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STUDY AND IMPLEMENTATION OF 
image and video matting 
techniques  

A B S T R A C T  

 

Matting is the technique of estimating accurate foreground in images and video. 

Both image and video matting are very important in terms of both commercial and technological 

advances. Various television advertisements, educational videos etc. these days use matting techniques to 

minimize the cost of re-recording the videos or re-capturing the snapshots, instead there is a need of 

efficient matting techniques to perform these tasks swiftly. It also gives power to insert new elements in a 

scene seamlessly or transport an entity into a different environment in order to create novel visual 

artifacts. 

With the recent advances of digital cameras, using matting techniques to create novel composites or 

facilitate other editing tasks has gained increasing interests from both professionals as well as consumers. 

Consequently, various matting techniques and systems have been proposed to try to efficiently extract 

high quality mattes from both still images and video sequences. 

The report consists of various matting techniques that have been proposed till date which have relevance 

in video matting. 

 

Our Aim is to introduce Video Matting in Real Time Video Conferencing both for desktop computers and 

mobile devices such as Cell Phones and Tablets. 

The common approaches available till date requires manual intervention and are also computationally 

expensive, hence, for our application, we needed an approach which is not only independent of human 

intervention but also is computationally effective to handle Real-Time data. 

 

 The difficulties and challenges of video matting are first analyzed, and various ways if combine matting 

algorithms with other video processing techniques for building efficient video matting systems are 

reviewed. 
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Key contributions, advantages as well as limitations of important systems are summarized. 
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INTRODUCTION 

Extracting foreground objects from still images or video sequencesplays an important role in many image 

and video editing applications.Accuratelyseparating a foreground object from the background 

involvesdetermining both full and partial pixel coverage, also known as pulling amatte, or digital matting. 

In digital matting, a foreground element is extracted from a background image by estimating a color 

and opacity for the foreground element at each pixel. The opacity value at each pixel is typically called 

its alpha, and the opacity image, taken as a whole, is referred to as the alpha matte or key. 

The problem was first studied mathematically by Porter and Duff in 1984. They introduced alpha channel 

as the basis for linear interpolation when rendering foreground over arbitrary background. 

Mathematically, the observed image is modeled as: 

 

Iz= αzFz+ (1 −αz)Bz 

 

Where: 

Izis the observed image (z = (x,y)) 

αzis the alpha matte 

Fz and Bzrepresent the foreground and background images respectively. 

The alpha matte can take any value in [0,1]. If it is 1 then pixel z is called definitely foreground, and if it 

is 0 then pixel z is called definitely background. In other cases z is called mixed. 

So the problem lies is in estimating these values in the images and video frames i.e. estimating the 

foreground, background and mixed pixels. 

The known information for an input image are the three dimensional color vector Iz and the unknown 

variables are three dimensional Fz and Bz, and the scalar vector αz. 

Hence, matting is an under-constrained problem where 7 unknown variables need to be determined from 

3 known variables. This results in requirement of user intervention or prior assumptions on image 

statisticsfor determining these unknown variables to calculate an accurate matte from the input image.  

Once the matte is estimated correctly, the background can be replaced by the new background 

seamlesslyby replacing the new background with Bz in the alpha matte equation. 

Most recent methods expect the user to provide a trimapas a starting point.Thetrimap is a rough 

(typically hand-drawn) segmentation of the image into three regions: foreground (shown in white), 

background (shown in black) and unknown (shown in gray). Given the trimap, these methods typically 

solve for F, B,and α simultaneously. 
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BINARY SEGMENTATION VS MATTING 

If alpha value is constrained to be 0 or 1, then the problem of matting is reduced to binary image/video 

segmentation, where each pixel fully belongs to foreground or background. Binary segmentation serves 

as an initial starting point for video matting techniques. But matting is more complex than the problem of 

binary segmentation and is more general and hence delivers results which are closer to the user desired 

results. 

Although matting is modelled as a more general problem than binary segmentation, which is theoretically 

harder to solve, most existing matting algorithms avoid the segmentation problem by having the trimap 

as another input in addition to the original image. The trimap may be manually specified by the user, or 

produced by other binary segmentation approaches. The trimap reduces the dimension of the solution 

space of the matting problem, and leads the matting algorithms to generate user-desired results. 
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VIDEO MATTING 

VIDEO MATTING is the technique of pulling a matte from a video sequence of a dynamic foreground 

element against a natural background. Video Matting to some extent requires the techniques used for 

Image matting but is generally much harder to implement. 

2.1)Challenges in Video Matting:  

 

1) Large Data Set: The algorithms must be able to efficiently process large number of pixels in a 

video sequence as well as they must be fast enough so that interface remains responsive. 

2) Temporal Coherence: The algorithms should maintain the temporal coherence among the frames 

of the video sequence. Applying the image matting techniques directly on each frame of the 

video, results in temporal inconsistency. 

3) Fast motion vs Low temporal resolution: Generally video frames are shot at 30 frames per 

second, thus the sampling rate is much less than ideal and hence it becomes difficult to deal with 

fast motions. The algorithm should be able to maintain an inter-frame correspondence in this case. 

