Gene H. Barbee
November 2013
genebarbee@msn.com

The case for a low energy gravitational scale

Abstract

Arguments are presented that current difficulties with gravitational theory are resolved at a lower energy scale. Gravity is known to be the geometry of space time (general theory of relativity). It is generally accepted that the source of the gravitational constant (G) is the Planck scale. The fundamental relationship gives the Compton wavelength (for gravity the Planck length L$), \mathrm{L}=\left(\mathrm{hh}^{*} \mathrm{G} / \mathrm{C}^{\wedge} 3\right)^{\wedge} .5$ as a function of the reduced Planck or Heisenberg constant (Vh pronounced hbar), G and C the speed of light. The Compton wavelength is $1.61 \mathrm{e}-35$ meters and this is associated with the Planck energy 1.2 e 22 mev . This energy scale is far above the energy of a proton and the space surrounding each proton after inflation is much above the Compton wavelength. Literature states that the Compton wavelength is nature's response to geometry and mass at the quantum scale. The quantum scale has so far been incorrectly identified and the large difference causes difficulties with gravitational theory including infinities and quantum foam like space.

Nomenclature and review

	Constants	
lh	$6.5821 \mathrm{E}-22 \mathrm{mev}$-sec	reduced Heisenberg
E	$1.2200 \mathrm{E}+22 \mathrm{mev}$	Planck energy E
M	$2.18 \mathrm{E}-08 \mathrm{~kg}$	Compton mass
G	6.670E-11 $\mathrm{nt} \mathrm{m}^{\wedge} 2 / \mathrm{kg}^{\wedge} 2$	gravitational constant
C	$3.00 \mathrm{E}+08 \mathrm{~m} / \mathrm{sec}$	
	Relationships	
	Compton wavelength=GM/C^2	
	GM/C^2 6.67e-11*2.18	--8/3e8^2
	$\mathrm{L}=\mathrm{GM} / \mathrm{C}^{\wedge} 2$	$1.62 \mathrm{E}-35$ meters
	$\mathrm{L}=\mathrm{Ch} / \mathrm{E}=\mathrm{h} / \mathrm{MC}$	1.62E-35 meters
	$\mathrm{L}=\mathrm{h} / \mathrm{MC}=\mathrm{GM} / \mathrm{c}^{\wedge} 2$	1.61E-35 meters
	$\mathrm{G}=\mathrm{hC} / \mathrm{M}^{\wedge} 2$	

A possible candidate for gravitational energy scale

First compare the quantum mechanical action at two levels, the Planck scale and a much lower level and note that either level could be a candidate for defining quantum gravity since the action is 1 in both cases.

Planck energy E (mev)
L=Planck length (meters)
Planck momentum
p*L
qm action $=\mathrm{p} * \mathrm{~L} / \mathrm{h}$
$1.2200 \mathrm{E}+22$
$1.62 \mathrm{E}-35$
$\mathrm{p}=\mathrm{E} / \mathrm{C} 4.07 \mathrm{E}+13$
$6.58 \mathrm{E}-22$
$1.00 \mathrm{E}+00$

Barbee E (mev)		2.683144792
Barbee r	(meters)	$7.354 \mathrm{E}-14$
Barbee p	$\mathrm{p}=\mathrm{E} / \mathrm{C}$	$8.95 \mathrm{E}-09$
p / hc		$1.00 \mathrm{E}+00$

			cell d305 "unified"		
Gravitational Action			E	$2.6831 \mathrm{E}+00$	
			const HC/(2pi	$1.97 \mathrm{E}-13$	mev-m
			R=const/E	$7.3543 \mathrm{E}-14$	m
			t	$1.54135 \mathrm{E}-21$	
			Field side	R side $\mathrm{E}^{\prime}=\mathrm{m} / \mathrm{g}$	
	$\mathrm{E}=\mathrm{Hv}$		H/E	2*pi*R/V	
	$\mathrm{t}=\mathrm{H} / \mathrm{E}=2 \mathrm{piR} / \mathrm{V}$		1.541E-21	1.541E-21	sec
			1.54135E-21		
1		qm test	$\mathrm{m} / \mathrm{c}^{\wedge} 2 \mathrm{x}^{\wedge} 2 / \mathrm{t}$	6.5821E-22	mev-sec
		qm test/h	$\mathrm{m} / \mathrm{c}^{\wedge} 2 \mathrm{x}^{\wedge} 2 / \mathrm{t} / \mathrm{r}$	0.999999999	

Next, compare the calculation for gravitational constant for the Planck scale and the much lower level above and note that they differ by the large factor natural $\log \mathrm{e}$ to the power 90; 1/exp(90).

