliptic. Then there are two elements 0 and oo of M which are fixed by all members
of m,n. Letting 1€ M be distinct from 0 and oo we have a basis for M. Let r=m/(1) and s=n(1) Relative

to this basis,
(0 7 q (0 s
m=\7 , an n=17 o)

Let - be the multiplicative operation relative to the basis 0, 1, and oo and choose w e F' such that w-w=r-s.

Let a be the element of I'(M) with basis matrix ((1) 1:;) Then

amal=(3 4)e(35)e( 5)=( ") =(3 o) =m 1)

Suppose now that 77, 7 is parabolic. Then there is exactly one element co fixed by all members of 7, 7.
This time we shall let 0 be any element of M distinct from oo, T=m(0) and s=n(0). Relative to the basis

0, 1 and oo
(11 q (1 s
m=\4 an n=1, 1)
1 1—s
Let aE(O ) Then

T
wnt= (3 )6 )3 ) =4 1)

From (1) and (2) follows that |a,n,a] = m. Theorem (2.7) now implies that
LKL = LxL. (3)

(9.9) Notation and Definitions Let 7 be a cartesian aggregate of a libra L, and let p be any
representation of L on a cartesian product X xY equivalent to the 7 -inner representation. For beY’, the
set X,={[x,b): z€ X} is an X-cross section, and for each ac X, the set Y ,={[(a,y]: yeY} is a Y-cross
section. We write

(V0{a,b]e XXY) Lla;p;b] = {psz|x,: xeL and p,(X,) =Y} (1)
It is trivial that each mapping”ﬁ[m], r,s€ L, maps X-cross sections to Y-cross sections and, if it sends X,
onto Y, its restriction to X, is in L[a; p; b]. Bijections from X xY to X xY satisfying both these properties

will be called p-contravariant mappings on X xY.
For a,me X and n,beY we write

L[a,m;p} = {pu_lopv|xu : U,UEL and pu_lopv [X(L] = Xm} (2)
and
Llp;n,b] = {pucpy |y, : u,vel and pyop, " (Y,) =Y} (3)

A function from X xY to X xY which sends X-cross sections onto X-cross sections, sends Y-cross sections

onto Y-cross sections, and such that if it sends X, to X, is in L[a,m;p|, and if it sends YV, to Y7 is in
L{p;n,b], will be called a p-covariant mapping on XxY. If f and g are p-contravariant mappings on
X xY, evidently fog™! is a p-covariant mapping. In particular, for r, se L, the function p,~'op, is always
a p-covariant mapping.

(9.10) Theorem Let T be a cartesian aggregate of a libra L, and let p be any representation of L
on a cartesian product X xY equivalent to the T-inner representation. Let ¢ be a p-contravariant mapping.
Then

@r,sel) Py = o (1)
Proof. Define f|X — Y and g|Y — X by
(VeeX) ¢(V.)=Xrn and (VyeY) o(X,) =Yy (2)

37 Cf. (6.17). By definition py, y((z,y))=[ps~" (1), pr () ).
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Define 0| X XY — X xY by
(Viz,yleXxY) {0([z,y))} = Xsp) NYgq- (3)
For (z,y] € X XY we have

{o(lz,y])} = o(Y2) Nd(X,)
For beY we have by hypothesis that ¢ equals ?[r,s] on X;: to wit

by (2) and (3)

{6([z,yN)}. (4)

(VoeX) o((w,b]) = fpy (e, b)) = [ps(b), pr (z) ) 22D 20D,

{lps(0), pr(2) ]} = Xy NYg) ={lg®), fe) ]} = [ps (D), pr (2) ) = (g 0), f ) ] (5)

A priori the heritage of s and r depended on beY',| but it follows from (5) that p, (z) does not. Since p is
faithful, it follows that r does not. By an argument symmetric and analogous to the preceding, we see that
s is completely determined by as well, as so (1) holds. QED

(9.11) Corollary Let 7 be a cartesian aggregate of a libra L, and let p be any representation of
L on a cartesian product X xY equivalent to the T-inner representation. Let v be a p-covariant mapping.
Then

(3r,s,u,vel) 3&,5]0(3[“,7;] =. (1)

Proof. Let u,ve L and define qﬁE’yo{ﬁ[u’v]_l. Then ¢ is p-contravariant and so Theorem (9.10) implies
that there exist s, 7€ L such that (9.10.1) holds. If follows that (9.11.1) holds. QED

(9.12) Lemma Let 7 be a meridian aggregate of a libra L, and let p be any representation of L
on a cartesian product X xY equivalent to the 7 -inner representation. Let ¢ e Il(X) — that is, let ¢ be an
involution of the meridian X. Then

(VaeL)(Jzea") ¢ = pa~"op.. (1)
Proof. Let a be an element of L. By definition of the meridian structure on X we have I'(X) =
{pa~top,: zeL}. Thus ¢p=p, Lop, for some ze L. Since ¢ is an involution, we have

_ _ -1 _ _
pa~top. = (pa"tops) = ps Yopy = p. = pacp:~'opa.
QED
(9.13) Theorem Let T be a meridian aggregate of a libra L, and let p be any representation of L

on a cartesian product X xY equivalent to the 7-inner representation. Let v be a p-covariant mapping, and
let a be an element of L. Then

(3 ba ) d7 eeL) a= |_b7 a, bJ = \_07 a, CJ = I_d7 a, dJ = |_€, a, eJ and z[a,u]O(B[Le,a,cj,[d,a,bﬂ =7 (1)
Proof. By (9.11) there exist 7, s, u,v € L such that
R Rd
v = p[r,s]op[u,v]' (2)

The mapping ps 1op, is in I'(X) and so by (4.19) p,~top, is either the identity function, an involution,
or a product of involutions. In the first case we set e=c=a. In the second case we set e=a and c=|a, s, u].
In the third case we apply Lemma (9.12) to obtain ¢,eca” such that ps = p, top. and p, = p, top.. For
each of these cases,

Ps = Pe_lopa = ps_lopu = pa_lopeopa_lopc = pa_lopl_e,a,cj '
Reasoning similarly, we can find b, de L such that
a=|_bva7bJ=\_d7aadJ and propv_l = paop\_d,a,bJ -

