Moutaoikil-Ripà's conjecture on Prime Numbers: $\forall \mathbf{p}_{0} \geq 7, \mathbf{p}_{0}=2 \cdot \mathbf{p}_{1}+\mathbf{p}_{2}$

Marco Ripà (July 2013)
sPIqr Society, Rome, Italy
Email: marcokrt1984@yahoo.it

Abstract

An original result about prime numbers and unproved conjectures. In this paper I will show that, if the Goldbach conjecture is true, any prime number greater than 5 can be expressed as the sum of a prime and the double of another (different) prime. A computational analysis shows that the conjecture is true (at least) for every prime below 7465626013.

1. Introduction

A few days ago, I discovered a quite strange, new, conjecture involving prime numbers [http://vixra.org/pdf/1307.0081v1.pdf]. It remembered me the very famous Goldbach's conjecture (by Christian Goldbach and Leonard Euler).

The statement is as follows:
Moutaoikil-Ripà's Conjecture. For every prime number $p_{0} \geq 7$, we have that $p_{0}=2 \cdot p_{1}+p_{2}$ (where p_{1} and p_{2} are both primes and $p_{1} \neq p_{2}$).

2. "Proof" (assuming Goldbach's conjecture as true)

Let us consider a base 10 scenario and let us assume Goldbach's conjecture as true, we can see that we have just two cases to analyze ($p_{1}=2$ or $p_{1}>2$).

In fact, $\mathrm{p}_{0}=2 \cdot \mathrm{n}+1 \rightarrow 2 \cdot \mathrm{p}_{1}+\mathrm{p}_{2}$ is odd only if p_{2} is odd (p_{1} is the only prime which can be 2).
Let us assume $\mathrm{p}_{1} \neq 2$, we will show that, assuming Goldbach's conjecture as true, the new conjecture is true as well (for any $\mathrm{p}_{0} \geq 11$). It is trivial that, if $\mathrm{p}_{0}=7$, there is only one possible solution (but there is one!) and it is $7:=2 \cdot 2+3$.

We have the following constraints:
$\left\{\begin{array}{l}p_{1} \neq p_{2} \\ p_{1} \neq 2 \\ p_{2} \neq 2 \\ p_{1}, p_{2} \text { are prime }\end{array} \rightarrow \min \left[\mathrm{p}_{1}+\mathrm{p}_{2}\right]=3+5=8 \rightarrow \min [2 \cdot \mathrm{n}]=8 \rightarrow \min [\mathrm{n}]=4\right.$.

Thus $\mathrm{p}_{0}-\mathrm{p}_{1} \geq 8 \rightarrow \min \left[\mathrm{p}_{0}\right]$ such that $\mathrm{p}_{1}=2 \rightarrow \min \left[\mathrm{p}_{0}\right]=11$ (because $11=8+3$).
$\mathrm{p}_{0}=2 \cdot \mathrm{p}_{1}+\mathrm{p}_{2} \rightarrow \mathrm{p}_{0}-\mathrm{p}_{1}=\mathrm{p}_{1}+\mathrm{p}_{2}$. But Goldbach said that $2 \cdot \mathrm{n}=\mathrm{p}_{1}+\mathrm{p}_{2}$, where (in our case) n is an element of $\mathbb{N} \backslash\{0,1,2,3\}$ and $p_{1}+p_{2} \geq 8$.

The new relation we have to "prove" is easy now: $\mathrm{p}_{0}-\mathrm{p}_{1}$ is the difference between two odd primes \rightarrow it is even ($\mathrm{p}_{0}-\mathrm{p}_{1} \geq 8$), as we have already shown... and, on the other side of the " $=$ ", there is the sum of two distinct primes? Goldbach? Yes, but we need to point out that we are searching for $\mathrm{p}_{1} \neq \mathrm{p}_{2}$ solutions only.

But we can see that, for every value of n we are considering ($n \geq 4$), the partition number of $2 \cdot n$ is ≥ 2 (so we have at least one solution of the form $\mathrm{p}_{1} \neq \mathrm{p}_{2}$). (Q.E.D.)

3. Computational analysis

Emanuele Dalmasso wrote a specific program to test the new conjecture for "small" values of p_{0} : the test has shown that the conjecture is right for any $7 \leq p_{0} \leq 746562601$ (746562601 $=2 \cdot 7+746562587$).
p_{0} can be written in many different ways (for $11 \leq \mathrm{p}_{0}$): you can see this just looking at the figure below (the number of ways such that $\mathrm{p}_{0}:=2 \cdot \mathrm{p}_{1}+\mathrm{p}_{2}$ is shown on the vertical axis).