To alleviate these challenges, most of the video matting algorithms use the following abstract method: 

 

 

FIGURE 1FLOW CHART FOR GENERAL VIDEO MATTING APPROACH 

 

  

Binary Segmentation to generate 
the trimap of each frame

Apply image matting algorithm 
on each generated trimap

Address temporal coherence, if 
required



STUDY AND IMPLEMENTATION OF image and video matting techniques  

 

 

Page 9 

2.2)Techniques used for Video Matting 

A number of techniques have been proposed in existing video matting approaches to alleviate the 

difficulties and leverage the advantages. To deal with large data size, most approaches adopt a two-

step framework. In the first step, only binary segmentation  is solved to generate a  trimap  for  each  

frame.  Given  the  trimaps,  matting  algorithms  are then  applied   in  the  second  step  to  refine  the  

foreground  boundary. Since only binary segmentation is considered in the first step, these approaches 

can give users rapid response through various user interfaces. Once  accuratetrimaps  are  generated,  

image  matting  algorithms  can then be applied offline on each frame to generate the final fine mattes. 

To  address  the  importance  of  temporal  coherence,  instead  of  creating  trimaps  on  video frames  

independently, most approaches  create trimaps in  a temporally coherent  way,  by performing spatio-

temporal optimizations.  This  also  allows  trimaps  to  be propagated  from  a  limited number of user 

defined key frames to the entire sequence, resulting in significantly reduced user input. 

2.3) Interpolating Trimaps  Using Optical Flow 

As  a  widely  used  technique  for  estimating  the  inter-frame  motion  at each   pixel   in  a  video   

sequence,    optical   flow    has  been    used   in  the Bayesian    video  matting  system  for  trimap  

propagation.  The  basic idea is to ask the user to specify trimaps on a few key frames in the input 

sequence, and  then use optical  flow  to propagate  trimaps  to all other frames. 

To ensure the trimap propagation is stable, a set of supplemental methods have been proposed.  

 In  the  first  step,  the  system  requires  the  user  to  specify  some  ”garbage mattes” to 

eliminate the foreground on some frames. This allows a dynamic  clean  background  plate  to  be  

reconstructed  from  a  composite mosaic of the remaining backgrounds in each  frame. Both  

trimap  propagation  and matte estimation  can  leverage  the constructed background plate. 

 

 In  the  second  step,  bi-directional  (forward  and  backward)  flow  is computed to guide the 

user-specified trimaps from keyframes to inter- mediate frames. Specifically, from frame t, a 

forward flow is computed from  the  previous  keyframetk   to  t,  along  with  an  accumulated  

errormapEtk . The trimapMtk  is  then  warped  to  frame t  as  Mf .  A backward flow from the 

next key frame tk+1   is computed is a similar  way, resulting  an  accumulated  error  map  

Etk+1  and  a  warped  trimap  Mb . The two warped trimaps are then unified by choosing the 

assignment with  smaller  error  at  each  pixel.  If  the  two  error  maps  are  large  at  a 

particular  pixel,  the  pixel  is  then  either  set  to  be  unknown,  or  to  be background if its  

color  is close enough to the color  in the background plate computed in the first step.  

 

 In the  third step,  Bayesian  matting  is  applied  on  each  frame  with the  propagated  trimap.  

The  estimated  background  plate  is  also  used to  both  improve  the  quality  of  the  matte  

and  speed  up  the  matting process 
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2.4)Bayesian Video Matting 

 

 

 

FIGURE 2 BAYESIAN VIDEO MATTING 

 

 

 

This is a flow chart of Bayesian Video matting which depends upon the Bayesian Image Matting.Here C 

represents the input sequence, K is user selected keyframes and G stands for garbage trimaps.The 

Bayesian video matting works by first asking the user to specify trimaps on a few keyframes on the input 

sequence. The trimaps are propagated to other frames by applying optical flow. 

The steps followed in Bayesian Video Matting are as follows: 

 

(i) The system requires user to specify some garbage mattes to eliminate foreground on some 

frames. This results in creation of a dynamic clean background plate. 

  

(ii) The bidirectional flow is computed to guide the user-specified trimaps from keyframes to 

intermediate frames. 

 

(iii)  Now, the Bayesian Matting is applied on each frame with the propagated trimap.The 

estimated background plate is also used to improvise the quality of matte and speed up the 

matting process. 
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FIGURE 3 BAYESIAN MATTING SAMPLE IMAGES 

 

The above image sequence shows the application of Bayesian Matting. The first image is the original 

image while the second image is the trimap calculated by interpolating the trimap supplied by the user. 

The third snapshot shows the lighthouse in the original image but with a different background. 

 

2.5)Rotoscoping for Trimap  Generation  

Another commonly used production matting technique is rotoscoping. In  traditional  film  production, 

rotoscoping  often  refers  to  the  process of manually tracing shapes, performed one frame at a time, 

through a captured image sequence. Recently, optimization techniques have been introduced into 

rotoscoping process and a keyframe-based rotoscoping system has been proposed , which significantly 

reduces the amount of human effort involved for tracking shapes.  
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The process starts by having the user select two keyframesta  andtb  ,and draw a set of curves indicating 

object boundaries on them. Curves are specified by placing control points of a piecewise cubic B´ezier 

curve with  C0   continuity.  The  curves  drawn  on  ta   can  be  copied  to  tb   and modified to fit the 

new object position. 