For any (z,y]e X xY we have
e

Plaa®Pesel Loy (01 =Lpa = 0p| 1 (2),0a0P 0y~ W) )=(ps ™ opu (), propy ™ (¥) 1= 9Pl (2, 1))
which, with (2) implies (1). QED

(9.14) Corollary Let T be a meridian aggregate of a libra L, and let p be any representation of L
on a cartesian product X xY equivalent to the T-inner representation. Let § be a p-covariant mapping, and
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let a be an element of L. Then
(El b,c,d, GGL) a= Lba a, bJ = |_C> a, CJ = Lda a, dj = Lev a, GJ and ?[Ld,a,bj,{e;a,cj]oﬁ[a,a] =0 (1)

Proof. Let =vy~! in Theorem (9.13) and observe that (B[Ldra,bjyt ) is the inverse of ?[Le,a,ej,{d,a,bj]- QED

e,a,c)

(9.15) Corollary Let L be a libra with a meridian aggregate 7. Let a be any element of L. Then®®
Group(7) = {lu,a@a,v]: u,veL}. (1)
Proof. By definition,

Sroup (7) = {(t@®m)o(n@w) : t,m,n,weL}. (2)

In view of (6.17.3) and (9.14), we can find u,ve L such that (t@m)o(n@w) = (u®v)o(a®@a). Thus (9.15.2)

implies

6.7.2)

Group(7) = {(u@v)o(a®@a): u,ve L} by 673 {lu,a@a,v|: u,vel}.

QED

(9.16) Example We return to the example of (8.5). We have a three-dimensional real projective
space S, a quadric surface Q, the family M of counter-clockwise upward rules in Q, and the family N of
clockwise upward rules in Q. The complement L of Q in S will be denoted L. Each element a of L inherits
two natural actions. One sends M to N as in Figure (11) of Section (1): a rule X in M, along with a
determines a plane, and this plane intersects Q in exactly one rule Y in N: we define the function pq by

pa(X) =Y.
The other action sends Q to itself as in Figure (10) of Section (1): a point x of Q, along with a, determines
a line which is either tangent to Q at y=a or cuts through Q in one other point y: we define the function

ax) =y.
Each plane in S not tangent to Q intersects Q in a circle. Since each rule in M cuts that circle at
exactly one point, this creates a bijection from M onto the circle, which in turn induces a meridian operator
on M. Furthermore the induced operator is the same for each such plane (or circle). Consequently we can

regard M as a meridian. Similarly, we may regard N as a meridian. We shall show in Section (10) that the
family {pq: acL} constitutes the libra I'(A, N). Thus we may define a libra operator [,, | on L by

(Va,b,cel) |a,b,c] Epil[paopbilof)c}'
By definition, p is a libra representation. If we define 7 for this example by

T={XL2VY: (X YeMxN},

then each element [X L Y] is the plane of S containing X and Y, and so is the plane in S tangent to Q at
the point X AY of intersection of X and Y. It is evident that p is equivalent to the left inner representation
of L relative to 7. For qeQ we define

/q/ = the element of M containing ¢,

\ g\ = the element of N containing q.

For a,beL, we define
(vxeQ) abx) = /b(x)/A\Gx)\

as illustrated in Figure (22).

38 Cf. (6.7).
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Fig. 22: The Value of EB at a Point x of Q.

From Theorem (9.10) we know that these mappings EB, for a,beL, are precisely the family of functions
¢ which send Q to itself such that rules in M are sent to rules in NV in such a way that, for each line N e M,
the restriction of ¢ to IV is a projective mapping.

From Corollary (9.14) we know that the mappings ivoaq, for a,u,vel, are precisely the family of
functions ¢ which send Q to itself such that rules in M are sent to rules in M, rules in N are sent to rules
in N and the restriction of § to any rule is a projective mapping.

Fig. 23: The Value of ivo@ at a Point x of Q.
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10. Meridian Space

(10.1) Discussion, Notation, and Definitions We purpose in the present section to show, how
on the one hand, a meridian libra together with its meridian aggregate forms a three dimensional projective
space and how, on the other hand, quadric surfaces in three dimensional projective spaces may be viewed as
meridian aggregates.

Toward the first end we introduce the notion of a “space polar”, which will provide us with a three
dimensional projective space. Let * be a function sending each element s of a non-void set S to a subset s=
of S. We call * a pre-polar operator and adopt the following notation:

(i) (VXcS) X*= N s

seX

(ii) (VXCS) Xe**=(X*)".

The function * will be called the polar operator induced by =.3°
We shall say that " is a definitive pre-polar operator if
(VseS) s™* ={s}, (1)

in which case ® will be called a definitive polar operator.*® We adopt the notation

(iii) P = {s": seS};

(iv) £={{x,y}**: x,y € S distinct};

Elements of 3 will be called planes and elements of £ will be called lines. Two subsets of S will be
said to cross if they are lines and have a single point in common. A triangular triple is an ordered triple
(a,b, c] of distinct points such that ¢ {a,b}**. A definitive pre-polar operator * for which the following
three requirements are met will be called space pre-polar operator, in which case ® will be called a space
polar operator:

two lines of S cross if and only if their polars are lines which cross, (2)
(V[a,b,c] a triangular triple) {a,b,c}**cP, (3)

and
each line in S is a proper subset of S, with at least three points. (4)

(10.2) Theorem Let * be a pre-polar operator on a set S containing more than one element. Then
(i) (VXCYCS) YecX-“.
(i) (VxeX) x"={x}*
If = is a definitive pre-polar operator, then
(i) (VXcCS) XcXe**;
(iv) (VXCS) Xee =X,
(v) S°
(vi) (v XCY'CS) Xeecye,
(vii) (Vp,qeS) Peqt < qep”.
Proof. 222, These follow directly from the definition (10.1.i).
g Let x be in X and ¢ be in X*. We have
ceX® by (i) cex" by (ii) {X} by (1) { }"C{ } {X}CC-
Since ¢ was a generic element of X*, it follows that xeX?®. Since x was a generic element of X, it follows
that (iii) holds.
& From (iii) and (i) follows that X***CX?*. Substituting X* for X in (iii), we have X*CX***. It
follows that (iv) holds.