Compton mass 2.18e-8 kg
$\mathrm{G}=\mathrm{hC} / \mathrm{M}^{\wedge} 2$
$\mathrm{G}=\left(\mathrm{h} * 3 \mathrm{e} 8 /(2.18 \mathrm{e}-8)^{\wedge} 2 * 1.603 \mathrm{e}-13\right)$
$6.66 \mathrm{E}-11 \quad \mathrm{nt} \mathrm{m}{ }^{\wedge} 2 / \mathrm{kg}^{\wedge} 2$
$\mathrm{G}=\mathrm{hC} / \mathrm{M}^{\wedge} 2$
Proton mass $6.24 \mathrm{e}-28 \mathrm{~kg}$ (proton mass w/o ke)
$\mathrm{G}=\left(\mathrm{h} * 3 \mathrm{e} 8 /(6.24 \mathrm{e}-28)^{\wedge} 2 * 1.603 \mathrm{e}-13\right) / \exp (90)$
$6.66 \mathrm{E}-11 \mathrm{nt} \mathrm{m}{ }^{\wedge} 2 / \mathrm{kg}^{\wedge} 2$
Next consider why $1 / \exp (90)$ is required for the same G. (later, the value $6.24 \mathrm{e}-28 \mathrm{~kg}$ is questioned and the relationship is replaced with a different source for G).

Consider large mass M broken into $\exp (180)$ cells, each with the mass of a proton. Fill a large spherical volume with $\exp (180)$ small spheres. In general relativity the metric tensor is based on ($\mathrm{ds}^{\wedge} 2$). The surface area of a 2 -sphere would be broken into many small spheres with an equal surface area. Let small r represent the radius of each small
cell and big R represent the radius of one large sphere with the same surface area containing $\exp (180)$ cells. Position a proton on the surface of each cell. The total energy will be that of one protons/cell plus a small amount of kinetic energy. At a particular time in expansion, we may either consider the energy density of the whole or the energy density of the many cells. We will evaluate the energy density of large sphere and compare it with the energy density of many small cells. Note that for volume we are considering a filled sphere and big volume V is proportional to $\mathrm{R}^{\wedge} 3$ and this is equal to small volume v with $\exp (180) * r^{\wedge} 3$. This makes $\mathrm{R}=\mathrm{r}^{*} \exp (60)$ for the volume substitution.

```
Area=4 pi R^2
Area=4 pi r^2*exp(180)
A/A=1=R^2/(r^2* *exp(180)
R^2=r^2* exp(180)
r=R/exp(90)
M=m*exp(180)
```

For gravitation, we consider velocity V, radius R and mass M as the variables that determine the geodesic. With G constant, $\mathrm{M}=\mathrm{m}^{*} \exp (180)$ and $\mathrm{R}=\mathrm{r} * \exp (90)$ the gravitational constant would be calculated for large space and proton size space as follows:
at any particular time in expansion
large space proton size space
with substitutions
$\mathrm{RV}^{\wedge} 2 / \mathrm{M}=\quad \mathrm{G}=\mathrm{G} \quad \mathrm{r}^{*} \exp (90) * \mathrm{v}^{\wedge} 2 /(\mathrm{m} * \exp (180))$
$\left(r v^{\wedge} 2 / m\right) / \exp (90)$
Note the factor $1 / \exp (90)$. When measurements are made at the large scale as must to determine G , the above derivation indicates that we should apply the factor $1 / \exp (90)$ to the quantum scale if we expect the same G.