 

 

 

 

 

FIGURE 4 EXAMPLES OF ROTOCURVES 
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TRIMAP GENERATION 

The trimap generation is the most important part of the entire process of matting. The Trimap serves as 

the first guide to accurately computing the final matte that separates the foreground and the 

background. 

One of the important factors effecting the performance of a matting algorithm is how accurate the trimap 

is. Ideally, the unknown region in the trimap should only cover truly mixed pixels. In other words, the 

unknown region around the foreground boundary should be as thin as possible to achieve the best 

possible matting results. the less number of unknown variables need to be estimated, and the more known 

foreground and background information is available to use. However, accurately specifying a trimap 

requires significant amounts of user effort and is often undesirable in practice, especially for objects with 

large semitransparent regions or holes. Thus a big challenge for designing a successful matting algorithm 

is how to achieve a good trade-off between the accuracy of the matte and the amount of the user effort 

required. 

 

3.1)What is trimap? 

Trimap is in fact is a three level pixel map which contains three types of pixels, definitely foreground, 

definitely background and unknown pixels. The unknown pixels are those which lie in the region 

separating the foreground and background objects. The trimap may be manually specified by the user 

or produced by binary segmentation approaches. 

 

 

FIGURE 4 TRIMAP 

It is worth mentioning that the recently proposed Spectral matting algorithm can automatically extract a 

matte from an input image without any user input. However, as the authors agreed, the automati 

approach has a number of limitations including erroneous results for images with highly-textured 

backgrounds. Thus in practice, user specified trimaps are typically necessary to achieve high quality 

mattinresults. 
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3.2) Trimap Generation Techniques 

 

Manually Generated Trimap 

In this technique the unknown region of the trimap is marked by outlining the foreground object manually 

using rotoscopic curve or any basic polarized brushing technique. 

For every keyframe the user has to repeat the same manual procedure of selecting the unknown regions. 

And hence this technique is computationally ineffective and slow. 

Automtically Generated Trimap 

In this technique the procedure of generating unknown region in trimap is automated using background 

subtraction and object tracking algorithms such as optical flow. 

 

3.3) Background Subtraction Methods 

 

A) Frame difference: 

 | framei – framei-1 | >Th 

 The estimated background is just the previous frame 

 It evidently works only in particular conditions of objects’ speed and frame rate 

 Very sensitive to the threshold Th. 

  

FIGURE 5 FRAME DIFFERENCE 
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B) Background as the average or the median of the previous n frames:  

 rather fast, but very memory consuming: the memory requirement is n * size(frame) 

 

C) Background as the running average: 

 Bi+ 1 = α * Fi+ (1 - α) * Bi 

 α, the learning rate, is typically 0.05.  

 No more memory requirements 

 

D) Mixture of Gaussians 

 

 The model copes also with multimodal background distributions. 

 The number of modes is arbitrarily pre-defined. 

 All weights ωi are updated (updated and/or normalised) at every new frame. 

 At every new frame, some of the Gaussians “match” the current value (those at a distance < 2.5 

σi ): for them, µi, σi are updated by the running average. 

 The mixture of Gaussians actually models both the foreground and the background: all 

distributions are ranked according to their ωi /σi and the first ones chosen as “background” 

 

3.4) Optical Flow Based Methods 

Optical flow is an approximation of the local image motion based upon local derivatives in a given 

sequence of images. That is, in 2D it specifies how much each image pixel moves between adjacent 

images while in 3D in specifies how much each volume voxel moves between adjacent volumes. 

The computation of differential optical flow is, essentially, a two-step procedure: 

1. measure the spatio-temporal intensity derivatives (which is equivalent to measuring the velocities 

normal to the local intensity structures) and 

2. integrate normal velocities into full velocities, for example, either locally via a least squares calculation 

or globally via a regularization. 

The approach assumes localrigidity. This assumption assures that optical flow actually captures real 

motions in a scene rather than expansions,contractions, deformations and/or shears of various scene 

objects. 
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3.5) Using Optical Flow to calculate Trimap  and Alpha matte 

In this approach, Instead of matching pixel colors in the pair of frames, we measure how the optical-flow-

warped alpha-channel fits the next frame. By minimizing this measure with respect to optical flow fully 

preserves the structure of the foreground object and prevents temporal incoherence artifacts. 

The Algorithm 

We start from a known alpha-channel for the first frame. It can be produced by a user using any existing 

image matting algorithm.Then we try and deform it with a smooth optical flow, until we get the best 

match for the next frame. We process consequent frames in the same way. The algorithm is due to M. 

Sindeyev et al. [3]. 