&), Assume that there did exist xe SN S*. Let ye S be distinet from x. By (10.1.1) there exists s in

Yy~ such that x¢s". By (ii) this means that {x} ¢ {s}*. But x being in S* means that S=x" and so
(s} c §=x- 2D ad Dy yeo - [s)e,

39 The function © defined on the points of a libra, and the function ° defined on the subsets of a libra,
respectively, are examples, respectively, of a pre-polar operator, and of a polar operator: cf. (7.1).
40 When L is a meridian libra, the polar operator ° is definitive: cf. (8.31).

by (10.1.1) and (ii)
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which is absurd.

g We have

X cy =22 by (i) Yoo o x* 224 by (i) X Y by (iv) A%

(Vu) ‘We have

peq 2 (pyc {qr* 2 {q)e c {pr 2L gepr

and the reverse implication is proven analogously. QED

(10.3) Theorem Let " be a space pre-polar operator on a set S with at least two points. Then S,
along with the family £ (of lines), is a three dimensional synthetic projective space.
Proof. For a point x disjoint from a line K we shall adopt the notation

K= U txupe m
yek

We must show that the following axioms are satisfied*!:

(i) there exists at least one point and one line in S;

(ii) each couple a and b of distinct points in S lie on some line;

(iii) there is not more than one line through any two distinct points of S;
(iv) if a, b, ¢, and d are distinct points of S such that {a,b}** and {c, d}** intersect, then {a, c}** and

{b,d}"** intersect;
(v) each line has at least three distinct points of S;
(vi) the whole space S is not a line;
(vii) if a is a point not on a line N, then S # ;
(viii) there exist points a and ¢ and a line N such that a ¢ and S= J {a,y}*".
ye[eN]
( )

(:)> Evidently a,be{a,b}"".

(m) : Assume that a and b are distinct points in S, K and N distinct lines in S, and a,be KN N. We
know that {a,b}** is a line, and without loss of generahty we may assume that N#{a,b} . There exist
u,ve S such that N = {u,v}**. We have

a,beN 2002 Necrq b} {a, b} N 0021 N
whence follows that there exists ce N which is not in {a,b}**. Thus [a,b,c] is a triangular triple and
(10.1.3) implies that {a,b, c}** = d" for some deS. Consequently
a,b,ceN 20020, Necrg b, o) U020, g _ fa b, c}**cN**
N — N...Cd.. — {d}’

: By hypothesis S has at least two points, and therefor a line.

by (10.2.1)
f—

by (10.2.i, ii and iv)

which is absurd.
GO {a,b}** equals {c,d}**, the conclusion of (iv) is trivial, so we shall presume that they are
distinct. The lines {a,b}** and {c,d}** have a point e in common. By (iii), (a, e, c¢) forms a triangular

triple. Thus (10.1.3) implies that there exists pe S such that {a, e, c}Cp=. From (10.2.vi) follows

({a,e}**U{c,e}*")cp" by (), ({a,b}**U{c,d}**)Cp" = a,d,b,ccp” =
({a,c}*U{b,d}*) C p” = pe({a,c}*N{b,d}*)

(where we have used (10.2) freely). It follows from (10.2.iv) that the polars of the lines {a, c}** and {b, d}**
cross, and so (10.1.2) implies that the lines themselves cross.

&, . This follows directly from (10.1.4).

g : By hypothesis S has at least two elements, and so it has a line, but by (10.1.4) this line is proper.

4L Of. [A. Seidenberg] Chapter V, Section 1.
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g : Choose u and v in S such that N = {u,v}**. Then [u,v,a] is a triangular triple and so by

(10.1.3) there exists pe S such that {u,v, a}** = p=. We have
{fuvicfuv,at = {u,v,a}*'c{u,v}* = N={uv}**c{u,v,a}** =p

and so, for each neN,
nep” = {n,ajcp* = p*c{n,a}* = {n,a}**cp*** =p°" = = Cp~.
If p were equal to S, then
) 222§t = pt = {p}** = {p},

which is absurd. It follows that 755.
(viii)

: By hypothesis there exists a line N = {u,v}** not equal to S and so there exists ce S not in
{u,v}**. The triple (u,v, c] is triangular and so (10.1.3) implies that there exists pcS such that

{u,v,c}**=p~. (2)
Assume that there were an seSnotin ~ |J {a,y}**. If {s,a}** intersected {u,v, c}** at some point x,
yeeN]

then
u,v,x,cc{u,v,c}** =p" = pec{u,v,x,c}* = {u,v}*n{c,x}*

which means that {u,v}* would cross {c,x}*. Then (10.1.2) would imply that {u,v}** and {c,x}** would
cross. If t were that crossing point, then
xc{c,x}** ={t,c}** and te{u,v}** =N = xc
which, since se{s,a}** = {x,a}**, would imply
sc U {a,y}**: an absurdity.
ye[e 7]
It follows that {s,a}** N {u,v,c}** = 0. Consequently

(L] o0 L] e\ e b (2) L] LL AW J L] L]
0={s,a}*n{uv,c}* =({s,a}*Ufuv,c}*)* == ({s,a}*U{p}*)" = ({s,a}" U {p})*. (3)
Now p is either in {s, a}* or not. In the first case, (2) would imply that () = {s, a}**, which is absurd. Thus
pé{s,a}*. (4)
The lines {s, a}** and {v, a}** cross so (10.1.2) implies in particular that the polar {s,a}® of {s,a}** is a
line. Thus there exist w,ze S such that

{s,a}* = {w,z}". ()
The triple (w, z,p) is triangular by (4), and so (10.1.3) implies that there exists €S such that
{W,Z,p}“ =q". (6)
Now by (5)
{w,z,p}* = ({w.z} U{p})* = {w,z} np" = {w,z} """ np~ == {s,a}*" np" (7)
and so

{a} Z (fw,z,p}**)* = {w,z,p}* 2 (5.} np* = ({s,a}* U{p}) 2Ly
which is absurd. QED

(10.4) Discussion Let S be any three dimensional projective space. We write £ for the family of
lines in S and P for the family of planes in S. A collineation of S is an incidence preserving bijection from
S UP to S UP which sends points to points and planes to planes. Since a line is the intersection of all
planes containing it, a collineation also sends lines to lines. A correlation of S is an incidence preserving
bijection from S U B to S U which sends points to planes and planes to points.*? A correlation @ such
that

(VxeS) @(P(x)) =x

42 Collineations also send lines to lines.
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is called a polarity.
The space polar operator defined in (10.1) evidently induces a correlation of the induced space S.
Conversely, if @ is any correlation polarity on S, the restriction of @ to S is a space pre-polar * and

(VPeRB) {2(P)}=P".
A quadric surface Q is a subset of S of the form {xeS: xc®(x)}, where @ is a correlation polarity,

or equivalently, a set of the form
{xeS: xex"}

for a space pre-polar operator . Some quadric surfaces contain lines, and some don’t. For instance, a sphere
in real projective space does not, and an elliptic hyperboloid does.