There is a historical perspective to this understanding. When physicists dealt with one electron and its field energy, they knew they were working with the quantum scale and it was reasonable to assign a Compton mass and wavelength with the above relationships. However, early physicists did not understand that gravity is the geometry of space time and furthermore could only make large scale measurements. It was reasonable, as a working assumption, to assign a Compton wavelength to mass and calculate Planck scale energy. However, it now must be recognized that for equal gravitational constant the radius of curvature and mass are vastly different between the large and small scale and that the Planck scale is a historical tool. A full analysis of this is included [2]. It was unfortunate that the great physicists of the 1900's did not have the advantage of WMAP [5] and Cmagic [6] expansion models, nor did they have the advantage of knowing the number of protons in the universe, which we can estimate at $\exp (180)$ from the mass part of WMAP critical density.

Proposed model for expansion

PE expansion $\mathrm{PE}=$ integral FdR
$\mathrm{KE}=\mathrm{mv}^{\wedge} 2 / 2$

$$
\begin{aligned}
& \mathrm{M}=1.675 \mathrm{e}-27 \mathrm{~kg} \\
& \text { v/C lateral=}=0.144 \\
& \text { (KE lateral=9.9 mev) } \\
& \mathrm{m}=1.675 \mathrm{e}-27 \mathrm{~kg}
\end{aligned}
$$

The initial lateral velocity is associated with a proton with 9.9 mev moving in a circular fashion. Expansion is outward. The radius of this circle is the geodesic radius, R. With G constant at $6.67 \mathrm{e}-11 \mathrm{nt} \mathrm{m}^{\wedge} 2 / \mathrm{kg}^{\wedge} 2$, the radius is:

V m/sec $0.144 * 3 \mathrm{e} 8=4.3 \mathrm{e} 7$
$\mathrm{m} \quad \mathrm{kg} \quad 1.67 \mathrm{E}-27$
$\mathrm{R}=\mathrm{Gm} / \mathrm{V}^{\wedge} 2^{*} \exp (90) \mathrm{m} \quad 7.35 \mathrm{e}-14$

Energy considerations

S.K. Kauffmann [3] gives the following value for energy.

Radius 1.21E +26
$2\left(c^{\wedge} 4 / \mathrm{g}\right) \mathrm{r}$
2.93E+70
$\mathrm{m}^{\wedge} 4 / \mathrm{sec}^{\wedge} 4\left(\mathrm{~kg}^{\wedge} 2 /\left(\mathrm{nt} \mathrm{m}{ }^{\wedge} 2\right)\right)^{*} \mathrm{~m}$
$\mathrm{m}^{\wedge} 4 / \sec ^{\wedge} 4 \mathrm{~kg}^{\wedge} 2 /\left(\mathrm{nt} \mathrm{m} \mathrm{m}^{*}\right)^{*} \mathrm{~m}$
$4.69 \mathrm{E}+57$
$\mathrm{m}^{\wedge} 4 / \mathrm{sec}^{\wedge} 4 \mathrm{~kg}^{\wedge} 2 \mathrm{~m} /\left(\mathrm{mev}^{*} \mathrm{~m}\right)$
$1.48 \mathrm{E}+117$
$\mathrm{m}^{\wedge} 4 / \sec ^{\wedge} 4 \mathrm{mev}^{\wedge} 2 \mathrm{~m} /\left(\mathrm{mev}^{*} \mathrm{~m}\right)$
$\mathrm{m}^{\wedge} 4 / \mathrm{sec}^{\wedge} 4 \mathrm{mev}$
Energy 1.82E+83 mev
Volume7.35E $+78 \quad \mathrm{~m} \wedge 3$

$$
\begin{array}{cl}
2.48 \mathrm{E}+04 & \mathrm{mev} / \mathrm{m}^{\wedge} 3 \\
\text { number protons } & 1.49 \mathrm{E}+78 \\
4.93 \mathrm{E}+00 & \mathrm{mev} / \text { proton }
\end{array}
$$

If the above energy value is divided by $\exp (180)$ protons, the result is about 5 $\mathrm{mev} / \mathrm{proton}$. The value $9.9 \mathrm{mev} / \mathrm{proton}$ [1][2] and the value above compare favorably.

Current kinetic energy per proton

The proton orbit model allows an evaluation of the kinetic energy during expansion. The derivation below is based on the gravitational constant remaining at the value G.