 

 

FIGURE 6 AUTOMATIC TRIMAP CALCULATION PROCEDURE 

 

 When processing the current frame, we use the following energy function: 

 

E(V,α) = Ed(V,α) + µEs(V) 

 

where V is the optical flow, αis the alpha-channel of the previous frame (as a column-vector) andµ 

is a smoothness parameter.α is fixed. 

 

 We obtain only V by solving: 

𝑉 = arg 𝑣 𝑚𝑖𝑛 𝐸(𝑉, 𝛼) 

 

 

 

Input: αi-1 and ith 
frame

Minimize the 
energy function 
E(V,α) to calculte 
optical flow V.

Calculate αi by 
warping αi-1 with 

V.
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 The data term is defined as follows:  

 

 
 

And 

 
 

Such that 

 

 
 

The data term uses the Laplacian from the Closed-form Matting algorithm which is defined as 

 

 

 

whereΣk is a 3×3 covariance matrix, µk is a 3×1 mean vector of the colors in a window wk,and 

I3 is the 3×3 identity matrix. 

 To regularize the optical flow a simple first-ordersmoothness term is used: 

 

 
 

where w(i) is a 3x3 pixel neighborhood of the i-th pixel. 

 

 The expression for energy is minimized to calculate Vx and Vy labeling for each pixel. 

 

 Then an alpha-channel for the current frame is constructed by warping it with the found optical 

flow V according to he following equation 

 

 
 

Where V(I) represents a warping operation in all the above equations. 
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The result of tracking is refined by applying Bayesian Mat-ting with smoothness to prevent the 

accumulation of tracking error and interpolation artifacts. Unknown region to be processed is constructed 

from all pixels where alpha is not equal 0 or 1. The mean value for the alpha at each pixel is taken from 

the generated alpha map. 

The alpha mattes so obtained can either be used as approximations of trimaps or alpha mattes in 

themselves for the subsequent frames in the video. 
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MATTING TECHNIQUES  

There are various image matting techniques which use different criteria for performing the matting which 

range from evaluating the color range of the pixels in the image to spectral matting techniques. We 

discuss some popular matting techniques that are used to arrive at the alpha matte for an image or a 

video frame. We discuss two categories of matting techniques- parametric sampling based non sampling 

based. 

4.1) Sampling Techniques 

Ruzan and Tomasi’s method : This is one of the most basic techniques of Image matting. This 

method is a color sampling method. In this method the alpha values are measured along the 

connecting components of each objects color distribution. This approach assumes that the 

unknown region is a narrow band around the foreground boundary and the skeleton of the 

unknown region can be represented as a chain of pixels. 

The model construction and alpha estimation procedure is summarized as follows:  

(1) Divide the chain of pixels (the skeleton of the unknown region) into intervals by selected 

anchor points; 

(2) Centered on each anchor point, define a local spatial window which covers a local 

unknown region, and a local foreground and background region.  

(3) Foreground and background pixels in the local window are used to estimate a 

foreground    and background isotropic (unoriented) Gaussian distribution, or point mass, 

respectively, 

 
FIGURE 7 (A) MANIFOLD ESTIMATION 
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FIGURE 7 (B) MODEL INTERPOLATION (ALPHA ESTIMATION) 

 

(4) Build the manifold by collecting foreground Gaussians with background Gaussians, while 

rejecting some connections according to certain “intersection” and “angle” criteria, as 

shown as the lines between point masses.  

 

(5) The observed color of an unknown pixel is modeled as coming from an intermediate 

distribution between the foreground and background distributions. An intermediate 

distributions also defined to be a sum of Gaussians, where each Gaussian has linearly 

interpolated mean and covariance between a foreground and background Gaussian 

pair, according to an estimated alpha value. The optimal alpha is the one that yields an 

intermediate distribution for which the observed color has maximum probability.  

 

(6) For an unknown pixel, after its alpha value is estimated, its foreground color is 

estimated by interpolating the means of foreground and background Gaussian pairs.  

Disadvantages: 

(i) Selection of anchor points is ad hoc 

(ii) Alpha values are computed independently of the pixel values which may result in 

inconsistencies 
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Bayesian Matting: Similar to Ruzon and Tomasi’s algorithm, this approach also models foreground and 

background colors as mixtures of Gaussians, but with a number of improvements. Bayesian matting uses a 

continuously sliding window for neighborhood definition, which marches inward from the fore-ground and 

background regions. In addition to the use of foreground and background samples to build color 

distributions, it also uses nearby computed Fs, Bs and αs, so that every pixel in the neighborhood will 

contribute to the foreground and background Gaussians. The matting problem is formulated in a well-

defined Bayesian frame-work and the matte is solved using the maximum a posteriori (MAP) technique. 

 

The model construction and alpha estimation procedure is summarized as follows: 

(1) InMAP estimation, we try to find the most likely estimatesfor F, B, and alpha, given the observation 

C. We express this as a maximization over a probability distribution P and then use Bayes’s rule 

to express the result as the maximization over a sum of log likelihoods:  

 

 
 

we drop the P(C) term because it is a constant with respect to the optimization parameters. 