Those which contain lines are said to be ruled. These lines come in two families € and fR, called reguli.
Each of € and R is a partition of Q, and each element of € intersects each element of R in exactly one
point. Thus a ruled surface may be identified with the product €x9R.

There are many ruled quadric surfaces. In fact, for any triple of mutually disjoint lines, there is exactly
one quadric surface which contains that triple in one of its reguli.

Each ruled quadric surface Q induces a libra operator |,, | on its complement in S, which we shall now
describe. For a€$ not in Q and each Ce €, the plane determined by a and C intersects Q in exactly one
element a(C) of PR. Furthermore, for any three a,b,ceS not in Q, there exists exactly one element d of
S (not in Q) such that (Ai=do(f))7lof:. We set |a,b, c]=d. The libra thus defined is a meridian libra and
it induces meridian operators on € and PR. Rather than proving these statements here, we shall instead
show how a meridian libra per se, together with its meridian aggregate of cosets, generates a projective three
dimensional space.

(10.5) Definitions and Notation Let 7 be a meridian aggregate for a meridian libra L. We saw in
(6.17) that the members of T could be viewed as elements of a matrix, the columns of which being composed
of the members of [l and the rows of which being composed of the members of =. This suggests forming
the cartesian product

Q=[x =. (1)
It turns out that the pre-polar operator ” on L has a felicitous extension ® to the union
S=LuQ (2)
We shall require some notation from (9.9):
veellllReE) Ee={C,Y): YeE} and [l = {{x,R): xelll}. (3)

We begin our extension of the pre-polar operator by, for p = [,V ]€Q, letting p” be the element of T
such that {p“}=X NY:

P =AY (4)

Thus o
(VpeQ) p=Ip°l,P_] (5)

Recalling the notation from (6.17), we also have
&=
(VpeQ) [Ip7l=R]=p" (6)
For peL we let

P~ ={qeQ: peq’} (7)

and, for p = [X,Y]eQ, we let

pEE [[H:UE‘HPDH:{qEQZqEEHE } (8)

For general pe S we let
p =p Up~. 9)
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For general subsets U of S we define
U= (] p U=U'nL and U°=U"NQ. (10)

pelu
Thus, ® is a pre-polar operator on S with associated polar operator

(10.6) Lemma Let 7 be a meridian aggregate for a meridian libra L. For pecL we have
(p)° = 0. (1)
Proof. For xep® we have x" =x° U {qeQ: xeq°} and so
P)*NQ={qeQ:p " Cq’}.
If g were any element of Q such that p"Cq”, it would follow from (10.5.4) and (8.17.i) that p® N q"” = q°
were a line trace, which by (8.13.1) and (8.16) is impossible. It follows that (1) holds. QED

(10.7) Theorem Let T be a meridian aggregate for a meridian libra L. Let p be an element of S.
Then
P~ ={p} (1)
In other words, the pre-polar ® is definitive.

Proof. Suppose first that p is in L. If g is any element of p¥, then p is in q° and so, by (10.5.7), we
have

pep°. (2)
From (10.5.10) we have
P =P UP) =(p") N (P =

(p™° Up“®) N (p&° U p=°) by (8.31), (10.6.1) and (2) (p}. (3)
Now suppose that p is in q. We first note that from the definition (10.5.8) follows that
{p} =" (4)
From (8.16) follows that
p° =0. (5)
From (10.5.10) we have
5 by (10.5.7 o 0 o
p°= () 22D (M) {qeQ:xeq’} ={qeQ: p° C qa’} = {p}. (6)
xXepr xXepe
Consequently
=e o . o\ e . 0o o ° by (4) and (5
P = (pTUPT)T = (p7) N (p%)* = (p° UP )N (p™ U p™) 2D

o by (6
{pn (p=eup=®) 2LL (py.
From this last and (3) we have (1). QED

(10.8) Theorem Let 7 be a meridian aggregate for a meridian libra L. Let p be an element of Q.
Then

(VacEpep) {ap} =Eppey = Ejppop)” = {a.pt™ (1)
and
(qu”]]:E) {qap}.:”]]:E:(m]:D).:{q7p}”~ (2)
P P P
Proof. For q e E‘HPDH distinct from p we have
{9, P} Epoy = (Ejpe) cla.p}*. (3)

That ¢ is in E‘HpDH implies that

q°=1q°1A 9 =Ip A g
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Since q is distinct from p, it follows that q” and p° are distinct elements of the partition |p”|. Consequently
p'Ng =90 (4)
and by (10.5.8) = =
PN g~ =—— {y<Q: yDeHgH} N{yeQ: yDeHgH} ={yeQ: y elpl} = Ejps. ()
So we have
{q7p}. =q np°
which, with (3), implies

22 (@7 U )N (p Up®) = (a7 Np ) U (q¥np®) B E by (6)

Ejpop” € Eppy- (7
On the other hand, (6) implies
Spe) = (6,9} € 4" = qe(Bjpe)® TS By © B (8)
as well as
{a.p}* = Ejpp* (9)

That (1) holds now follows from (6), (8) and (9).
An analogous argument shows that (2) holds as well. QED

(10.9) Theorem Let T be a meridian aggregate for a meridian libra L. Let N be a hyperbolic line
trace?® in L. Then
N*=N° and N*=N. (1)

Proof. If N*#N° there would be p in Q N N*, which would imply that NCp”. But p” is in 7, which
contradicts (8.23.iii). Consequently N* = N°.
From (8.23.ii) it follows that N* is a hyperbolic line trace. Thus, by what we have just shown,