With the initial $\mathrm{ke}=9.9 \mathrm{mev}$, the current value of kinetic energy would be $9.9 * 7.35 \mathrm{e}-$ $14 / .46 \mathrm{mev}=1.6 \mathrm{e}-12 \mathrm{mev} /$ proton associated with $\mathrm{v}=17.8 \mathrm{~m} / \mathrm{sec}$ since the appropriate expansion values are $7.35 \mathrm{e}-14 \mathrm{~m}$ at the beginning and the expanded scale is 0.46 meters. Recall that each cell scales to large radius by the factor $r^{*} \exp (60)$.

Argument \#1: The cell radius 0.46 m scales to the current size of the universe

Below is the first of several arguments that $\exp (90)$ must be used as a correction factor at the quantum scale.

Assuming only that G is constant, big R can be estimated as follows. The current velocity at the perimeter of each cell is $17.83 \mathrm{~m} / \mathrm{sec}$ but for the whole universe, this scales up by $\exp (15)$ to $5.64 \mathrm{e} 7 \mathrm{~m} / \mathrm{sec}$ (this agrees substantially with the Hubble constant*5.2e25 ($2.3 \mathrm{e}-18 * 5 \mathrm{e} 25=1 \mathrm{e} 8 \mathrm{~m} / \mathrm{sec}$) . Small r (0.46) is scaled up by the velocity ratio and mass ratio in the two columns below and the result is divided by $\exp (90)$. This gives the geodesic radius R for the universe of 5.2 e 25 . Recall that small $\mathrm{r} * \exp (60)$ estimates the current size of the universe $(0.46 * \exp (60)=5.23 \mathrm{e} 25$ meters. It should not be surprising that big R for the large sphere is equal to the geodesic. (Also recall that everything is placed conceptually on the surface of the sphere since there can be no preferred position).

	Scaling the geodesic to universe sized space at velocity C						
R^{\prime} is the universe size geodesi		R'V^2/M	$\mathrm{G}=\mathrm{G}$	$r^{\prime} v^{\wedge} 2 / m$	r ' is the proton size geodesic		
		G from m=1.67	7 kg				
	$\mathrm{M}=\mathrm{m}^{*} \exp (0)$	$2.49 \mathrm{E}+51$	1.67E-27	1.67E-27	kg		
$\mathrm{R}^{\prime}=\mathrm{r}^{*}(\mathrm{l} / \mathrm{V})^{\wedge} 2^{*}(\mathrm{M} / \mathrm{m})^{*} 1 / \exp (90)$	R	$5.221 \mathrm{E}+25$	4.29E-14	4.58E-01	r'	$5.23 \mathrm{E}+25$	meters
$4.30 \mathrm{E}+07$	V (meters/sec)	$5.64 \mathrm{E}+07$	$4.30 \mathrm{E}+07$	17.25	v (meters/sec)		
	G	$6.67 \mathrm{E}-11$	3.87E-11	6.67E-11			

Initial Velocity ($4.29 \mathrm{e} 7 \mathrm{~m} / \mathrm{sec}$) is associated with my kinetic energy of 9.9 mev and the following calculation shows that the original energy is enclosed in the volume, just diluted.

total ke	$9.9^{\star} \exp (180)$	$1.47 \mathrm{E}+79 \mathrm{mev}$
Vol	$4 / 3 \mathrm{pi}^{\star} 5.2 \mathrm{e} 25^{\wedge}$	$6.00 \mathrm{E}+77 \mathrm{~m}^{\wedge} 3$
		$2.46 \mathrm{E}+01 \mathrm{mev} / \mathrm{m}^{\wedge} 3$

The same calculation for small r is as follows, but this time for original energy.

total ke	9.9	$9.90 \mathrm{E}+00 \mathrm{mev}$
Vol	$4 / 3$ pi$^{\star} 0.46^{\wedge} 3$	$4.03 \mathrm{E}-01 \mathrm{~m}^{\wedge} 3$
		$2.46 \mathrm{E}+01 \mathrm{mev} / \mathrm{m}^{\wedge} 3$

Note that the original energy is conserved and it agrees substantially with Kauffmann [3] on a per particle basis. Since there are 3 particles per meter, the energy per particle is 9.9 mev.
The scaling estimate for R is repeated below except it does not include $\exp (90)$ as a divisor.