 

(2) We can model the first term by measuring the difference between the observed color and the 

color that would be predicted by the estimated F, B, and alpha: 

 

 
 

This log-likelihood models error in the measurement of C and corresponds to a Gaussian 

probability distribution centered at C = αF + (1-α)B with standard deviation sigma. 

 

(3) The sptial coherence of the image is used to estimate the foreground term L(F). That is, the color 

probability distribution using the known and previously estimatedforeground colors within each 

pixel’s neighborhood N is built.To more robustly model the foreground color distribution, we 

weight the contribution of each nearby pixel i in N according to two separate factors. First, we 

weight the pixel’s contribution by α2
i , which gives colors of more opaque pixels higher 

confidence. Second, we use a spatial Gaussian falloff gi with sigma= 8 to stress the contribution 

of nearby pixels over those that are further away. The combined weight is then wi =  

α2
igi. 

 

(4) Given a set of foreground colors and their corresponding weights, we first partition colors into 

several clusters using the method of Orchard and Bouman [7]. For each cluster,we calculate the 

weighted mean color F and the weighted covariance matrix ∑F : 
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Where = ∑ 𝜔𝑖𝑖𝜖𝑁 . The log likelihoods for the foreground L(F) can then be modeled as being 

derived from an oriented elliptical Gaussian distribution, using the weighted covariance 

matrix as follows: 

 

 
 

(5) The definition of the log likelihood for the background L(B) depends on which matting problem we 

are solving. For natural image matting, we use an analogous term to that of the foreground, 

setting wi to (1-αi
2)giin the foreground equations. 

 

(6) We assume that the log likelihood for the opacity L(α) is constant (and thus omitted from the 

maximization in equation. 

 

 

 

 

: 
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FIGURE 8 ORIGINAL MAGE 

 

 

 
FIGURE 9 TRIMAP 

 

 

 

 
FIGURE 10 BAYESIAN MATTE 

 

 

 

 

 
Bayesain Matting Results 
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4.2) Non-Sampling Techniques 

Poisson Matting: Poisson Matting estimates the gradient of the matte from image, then reconstructs the 

matte by applying Poisson’s Equation. This reduces the error caused by mis-classification of color samples 

in a complex scene.It is based on the assumption that intensity change in the foreground and background 

is smooth. 

 

 

FIGURE 11 THE POISSON MATTING PROCESS 

 

 

Poisson matting consists of two steps: 

(1) First, an approximate gradient field of matte is computed from the input image.In order to get an 

approximate gradient field of matte, we take the partial derivatives on both sides of the matting 

equation: 

 

 
 

This is the differential form of the matting equation, for R, G and B channels individually. In 

situations in which foreground F and background B are smooth, i.e.,  α∇F +(1−α)∇B is relatively 

small with respect to (F −B)∇α, we can get an approximate matte gradient field as follows: 

 

 
 

(2) As shown in Figure , ΩF , ΩB and Ω are defined as “definitely foreground”, “ definitely 

background ” and “unknown” regions respectively. For each pixel p =(x, y) in the image, Ip is its 

intensity,Fp and Bp are the foreground and background intensity respectively.LetNp be the set of 

its 4 neighbors. ∂Ω = {p ∈ ΩF ∪ΩB|Np∩Ω =/ 0} is the exterior boundary of Ω. 

User Supplied Trimap

Global Poisson Matting

Alpha Matte
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FIGURE 12POISSON MATTING REGIONS 

 

 

 

 

(3) To recover the matte in the unknown region Ω given an approximate (F −B) and image gradient 

∇I, we minimize the followingvariational problem 

 

 

 With the following drichlet boundary conditions α|∂Ω = α`|∂Ω., we define: 

 

 And the associated Laplacian equation is : 

 

 

(4) We solve these equations using an iterative optimization process: 

 

 Initially, for each pixel p in Ω, Fp and Bp are approximated by corresponding the nearest 

foreground pixel in ΩF and background pixel in ΩB. Then, the constructed (F −B) image is 
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smoothed by a Gaussian filter to suppress significant changes due to noise and inaccurate 

estimation of F and B. 

 

 α is reconstructed by solving Poisson equations using the current (F −B) and ∇I. 

 

 Let Ω+F = {p ∈ Ω|αp > 0.95, Ip ≈ Fp}. The condition αp> 0.95 and Ip ≈ Fp guarantee 

that the pixels in Ω+F are mostly foreground. Similarly, let Ω+B = {p ∈ Ω|αp < 0.05, Ip 

≈Bp}. Here, Fp, Bp and Ip represent the color vectors at pixel p.We update Fp and Bp 

according to the color of the nearest pixelsin ΩF ∪Ω+F and in ΩB ∪Ω+B , respectively. A 

Gaussian filter is alsoapplied to smooth (F −B). 