N* = (N*)° = (N°)? ZE20 N,
QED

(10.10) Theorem Let 7 be a meridian aggregate for a meridian libra L. Let N be a parabolic line
trace in L, and let T be the element of 7 such that NCT. Then

N* = N°U{(ITI, T)} (1)
and

N** = NU{{IT, T} (2)

Proof. For any line trace K we have

K (10.5.10) ﬂ o (10.5.9) m (s° Us“) — ﬂ ) U ﬂ s“) by (10.5.7) and (10.5.8)
scK scK scK scK

K°U{qeQ: K q'} 2223 ke [, U: K c UeT}. (3)

Substituting N for K in (3), we see that (1) holds.
Using the fact that the K° is a line trace too**, that K°°=K 4% and substituting K° for K in (3), we
obtain

(K°)* = Ku{{ul, U): K° c UeT}. (4)
Thus

Ke* by (10.5.10) (K° U Ke). — (K°)* N (KO)‘ by (4)

(KU {0IWl, W) KoY N ((K%)° U (K9)®) = (KN (K%)°) U ({1, U]: K° C UeT}n (K9°)  (5)

43 Cf (8.12) and (8.20).
4 Cf. (8.13.0).
45 Cf (8.13.i1).

86



We have by (10.5.10 by (10.1.i by (10.5.7
Ke 2y (05 )K’ﬂQ y (10.1.i) ﬂxn y (10.5.7)

xecK
(M {0, U= xeUeT} = {{IUI, U]: KeUeTD. (6)
xecK
From (6) follows that K C (K®)° which with (4) and (5), yield
K* = KU ({{IW, U): K*eUeT} N (K%)®). (7).

We have - B
Ne 22O ey, T)} = (N°)° by (10.5.8) N ow T

ue| 1]

and

{0, W) : N°eUeT} = {(IM, T)}

and so substitution of N for Tin (7) yields (2). QED

(10.11) Theorem Let 7 be a meridian aggregate for a meridian libra L. Let N be an elliptic line
trace in L, and let T; and T, be the elements of 7 such that N® = T; N T,. Then

N* = N°U{(Tl, T2, (ITal, T2 7} (1)

and — —
N** = NU{lTl, T, (ITal, T2 1} (2)

Proof. We have seen that, for any line trace K in L, (10.10.3), (10.10.6) and (10.10.7) hold. Substituting
N for K in (10.10.3), we obtain (1).
Substituting N for K in (10.10.6), we obtain

N2 (T, T2, (1Tl Ta ) = (N©)° 228

N o, W) = {0, Ta), (el T2}

e IMIAT | HTiA T

N

)

and

{0, W2 NeeUeT} = (M), ), [Tl T2 )}

and so substitution of N for K in (10.10.7) yields (2). QED

(10.12) Recapitulation and Definitions In (10.5) we defined a pre-polar * and polar * and in
(10.7) we showed that the first axiom (10.1.i) of a space polar operator was satisfied.
In (10.8), (10.9), (10.10) and (10.11) we described the lines of the polar operator. To recapitulate, we
consider distinct points p and q of S. If both of them are in Q and (” is either a left or a right coset of p°,
then (10.8) implies that all elements in the corresponding column or row comprise the set

{r.q}**={p.q}". (1)
If p and q are in Q but not in a common row or column, then (8.13.ii) and (10.11.2) imply that

{p,q}** NLis an elliptic line trace. (2)
If pisin L and q is in Q, then either (2) holds or
{p,q}°** NL is a parabolic line trace. (3)
If p and q are both in L, then either (2) holds, (3) holds or
{p,q}°* NLis a hyperbolic line trace. 4)
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In the case of (1) we shall speak of a quadric line, in the case of (2) an elliptic line, in the case of (3) a
parabolic line and in the case of (4) a hyperbolic line.
We proceed to show that ® is a space polar operator.

(10.13) Theorem Let T be a meridian aggregate for a meridian libra L. Two lines of S cross if and
only if their polars are lines which cross.
Proof. We already know that polars of lines are lines. Suppose that K and N are lines such that

K*NN* is a singleton. It will suffice to show that N N K is non-void. We consider the various cases seriatim.

K N i . . .
and N both quadric, 1t is without loss of generality that we may presume that K is of the form [l —.

L
By (10.8)
K* =K. (1)
If N * were of the form [l —, then it would either be all of [l _—, or not intersect [l — at all. Consequently
T L L
N * must be of the form EHquH for some qeQ. By (10.8.1) we know that N = N*. Thus

NNK=Egynll= = {1, P2}

.pL

K auadric and N elliptic,  pg above, we presume that K is of the form [l _ and that (1) holds. Since N

i

is elliptic, by (10.11) there exist A, BT distinct such that
N = (AnB)U{[IAI,B),IBI,Al} and N* = ((IAl A B) N (IBI A A)) U{[IAl, A1,[IBI, B}.

Since N" and K" intersect, either [HA\,Z] or [HBH,E] is in [l —. Without loss of generality we shall

=

. It follows that [IBI, EJ isin [ —, and so
a P

1
|
=

presume that it is [IAl, Z]: that

NNK={lBI,Al}.

K quadric and N parabolic

As before, we presume that K is of the form [l _ and that (1) holds. Since

P
N is parabolic, by (10.10) there exists TeT such that

N = (TAN) U {0 T7} and N* = (TAN) U {1, T},

Since N™ and K" intersect, it follows that [ITI, i} is in [l —. Consequently

3

NAK = {{IT, T)}.

K quadric and N hyperbolic

In view of (10.9), this case cannot occur.

polars not in Q but intersect M Q. 76t p be in K* N N*N Q. From (10.5.10) and (10.5.4) we know that
, by (10.5.5)
_

(KNL)u(NNL))Cp peNNK.

polars do not intersect in Q

Then there is an element p of L such that pe K* N N*. From (8.30) follows
that either KN N N L is non-void or there exists X €7 such that K° UN°cX. In the latter case we have

(X1, X Je(NNK).