	Scaling the geodesic to universe sized space at velocity C						
R' is the universe size geodesi		R'V^2/M	$\mathrm{G}=\mathrm{G}$	$r^{\prime} v^{\wedge} 2 / m$	r^{\prime} is the proton size geodesic		
		G from m=1.67	7 kg				
	$\mathrm{M}=\mathrm{m}^{*} \exp (0)$	$2.49 \mathrm{E}+51$	1.67E-27	1.67E-27	kg		
$\mathrm{R}^{\prime}=\mathrm{r}^{*}(\mathrm{~V} / \mathrm{V})^{\wedge} 2^{*}(\mathrm{M} / \mathrm{m})^{*} 1 / \exp (90)$	R	$4.89 \mathrm{E}+25$	$4.01 \mathrm{E}-14$	$3.51 \mathrm{E}-40$	r'	4.01E-14	meters
$4.30 \mathrm{E}+07$	V (meters/sec)	$5.83 \mathrm{E}+07$	$4.30 \mathrm{E}+07$	17.83	v (meters/sec)		
	G	$6.67 \mathrm{E}-11$	3.62E-11	6.67E-11			

To match G with G , the radius $\mathrm{r}=0.46$ was divided by $\exp (90)$ to maintain the original energy density of about $30 \mathrm{mev} /$ particle. There are at least two problems here. First, the radius of the universe currently can be only $4 \mathrm{e}-14$ meters ($3.5 \mathrm{e}-40 * \exp (60)$). Second, the energy density is too high ($5.4 \mathrm{e} 118 \mathrm{mev} / \mathrm{m}^{\wedge} 3$).

Argument \#2: Agreement with the Schwartzschild radius

It is demonstrated below that scaling with $1 / \exp (90)$ in the denominator exactly matches the Schwarzschild calculation. Note that in this case, the velocity at the surface is the speed of light.

R^{\prime} is the universe size geodesic		R'V^2/M	$\mathrm{G}=\mathrm{G}$	r'v^2/m	r ' is the proton	geodesic	
		G from $\mathrm{m}=1.67 \mathrm{e}-27 \mathrm{~kg}$					
	$\mathrm{M}=\mathrm{m}^{*} \exp (0)$	$1.67 \mathrm{E}-27$	1.67E-27	1.67E-27	kg		
$\mathrm{R}^{\prime}=\mathrm{r}^{*}(\mathrm{~V} / \mathrm{V})^{\wedge} 2^{*}(\mathrm{M} / \mathrm{m})^{*} 1 / \exp (90)$	R	$1.238 \mathrm{E}-54$	1.51E-15	4.58E-01	r'	5.23E+25	meters
$4.30 \mathrm{E}+07$	V (meters/sec)	$3.00 \mathrm{E}+08$	$4.30 \mathrm{E}+07$	17.25	v (meters/sec)		
	G	$6.67 \mathrm{E}-11$	$1.37 \mathrm{E}-12$	$6.67 \mathrm{E}-11$			

m	$1.66 \mathrm{E}-27$
$\mathrm{~S}=2 \mathrm{GM} / \mathrm{c}^{\wedge} 2=1.48 \mathrm{e}-27^{*} \mathrm{~m}$	$2.45 \mathrm{E}-54$
My Geodesic at C and High M	$1.24 \mathrm{E}-54$
S=2Geodesic	$2.49 \mathrm{E}-54$

For one solar mass in universe sized space.

R' is the universe size geodesic		R'V^2/M	$\mathrm{G}=\mathrm{G}$	r'v^2/m	r^{\prime} is the proton size geodesic		
		G from $\mathrm{m}=1.67 \mathrm{e}-27 \mathrm{~kg}$					
	$\mathrm{M}=\mathrm{m}^{*} \exp (0)$	$2.00 \mathrm{E}+30$	1.67E-27	1.67E-27	kg		
$\mathrm{R}^{\prime}=\mathrm{r}^{*}(\mathrm{v} / \mathrm{V})^{\wedge} 2^{*}(\mathrm{M} / \mathrm{m})^{*} 1 / \exp (90)$	R	$1.483 \mathrm{E}+03$	$1.51 \mathrm{E}-15$	4.58E-01	r'	5.23E+25	meters
$4.30 \mathrm{E}+07$	V (meters/sec)	$3.00 \mathrm{E}+08$	4.30E+07	17.25	v (meters/sec)		
	G	$6.67 \mathrm{E}-11$	$1.37 \mathrm{E}-12$	6.67E-11			