 

 

 We iterate the above steps 2 and 3 until change in the matting results is sufficiently small 

or both Ω+ and Ω+ are empty in step 3.In each iteration, the selection of Ω+F and Ω+B 

has little error, which guarantees that more accurate colors in these two regions are further 

propagated into less accurate neighboring pixels. 
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FIGURE 13 ORIGINAL IMAGE 

 

 

 
FIGURE 14 BAYESIAN MATTING 

 

 

 
FIGURE 15 POSSON MATTING 

 
Comparing the results of Bayesian and Poisson Matting 
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Spectral Matting: It is an approach to naturalimage matting that automatically computes a set of 

fundamental fuzzy matting components from the smallest eigenvectors of a suitably defined Laplacian 

matrix. Thus, this approach extends spectral segmentation techniques, whose goal is to extract hard 

segments, to the extraction of soft matting components. These components may then be used as 

building blocks to easily construct semantically meaningful foreground mattes, either in an 

unsupervised fashion or based on a small amount of user input. 

 

 

 

FIGURE 16 THE SPECTRAL MATTING PROCESS 

 

 

 

 

 

Calculate Laplacian Matrix

Calculate Eigen Vectors

Perform Linear Transformation on the Eigen 
Vectors (Matting Components)

Grouping of matte components for creating the 
complete matte of foreground object

Unsupervised Matting: Search for grouping with 
best matting cost and remove the bias towards 
the mattes assigning non constant values to a 
small number of pixels. 
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Goals of Spectral Matting: 

 Automatically extract matting components from an image 

 Derive analogy between hard spectral segmentation and matting, and use similar tools. 

 Use matting components to automate matte extraction process and suggest new modes of user 

interaction 

 

(1) Compositing Equation: 

The composite equation is generalized assuming that each pixel is a convex combination of K 

image layers ( like L1,L2… etc. ) 

i.e. 

 

The following diagrams demonstrate the difference between the 2-layer compositing equation 

and the generalized compositing equation: 

 

 

 

 

 

 

 

 

 

 

 

2 LAYER COMPOSITING 
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The K-Layer compositing works as follows: 

 

 

 

 

 

 

 

 

 

 

K LAYER COMPOSITING 

 

(2) Spectral Segmentation: 

It consists of analyzing smallest eigenvectors of a graph LaplacianL 

  

Where 

 D is the Degree Matrix 

 

 

 A is the affinity matric (adjacent neighbors) 

 

 

(3) Matting Laplacian: 

 The further analysis is done by processing the matting Laplacian given by: 
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Where L  is a semidefinite sparse matrix given by: 

  

 

(4) Calculating the matting components 

 

In this step a linear transformation (Newton’s method) is applied to the eigen vectors to determine 

the matting components which yields a set of binary vectors.The transformation is applied 

iteratively on the constrained equation of alpha and this helps in measuring the sparsity of 

matting component. Point to note in this is that alpha Is not constrained between 0 and 1 but due 

to sparsity penalty it logically lies in within this range. 

The result of the iterative operation depends upon the initial approximation taken for Newton’s 

Method. One of the ways used to get a good initialization approximation is to apply k-means 

algorithm on the set of smallest eigenvectors of the matting Laplacian and project the indicator 

vectors of the resulting clusters on to the span of eigen vectors. 

 

(5) Grouping Components 

The problem to be solved here is to determine which matte component belong to the foreground 

as they need to be combined to produce the final matte. 

For example, if α1, α2, and α3 belong to the foreground matte then the complete matte is 

represented as: 

 

α1+ α2+ α3 

The grouping is done by calculating the cost and correlation between the matting components    

via L and store them. 

 

 

Limitation of Spectral Matting : 

The number of components need to be set , in case the number of components are too few, the result may 
not contain the desired matte, and if too many components are specified then the    
computation becomes complex and it affects the user interaction. 
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COMPOSITING 
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5.1 Compositing to get final image  

Compositing is the process of digitally assembling multiple images to make a final image, typically for 

print, motion pictures or screen display. In our project we composite the extracted foreground images 

with a blank background to create a new image. The extracted foreground image can also be 

composited with any other background image to give the appearance of a changed background. 

The basic operation as described earlier is 'alpha blending' or ‘alpha matting’, where an opacity value, 

'α' is used to control the proportions of two input pixel values that end up a single output pixel. 

Consider three pixels; 

 a foreground pixel, f 

 a background pixel, b 

 a composited pixel, c 

and 

α, the opacity value of the foreground pixel. (α=1 for opaque foreground, α=0 for a completely 

transparent foreground). A monochrome raster image where the pixel values are to be interpreted as 

alpha values is known as the matte. 

Then, considering all three colour channels, we have: 

cr = αfr + (1 −α) br 

cg = αfg + (1 −α) bg 

cb = αfb + (1 −α) bb 

These equations together give the final composited RGB images. 

 

FIGURE 17 COMPOSITING 

composited 
image

new 
background

old 
foreground

alpha matte

http://en.wikipedia.org/wiki/Film


STUDY AND IMPLEMENTATION OF image and video matting techniques  

 

 

Page 36 

 

An Example 

X    
 

 

 

    =  
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5.2 Compositing in Videos 

The naive approach to obtaining composited video frames involves calculating alpha mattes for each of 

the frames and then performing the compositing operation in each frame. It is easy to see that the 

process is prohibitively expensiveand also tends to give discontinuous matting between frames. 