QED

(10.14) Theorem Let T be a meridian aggregate for a meridian libra L. Let (a, b, ¢) be a triangular
triple, in the sense of (10.1.3). Then there exists pe S such that {a,b,c}** = p".
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Proof. Let K be the line {a,b}**, and let N be the line {a, c}**. We prove the theorem case by case:

KU -
% In view of (10.5.5) we may, without loss of generality, presume that

a-b. (1)
By (10.5.8) we have
= = = " by (10.2.vi) = -
{a,b,e} Clier,a’] Clien,a’] === {a,b,c}** Clici,a”] . (2)

Since lla”l either equals Ib"ll or is disjoint from it, and since a and b are distinct, it follows from (1) that
la”l N Ib"lI=0. Suppose that reQ is in a* Nb". Then (10.5.8) implies that

e (3)
Since c¢ is not in K, we know that E cannot equal a” — thus z E (.. Suppose that reQ is in also in
c”. Then (10.5.8) implies that r*elic”ll. Consequently (3) implies that
= by (10.2.i
r=lic’l, @] = (a"Nb"Net) C el g ) 220,

[le’l,a”) C(a*nb nc™)* ={a,b,c}*".

This with (3) implies that

{a,b,c}** = [(lic”l, a”)". (4)

C
PEQadNEQ, If we interchange the roles of b and ¢ in the above, we obtain (4) again.

KC L . L= o .
KQand €L, Again we may presume that (1) holds. Since a” is a partition of L, one of its elements

P contains c. From (10.5.4) and (10.5.8) we obtain

{a,b,c}ellPI,P] . (5)
Suppose that r is in a* N b" N c*. As above we have (3), and we also have from (10.5.7) that cer®. Since

Y is a partition of L, it thus follows from (3) that

)

=P —r=(IPI,P].
This means that a
(aNb Ne”)  {lIPI, P}

which, with (5), implies that

220 (P, P) C (@ nb*ne’)” = {a,b,c}"

{a,b,c}** = [IPI, P J (6)

C n . . . .
% Interchanging the roles of b and ¢ in the above paragraph, we obtain (6) again.

D2 CCL. The sets {a,b}° and {a, c}° are distinct line traces in a”. Either we have that
{a,b}°Nn{a,c}° =90 (7)
or
@pel) pe({a, b}’ n{a,c}?). (8)
Suppose that (7) holds. Then
{a,b,c}° ={a,b}*N{a,c}° =10 9)
and from (8.30) follows that there exists Te7T such that ({a,b}°° U {a, c}°°)CT. Consequently
{a,b,c} C (M, T) . (10)

If ris in a,b, c® then 7 is in a®Nb™N ¢ and so {a,b, c}cr”. By (8.14.i) either r=T or " N Tis a line
trace. Since {a, b, c} cannot be a subset of a line trace, it follows that r°=T: we have

{a,b,¢}° = (1M, T) 2295 {a,b,¢}* = [ITI, T).
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Consequently

{a,b,c}** = (I,

=1l

). (11)

Now suppose that (8) holds. Then
pe{a,b}°n{a,c}°={a,b,c}° c{a,b,c}". (12)
Let r be any element of {a, b, c}°. Then

re(({a.6)™)7 N ({a,e}*)") = {a.b}* N {a,e)? 2L r—p (13)
since {a,b}°#{a, c}°. Assume that s were any element of {a,b, ¢}°. Then
a,b,ces” by (815) ({a,b}°°U{a,c}*®) Cs". (14)

Furthermore, in view of (12), we have

({a, b} U{a, c}*) c p” 22U (14, b}°° U {a, c}*°) € p° N's".
But (8.14.1) implies that p” N's” is a line trace: an absurdity. This with (13) implies that
{a,b,c}* ={a,b,c}°U{a,b,c}*={a,b,c}° = {p} = {a,b,c}** =p". (15)
KZQNZQanda,b,ceQ

Here K and N are elliptic lines in S. Thus we can replace a, b and c by
elements of L to obtain (15).

K¢Z Q,a,bcQ and c€L

Here K is an elliptic line and N is either an elliptic or a parabolic line. Thus
we can replace a, b by elements of L to obtain (15).
N ¢ Q,b,c€eQ and a€L

. We can interchange a and c in the above to achieve the same result.

acQ and b,c€L . . L. L. .
%ﬁ Here K is either an elliptic or a parabolic line and so we can replace a with an element

of L to obtain (15).

€ da,c€eL . . . .
cQan:aC> We may interchange a with ¢ in the above to obtain the same result.

We have covered all the essentially differing cases, and so from (4), (6), (11) and (15) follows Theorem
(10.14). QED

(10.15) Theorem Let T be a meridian aggregate for a meridian libra L. Then the operator = on S
is a space polar operator. Thus S and L constitute a three dimensional projective space.

Proof. It follows from (10.5.10) that ® is the polar operator induced by the pre-polar operator = on S. It
follows from (10.7), (10.13) and (10.14) respectively, that axioms (10.1.1), (10.1.2) and (10.1.3), respectively,
are fulfilled.

By definitionS, a meridian aggregate of balanced sets has dimension*’ at least 4. This dimension is
equal to the cardinality of each element of [l and of each element of E. In particular it follows that each
quadric line has at least 4 elements.

Suppose that a and b are generic but distinct elements of L. It follows from Lemma (8.10) that there

. . . @
exists a basis*® for the representation p and elements ¢, € F such that

@ (1 0 0o e rd\. 2,
pa<0 ])){aab} {<qd e).(,#(ﬂd }’ and

(; ;) ifbea’;
b~ (0 7’) . (1)
, ifbea".
qg O

16 Cf (8.4).
4T Of. (6.17).
48 0Of. (8.8).
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Let e be any element of the representation space such that e?#¢r and ¢#0. Define
@, ! 1 —r .

@o.® (!, )0 irvgas
@, ! e - .

@o.® (). e

Thus the cardinality of W is 3 in either case, and WcC{a,b}°°. It follows that elliptic, parabolic, and
hyperbolic lines in S have cardinality at least 3. Consequently axiom (10.1.4) is fulfilled for *. QED

W =

(10.16) Remarks The reader may wish to refer to Figure (11) of Section (1) in conjunction with
Theorem (10.17) infra, Figure (22) of Section (9) in conjunction with Theorem (10.19) infra and Figure (23)
of Section (9) with Theorem (10.20) infra.