In these calculations, big $\mathrm{V}=\mathrm{C}$ and the result is the Schwarzschild radius (S) for the proton mass and the solar mass and the divisor $\exp (90)$ is utilized. This indicates that the values $17.8 \mathrm{~m} / \mathrm{sec}$ and $\mathrm{r}=0.43$ are special. Of course, regular mass rather than Compton mass in used in the S equation below. The equation for S is:
$1=1 /(2 \mathrm{M}-\mathrm{r}) \quad$ term in solution
$2 \mathrm{M}-\mathrm{r}=1 \quad \mathrm{M}$ is metric
$\mathrm{r}=2 \mathrm{M}$
$\mathrm{M}=\mathrm{Gm} / \mathrm{C}^{\wedge} 2 \mathrm{~m}$ is mass
$\mathrm{S}=2 \mathrm{Gm} / \mathrm{C}^{\wedge} 2$ singularity
This equation is twice the Compton wavelength $\mathrm{r}=\mathrm{GM} / \mathrm{C}^{\wedge} 2$ (M is mass here, not the metric above). With $G=r C^{\wedge} 2 / M$ this is the same equation in the box above $G=R V^{\wedge} 2 / M$.

	m
$\mathrm{S}=2 \mathrm{GM} / \mathrm{c}^{\wedge} 2=1.48 \mathrm{e}-27 * \mathrm{~m}$	$2.96 \mathrm{E}+03$
My Geodesic at C and High M	$1.50 \mathrm{E}+03$
$\mathrm{~S}=2 \mathrm{Geodesic}$	$3.00 \mathrm{E}+03$

Argument \#3: Gravity is long range because of $1 / \exp (90)$

There is a third argument that the energy scale is low related to gravity being long range. To understand this argument, a source of gravity is proposed as follows:

An attempt to understand nature and its energy components with the use of information theory [1] has been the focus of the author. The analysis shows that a total mass and kinetic energy of 959.6 mev is balanced against 959.6 mev of field energy. One of the
models developed is entitled the "proton mass model" [1] and is included as Appendix 1. Constants for four fundamental forces (interactions) come from the table. The proton mass model gives a value of 20.3 mev for a kinetic energy associated with a proton but not part of its mass. This can be associated with expansion with the remaining positive energy making up the neutron that decays to a proton. (The 20.3 mev becomes 10.15 kinetic and 10.15 potential as the orbit forms and then 20.3 mev potential energy again after expansion occurs). The radius $7.35 \mathrm{e}-14$ meters is calculated from the fundamental radius model values for gravity. It is proposed that this is the source of the gravitational constant G and it approaches the value accepted value $6.67 \mathrm{e}-11$ during expansion.

				GRAVITY
				mass only
				proton+elec
Particle Mass (mev)				938.272
M (kg)			$1.001 \mathrm{E}+00$	$1.673 \mathrm{E}-27$
Field Energy (mev)				2.683
Kinetic Energy (mev)			0.318	9.833
Gamma (g)=m/(m+ke)				0.9896
Velocity Ratio		$\mathrm{v} / \mathrm{C}=\left(1-(\mathrm{g})^{\wedge} 2\right)^{\wedge} .5$		0.1437
Scale Factor G				$1.00 \mathrm{E}+00$
"R equation"	$\mathrm{R}=\left(\left(\mathrm{HC} /(2 \mathrm{pi}) /\left(\mathrm{E}^{\star} \mathrm{m} / \mathrm{g}\right)^{\wedge} 0.5\right)^{\star} \mathrm{G}^{\wedge}(2 / 3)\right.$			$7.3543 \mathrm{E}-14$
$1.973 \mathrm{E}-13$	$F=M /\left(g^{*} G^{\wedge}(2 / 3)\right)^{*}\left(\mathrm{~V} / \mathbf{c}^{*} \mathrm{C}\right)^{\wedge} 2 / \mathrm{R} / \exp (90)$			3.456E-38
Calculation of gravitational constant from Inertial Force				$6.682 \mathrm{E}-11$
Inertial Force $=\left(\mathrm{m} / \mathrm{g}^{*} \mathrm{C}^{\wedge} 2 / \mathrm{R}\right)^{*} 1 / \mathrm{EXP}(90)$				3.456E-38
Radius R (Meters)				$7.3543 \mathrm{E}-14$
Mass (kg)		$1.673 \mathrm{E}-27$	$9.109 \mathrm{E}-31$	$1.674 \mathrm{E}-27$
Gravitational Constant ($\mathrm{g}=\mathrm{F}^{*} \mathrm{R}^{\wedge} 2 / \mathrm{M}^{\wedge} 2=n t \mathrm{~m}^{\wedge} 2 / \mathrm{kg}{ }^{\wedge} 2$)				6.6746E-11
fundamental time				$1.5414 \mathrm{E}-21$