An alternative approach is to calculate the matte for only certain keyframes and then interpolate 

between frames to arrive at the mattes for the entire video. This approach significantly reduces the 

computational expenses, but requires one to select a suitable interpolation mechanism to get the best 

results.  

Also, a simple heuristic to reduce the computation time can be employed by rewriting the compositing 

equation. If this operation has to be done in real time video this is a good trick to boost performance. 

cout = α fin + (1 −α) bin 

cout = α fin + bin −α bin 

cout = bin + α (fin − bin) 

By simply rewriting the mathematical expression one can save 50% of the multiplications required. 
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TEST CASES 
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Poisson Matting 

 

                         

 

 

 

 

                        

 

 

  

Original Image Alpha Matte 

New Background Composite Image 
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Original Image 

New Background Composite Image 

Alpha Matte 
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Spectral Matting 

 

                        

 

 

                          

 

 

                            

 

 

Original Image Alpha Matte 

New Background 1 Composite Image 1 

New Background 2 Composite Image 2 
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Bayesian Matting 

 

 

                   

 

 

 

 

                   

Original Image 

New Background Composite Image 

Alpha Matte 
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MATLAB CODE 
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poisson_matte.m 

 

function [ alpha alpha2 k I] = poisson_matte(w,tol1,tol2) 
%POISSON_MATTE Summary of this function goes here 
%  I - grayscale image in double format 
%  w - SOR param , 1<w2 val = 1.5 
%  tol - tolerance for stopping gauss-siedel iteration val = 0.05 
%  tol2 - tolerance for comparison of I with Fp and Bpval = 0.01 
%  alpha - the final settled matte 
%  alpha2 -  the out of range matte 

 
%%reading the test case images-------------- 
I = imread('testcases/tc2.bmp'); 
I = rgb2gray(I); 
I = im2double(I); 
F_mask = imread('./testcases/fg2.bmp'); 
B_mask = imread('./testcases/bg2.bmp'); 
O_mask = imread('./testcases/om2.bmp'); 
F_mask = im2bw(F_mask,0.5); 
B_mask = im2bw(B_mask,0.5); 
O_mask = im2bw(O_mask,0.5); 
%%reading test case images------------------- 

 
k=0; 
while(1)  
    k = k+1; 
%%1.get the disjoint F_mask, B_mask,O_mask from trimap image   
%%to be implemented 

 
%%2.compute the F and B images for each R,G,B component 
    [F B filt_image] = calculate_fb(F_mask,O_mask,B_mask,I); 

 
%%3.compute D as div(gradient(I)/(filt_image)) -doubt in computation 
    D = calculate_d(I,filt_image); 

 
%%4.solve the poisson equations for all pixels in omega to get alpha 
[ alpha alpha2] = poisson_solver(O_mask,F_mask,D,100,w,tol1); 

 
%%5. Use alpha matrix to get extension of foreground and background 
[ F_maskO_maskB_maskOf_sumOb_sum] = 

update_fb(F_mask,O_mask,B_mask,alpha,I,F,B,tol2); 

 
%%6.repeat process until F_mask and B_mask stop growing 
if((Of_sum==0)&&(Ob_sum==0)) 
break; 
end 
end 
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calculate_fb.m 

 

function [F B filt_image] = calculate_fb(F_mask,O_mask,B_mask,I) 
%INITIALISE_D this function computes the F and B images 
%F_mask - mask for foreground region 
%O_mask - mask for omega region 
%B_mask - mask for background region 
%I - intensity image 

 

 
[m n] = size(I); 

 
%%initialisations 

 

 
F=I; 
O_test = zeros(m,n,'uint8'); 
O_test(:) = O_mask(:); 
next_f = cell(m*n,1); 
new_f  = cell(m*n,1); 

 

 
%%pixels at boundary of Fg used to claculate initial values for next_f pixels 
boundary = bwboundaries(F_mask); 
k=1; 
for r=1:1:length(boundary) 
    b = boundary{r}; 
for s=1:1:length(b) 
next_f{k} = [b(s,1) b(s,2)]; 
        k=k+1; 
end 
end 

 

 
%%foreground dilation to calculate F matrix 
l=0; 
while((l~=1))                          %%because if l==1 new has not grown 
    l=1;   
    q=1; 
while(~isempty(next_f{q})) 
coord = next_f{q}; 
        q=q+1; 
        i = coord(1); 
        j = coord(2); 
%for each pixel in foreground    
%get the safe neighbours 
if((i==1)||(i==m)||(j==1)||(j==n)) 
neighb = safe_neighbors(i,m,j,n); 
else 
neighb = [i (j-1); (i-1) j; i (j+1); (i+1) j]; 
end 
for k=1:1:4 
ni = neighb(k,1); 
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nj = neighb(k,2); 
if(O_test(ni,nj)==1) 
F(ni,nj) = F(i,j); 
F_mask(ni,nj)=1; 
new_f{l} = [ninj]; 
                    l = l+1; 
O_test(ni,nj)= O_test(ni,nj)+1; 
end 
end 
end 
next_f = new_f; 
new_f = cell(m*n,1); 
end 