(10.17) Theorem Let S be any three dimensional projective space wherein lines have at least four
elements. Let Q be a ruled quadric surface in S. Let L be the complement of Q in S. Let € and R be the
reguli associated with Q and let, for each acL, @ be the function described in (10.4). Then there exists a
unique meridian libra operator |,, | on L such that

(Va,b,cel) |ab,c] = ao(d) ot (1)

Proof. The projective space S has a commutative coordinate field which is associated to a meridian by

(4.13). This meridian is associated to a meridian libra L with meridian aggregate T by (8.7). The libra set

LU([ll xE) is given the structure of a three dimensional projective space by (10.15). Since three dimensional

projective spaces with the same underlying field are isomorphic, and since all ruled reguli are projectively

equivalent, we may identify S with LU ([l XE‘) and Q with [l x E. The operation carried over from L is
evidently as in (1). QED

(10.18) Notation Let € and PR be the reguli of a ruled quadric surface Q. For s Q we will write
/s/ for the element of € containing s and \s\ for the element of = containing s. For Ce€ and ReR we
write C A R for the element of which the singleton is C N R. For a,beL we define

axblQ 35— (b (\s\)) A (a(/s/) € Q. (1)

Evidently each function axb sends elements of € to 98 and vice versa.

(10.19) Theorem Let S be any three dimensional projective space wherein lines have at least four
elements. Let Q be a ruled quadric surface in S. Let ¢ be any bijection of Q such that its restriction to any
element of € is a projective mapping onto an element of S98. Then there exist elements a, b eL such that

¢ = axb. (1)

Proof. We saw in the proof of (10.17) that the complement L of Q in S can be identified with a libra

L, and Q with the product [ x=. We do this and apply (9.10) for the case in which p is the T-inner

representation. Thus there exist a,beL such that ﬁ[a,bf(ﬁ- From (5.15) and (10.18.1) follows that (1)
holds. QED

(10.20) Theorem Let S be any three dimensional projective space wherein lines have at least four
elements. Let Q be a ruled quadric surface in S. Let ¢ be any bijection of Q such that its restriction to any
element of € is a projective mapping onto another element of €. Let a be any point in S not in Q. Then
there exist p, g€ P but not in Q such that

o= (puq) o (axa). M)
Proof. Proceeding as in the proof of (10.19), but applying to (9.14) instead of (9.10), we obtain

b, c,d, eca® such that
Ed Ad

Ple,a,cl,|d,a,b])°Pla,a) = .
We let p=|e,a,c] and q=|d,a,b]. QED
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11. Libras as Scales

(11.1) Introduction The old Latin word for a set of scales or balances was libra. These often were
depicted as two round plates suspended from a balance beam. In making a mathematical model of this idea
we posit that the objects we weigh come from a certain set L and that we distinguish between different
elements of L only in so far that they have different effect on the scales. In particular, if we place one object
from L in the center of each plate, then the plates will be in equilibrium just when the objects are the same.
Thus any non-trivial use of the libra will require at least two objects on each of the two scales.

i i

Fig. 24: Libra: a Set of Scales

For precision we shall assume that each of the two scales has two opposing marks to indicate where
weights from L are to be placed: little black disks on the left-hand scale, and little red disks on the right-hand

scale:
O-O

The weights on these two scales pull against one another, and so one may alternatively visualize them as
being super-imposed with the weights on the black marks pressing down, and the weights on the red marks

pulling up:

We shall assume that rotating the these superimposed scales will make no difference in determining equilib-
rium.

When we place objects on the scales we shall color them black to indicate they are on the left-hand
scale and red to indicate that they are on the right-hand scale. We shall color the boundary of the scales
green to indicate that the scales are in equilibrium. For example, our first postulate for our mathematical
model of a libra will be that when a common element a of L is placed on each disk, then the scales are in

equilibrium:
. ( 1)

Besides preservation of equilibrium under rotation of the scales,
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we shall also postulate that equilibrium is preserved when permuting the disks via the “Klein-4” permuta-
tions: for all a,b,c,d € L,

(Va,b,e,d € L) <:><:><:>. (2)

Postulate 3 formalizes the assertion that elements of L differ only in so far as they influence equilibrium of

the scales:
(Va,b,ce L)(Fde L) . (3)

We have yet to decide what it means for scales with with more that two objects apiece to be in equilibrium
— we shall do so in terms of the scales with two objects apiece. Suppose that we have three objects on each

scale, and so six on the superimposed scales:

The upper half elements determine an element r of L such that

element s such that . We shall define equilibrium for
equivalences
=)=

<— (drel) and .

In devising this definition of equilibrium of six objects we separated the scales by an imaginary horizontal
line down the center. This was somewhat arbitrary however as this is just one of three ways to effect such a

' e Q0

If we had chosen the middle separation above, the definition would have been

@ —eer @0

while if we had chosen the right-hand separation, the definition would have been

<~ (Jtel) and .

In order to make these three prima facie different definitions equivalent, our fourth and last postulate for a

and the lower half determine another

to mean that r = s. In view of the

the definition becomes
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libra will be that, for all u,v,w,z,y,z € L

(EITEL) and@;}(ﬂseL)@ and@)(ﬂteL)@ and.

This libra which we have just defined has a rather elegant characterization within the context of algebra.
Postulate 3 begs introduction of a notation for d in terms of a, b, and ¢: we denominate d with |a,b,c]:

(Va,b,ce L) .

We collect some properties of this trinary operator |,, |. First consider a,b € L and set ¢ = |a,a,b]. By

(1) we have and by (3) we have , which by (2) implies . Thus , which in turn
implies that there exists s € L such that and . By (2) we have and . By (3)

we have b = ¢: that is,
la,a,b] = 0.

Setting d = |b, a, a| we have and so which, with , implies . Thus there exists
a d
s € L such that ‘ and ‘ It follows that ‘ and ‘ which implies that b = d: that is

|b,a,a] = 0.