Since the four interactions have similar form, each with a characteristic radius based on the proton mass model, we would expect all four interactions to be short range. Gravity is known to be not only weak but very long range. The Heisenberg uncertainty principal can be written dh proportional to $\mathrm{dx} * \mathrm{dp}$, where dx is the radial scale and dp is the momentum scale. If the factor $1 / \exp (90)$ is applied to the momentum scale, dx would be multiplied by $\exp (90)$ and gravity would be long range.

If this is the true source of gravity, it would also be considered the source of space itself. Its radius would be small at the beginning but now large.

Argument \#4: Expansion kinetic energy comparisons are correct

Since the expansion history is now known [5][6], incremental calculations can be carried out on a particle by particle basis. With $7.35 \mathrm{e}-14$ meters as the cell radius, the force is calculated to be 1.7e-36 Newtons. As the cell expands (driven by time^(2/3) and time $\wedge(5 / 3)$, the force changes and an integration of the increasing potential energy can be easily carried out.

Now $\mathrm{v}^{\wedge} 2\left(\mathrm{~m}^{\wedge} 2 / \mathrm{sec}^{\wedge}\right)$		Beginning $\mathrm{v}^{\wedge} 2\left(\mathrm{~m}^{\wedge} 2 / \mathrm{sec}^{\wedge} 2\right)$	
$2.601 \mathrm{E}-37$	$\mathrm{v}^{\wedge} 2=(8 / 3 \text { piGrho })^{\star} \mathrm{r}^{\wedge} 2$	0.50	$1.517 \mathrm{E}-24$
$2.60 \mathrm{E}-37$	correct $\mathrm{v}^{\wedge} 2$		$1.289 \mathrm{E}-24$

Based on this the potential energy per particle is now $2.6 \mathrm{e}-37 \mathrm{mev}$. (The initial radius of the sphere containing the particles was initially 8.4 e 12 meters, the radius now is 5 e 25 meters. Derivations that end with $(\mathrm{v} / \mathrm{r})^{\wedge} 2=8 / 3$ pi G rho start with the assumption that initial kinetic energy will become potential energy as expansion occurs. Calculation of kinetic energy at the beginning can't be done with big R because the velocity is greater than the speed of light; hence the wisdom of carrying this out on a proton by proton basis (small r that is $\mathrm{R} / \exp (60)$). These calculations are carried out for a final Hubble's constant of $2.3 \mathrm{e}-18 / \mathrm{sec}$. Detailed calculations of kinetic energy changes show that 9.9 mev of kinetic energy is just enough energy to expand the R1 part of the expansion. Here is the actual final result:

V cell	V R1 $(\mathrm{m} / \mathrm{sec})$	Hubble R1							
expansion						expansion	only		
16.20		$5.64 \mathrm{E}+07$	$9.38 \mathrm{E}-19$						