Now we investigate n = | |a,b,c|,d, e| for a,b,c,d, e € L. Letting m = |a, b, c|] we have

O-@~0=Q ===~

It follows that s = |¢,d,e] and n = |a, b, s], which means that
LLa’ b? CJ7d7 6J = |_a7 b? LC7 d? eJJ'
(11.2) Definitions and Notation The three properties we have just derived for the trinary operator

[,, ] on L motivate the definition of (3.2): that a libra operator is a trinary operator on a set L satisfying
the following

(Ma,be L) |a,a,b] = |b,a,a] =1b; (1)
(Va,b,c,d,e€ L) |la,b,cl.d e| = |a,b,|c,d, e]]. (2)

In this case, if a,b,¢,d € L and d = |a,b, c|, we shall write

(11.3) Theorem Let [,, ] be a libra operator for a set L. Then the four postulates enunciated in
(11.1) hold.
Proof. That (11.1.1) holds follows directly from (11.2.1). To prove (11.1.2) we have the following series
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of implications:

=>d=La7b,CJ:>Lb,a,dJ:Lb,a,La,b,CJJzLLb,a,aLb,cJ:Lb,b7cJ:c:>;
:>c=Lb,a,dJ:LC,d,aJ:Hb,a,dJ,d,aJZLb,a,[d,d,aJJ:Lb,a,aJ:b:;
— b=|c,dal = |d,c,b] = |d,c, | dyal| = ||dcc],dya) = |ddya) = a = ;
—a=|deb] = la,b,c] = || e,b],bye] = [dye, [bbye]] = |dy e e] = d = .

That Postulate (11.1.3) holds follows from the definition of . That Postulate (11.1.4) holds follows

from the three following series of implications:

(3rel) @ and = v, u,z| =7 =|w,z,y| =

z=lu,u,z| = ||u,v,v],u,z] = |u,v, |v,uz]| = |y, |wz,y]] =

12y, 2] = w0, [w,2,y]]y, 2] = w0, [[w,2,y],y, 2] ] = [u,0, [w, 2, [y,y, 2] ]| =

lu, v, |lw,z,z]| = |u,v,w] = (s € L) ‘ and‘
(3sel) @ and @ = |z,y,2| = s = |u,v,w| =

= yy,x] =y, 2 2,y2] = |y, 2 29 2]] = y,2 [v,0,w] | =
Lz, w, 0] = 11y, 2, [u, v, w]],w,0] =y, 2, [[u, v, 0], w,0] | = [y, 2, [u, 0, [w,w,0] ]| =

9,2 [0, )] = Ly, 250) — (3¢ € L) @ and‘

and
(Ftel) @ and @ = |z,w,v| =t =|y,2z,ul =
v=|w,w,v] =||wzz|,wv]=|wz|zwv]] =|we,lyzu | =
Lo, u, 2] = |[w, @, [y, 2,0l | u, 2] = w, [y, 2, ul,u, 2] | = [w, 2, [y, 2, [u,u, 2] ] =
\w,z, |y, 2,2z]| = |w,z,y] = (3r € L) @ and@
QED
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Contravariant map on on a representation space (9.9)
Correlation (10.4)

Cross-ratio (1.2), (4.12)

Cross section of a cartesian product (9.1)
Crossing lines in a polar space (10.1)
Definitive pre-polar and polar operators (10.1)
Diagonal of an aggregate (determined by an element of the libra) (5.15)
Elliptic line (10.12)

Elliptic line trace (8.20)

Equilibrium (11.2)

Equivalent libra representations (3.13)

Group libra operator (3.9)

Faithful representation (5.9)

Harmonic pair (2.36)

Homogeneous aggregate of translates (5.3)
Homogeneous representation (5.9)

Hyperbolic line (10.12)

Hyperbolic line trace (8.20)

Inner representation (6.8)

Inversion (4.11)

Involution projectivity (2.31)

Left translate of a subset of a meridian (5.1)
Libra (3.2)

Libra homomorphism, isomorphism (3.10)
Libra of Operators (3.6)

Libra operator (1.6), (3.2)
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Line in a polar space (10.1)

Linear translates of a balanced set (5.1)

Line trace in a meridian libra (8.12)

Meridian (1.1) to (1.7), (4.1)

Meridian aggregate (8.4)

Meridian automorphism (4.24)

Meridian dialation(4.17)

Meridian equivalence relation (2.40)

Meridian family of involutions (4.4)

Meridian homomorphism (4.1)

Meridian involution (4.6)

Meridian lation (4.6)

Meridian model (intrinsic) (2.40)

Meridian operator (4.1)

Meridian rotation (4.19)

Mébius transformations (1.7)

Normal balanced subset of a meridian (5.5)
Normal homogeneous aggregate (5.8)

Normal representation (5.11)

Obverse libra operator (5.15)

Obverse libra representation (3.13)

Orbit of a projectivity (2.36)

Parabolic line (10.12)

Parabolic line trace (8.20)

Plane in a polar space (10.1)

Point aggregate (5.3)

Polar libra (7.6)

Polar operator induced by a pre-polar operator (10.1)
Polar of a point and of a subset of a libra (7.1)
Polarity (1.7), (2.9), (10.4)

Pre-polar operator (10.1)

Projective line (1.3)

Projectivity (1.3)

Quadriad (2.9)

Quadric cycle (2.36)

Quadric line (10.12)

Quadric line, relative to a polarity (1.7)
Quadric polarity (1.7)

Quadric surface (1.7), (10.4)

Quinary operator on a line (1.3); on a circle (1.5)
Reguli, Regulus (1.7), (10.4)

Representation founded on another representation (8.8)
Representation of a libra on a cartesian product of sets (5.9)
Representation space(s) (5.9)

Right translate of a subset of a meridian (5.1)
Rule (1.7)

101



Ruled quadric surface (10.4)

Scales (11.2)

Skew translates of a balanced set (5.1)
a-skew (6.17)

Space polar operator (10.1)

Space pre-polar operator (10.1)
Symmetric orbit points (2.36)
Symmetrization operator of the cartesian product of a libra with itself (5.15)
Symmetrization representation (3.13)
Throw (1.2)

Tits, Jacques (4.13)

Translate of a subset of a meridian (5.1)
Translation of an affine space (3.5)
Translation projectivity (2.26)
Triangular triple in a polar space (10.1)
Wurf, Wiirfe (1.2)

Veblen, Oswald (1.2)

Von Staudt, Karl Georg Christian (1.2)
Young, John Wesley (1.2)
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