The velocity $16.2 \mathrm{~m} / \mathrm{sec}$ for each cell corresponds to $5.6 \mathrm{e} 7 \mathrm{~m} / \mathrm{sec}$ at the "edge of R" and this corresponds to a Hubble constant of about $1 \mathrm{e}-18 / \mathrm{sec}$. A result only 12% lower is the calculated Hubble constant for the R1 portion of the simulated expansion curve. Note that this is about half the accepted Hubble's constant of $2.3 \mathrm{e}-18 / \mathrm{sec}$. Expansion component R3 expansion "rides" on R1 expansion. In fact calculations for energy consumed by R3 expansion are on the order of $2 \mathrm{e}-12 \mathrm{mev}$ because late stage expansion is only resisted by small forces. This is a small portion of 9.9 mev and is negligible. The author believes that the equation $\mathrm{v}^{\wedge} 2=4 / 3 * \mathrm{pi}^{*} \mathrm{G}^{*} \mathrm{rho}^{*} \mathrm{r}^{\wedge} 2$ assumes too much and cannot be relied upon to "back-calculate" critical parameters because rho critical is incorrect. It assumes that the second component of expansion (the author's R3 and WMAP's cosmological constant) consume a large amount of kinetic energy. These equations do not include the right function of time ($n o t \mathrm{R}=\mathrm{r}^{*} \mathrm{t}^{\wedge}(2 / 3)$). One cannot make a case for a large amount of missing energy (dark energy).

Argument \#5: A lower limit on radius is established

What about expansion from 0 to $7.35 \mathrm{e}-14$ meters? By keeping G constant and expanding according to a geodesic nature limits the lower radius of a single cell. $\mathrm{R}=\mathrm{Gm} / \mathrm{V}^{\wedge} 2$ is a minimum at $\mathrm{V}=\mathrm{C}$ with m fixed, somewhere around $7 \mathrm{e}-14$ meters.

A low energy scale is problematic for inflation and it proposed that inflation is simply duplication on one cell by the large number $\exp (180)$. Post inflation the radius of the universe would be 8.4 e 12 meters $(\exp (60) * 7.35 \mathrm{e}-14$ meters).

Summary

Arguments were presented that a low energy gravitational scale is reasonable. Should the foundational relationship $r=\left(\mathrm{lh} G / \mathrm{C}^{\wedge} 3\right)$ be preserved? It would require the correction $\mathrm{r}=\left(\text { (h } \mathrm{G}^{*} \exp (90) / \mathrm{C}^{\wedge} 3\right)^{\wedge} .5$. The wavelength would be associated with a mass close to the proton (350 mev) but this difference from the proton (938 mev) makes one suspicious of the relationship altogether. A new source for the gravitational constant G was proposed and using this as a foundational principle sheds new light on the origin of space time itself. At the low energy scale it would be trouble free.

References:

1. Barbee, E. H., A top down approach to fundamental Interactions, QFXi essay, June 2012. viXra:1307.082 revised Nov 2013.
2. Barbee, E.H., Application of proton model to cosmology, viXra:1307.0090, revised November 2013. Accompanying Microsoft ${ }^{\circledR}$ spreadsheet unifying concepts.xls
3. Barbee, E.H., Kinetic and potential energy during expansion, viXra:1307.0089, revised November 2012
4. Kauffmann, S.K., A Self-Gravitational Upper Bound on Localized Energy, Including the Virtual Particles and Quantum Fields, which Yields a Passable "Dark Energy" Estimate, arXiv: 1212.046v4, 24 Mar 2013.
5. Bennett, C.L. et al. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results, Astrophysical Journal, 2001
6. A Conley, et al., Measurement of Omega from a blind analysis of Type IA supernovae: Using color information to verify the acceleration of the universe, the Supernova Cosmology Project, conley@ astro.utoronto.ca
7. Private communication.

Appendix 1

Note the values extracted from the model above.

	Mass (m)	Ke	gamma (g)	R	Field (E	
	(mev)	(mev)			meters	(mev)
Gravity	938.272	10.151	0.9893	$\mathbf{7 . 3 5 4 3 E - 1 4}$	-2.683	
Electromagnt	0.511	$1.36 \mathrm{E}-05$	0.99997	$5.2911 \mathrm{E}-11$	$-2.72 \mathrm{E}-05$	
Strong	129.541	799.251	0.1395	$\mathbf{2 . 0 9 2 8 E - 1 6}$	-957.18	
Strong residu	928.792	10.151	0.9892	$\mathbf{1 . 4 2 9 2 E - 1 5}$	-20.303	