 
%%initialisation 

 
B=I; 
O_test = zeros(m,n,'uint8'); 
O_test(:) = O_mask(:); 
next_b = cell(m*n,1); 
new_b  = cell(m*n,1); 

 
boundary = bwboundaries(B_mask); 
k=1; 
for r=1:1:length(boundary) 
    b = boundary{k}; 
for s=1:1:length(b) 
next_b{k} = [b(s,1) b(s,2)]; 
        k=k+1; 
end 
end 

 
l=0; 
while((l~=1))                          %%because if l==1 new has not grown 
    l=1;   
    q=1; 
while(~isempty(next_b{q})) 
coord = next_b{q}; 
        q=q+1; 
        i = coord(1); 
        j = coord(2); 
if((i==1)||(i==m)||(j==1)||(j==n)) 
neighb = safe_neighbors(i,m,j,n); 
else 
neighb = [i (j-1); (i-1) j; i (j+1); (i+1) j]; 
end 

 
for k=1:1:4 
ni = neighb(k,1); 
nj = neighb(k,2); 
if(O_test(ni,nj)==1) 
B(ni,nj) = B(i,j); 
B_mask(ni,nj)=1; 
new_b{l} = [ninj]; 
                    l = l+1; 



STUDY AND IMPLEMENTATION OF image and video matting techniques  

 

 

Page 47 

O_test(ni,nj)= O_test(ni,nj)+1; 
end 
end 

 
end 
next_b = new_b; 
new_b = cell(m*n,1); 
end 

 
T = I; 
for i=1:1:m 
for j=1:1:n 
if(O_mask(i,j)==1) 
            d = F(i,j)-B(i,j); 
if(d>0) 
T(i,j) = d; 
else 
T(i,j) = 0; 
end 
end 
end 
end 

 

 

 
%%___________gaussian smooth the image_______________________ 
gfilter = fspecial('gaussian',[3 3], 3); 
filt_image = imfilter(T, gfilter, 'replicate'); 
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calculate_d.m 

 

function [D div filt_image] = calculate_d(I,filt_image) 
%CALCULATE_D computes D as div(gradient(I)/(filt_image)) 
%I - grayscale image in double; 
%filt_image filtered image in double 

 

 
[gxgy] = gradient(I); 
%div  = divergence(gx,gy); 
%%remove zeros from filt_image before dividing 
y = filt_image(filt_image>0); 
min_val = min(y(:)); 
filt_image(filt_image==0)=min_val; 
%D = div./filt_image; 
gx = gx./filt_image; 
gy = gy./filt_image; 
div = divergence(gx,gy); 
D = div; 
end 
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poisson_solver.m 

 

function [ alpha alpha2 k l s] = poisson_solver(O_mask,F_mask,D,maxiter,w,tol) 
%POISSON_SOLVER This function solves the poisson equations to  
%get the final alpha as according to step 2 of the agorithm 

 
%O_mask - binary mask denoting the omega region 
%F_mask - binary mask denoting the Foreground region 
%D - previously computed values of div(grad(I)/(F-B)) for each pixel 
%maxiter - max no of iterations for gauss siedel method 
%w - overrelaxation parameter 
%tol - acceptable tolerance 
%alpha - alpha matte 
%alpha2 - alpha matte with out of range vals 
%k - no of iterattions on which approximation brraks 
% l &s - values to bre compared to check convergence if k==maxiter 

 

 

 
[m n] = size(D); 
flag = zeros(m,n,'uint8'); 

 
a = zeros(m,n,2); 
a(:,:,1) = F_mask; %all ones for F pixels 
a(:,:,2) = F_mask; 

 
for i=1:1:m 
for j=1:1:n 
if(O_mask(i,j)==1) 
a(i,j,1)=0.5; 
end 
end 
end 

 
%create the list of pixels in omega region beforehand for speedup 
O_list = cell(m*n,1); 
l=0; 
for i=2:1:m-1 
for j=2:1:n-1 
if(O_mask(i,j)==1) 
                l = l+1; 
O_list{l} = [i j]; 
end 
end 
end 

 
for k=1:1:maxiter 
for q=1:1:l 
coord = O_list{q}; 
            i = coord(1); 
            j=  coord(2); 
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        a(i,j,2) = a(i,j,1)+ 0.25*w*(a(i+1,j,1)+a(i,j+1,1)+a(i,j-1,2)+a(i-1,j,2)-

4*a(i,j,1)-D(i,j));  

 
if(abs(a(i,j,2)-a(i,j,1))<tol) 
flag(i,j)=1; 
end 
end 
if(sum(flag(:))==l) 
break; 
end 
a(:,:,1) = a(:,:,2); 
end 
s = sum(flag(:)); 

 
alpha = a(:,:,2); 
alpha2 = a(:,:,2); 
alpha_min = min(alpha(:)); 
range = max(alpha(:))-alpha_min; 
for i=1:1:m 
for j=1:1:n 
if(O_mask(i,j)==1) 
alpha(i,j) = (alpha(i,j)-alpha_min)/range; 
end 
end 
end 
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safe_neighbors.m 

 

function [ neighb ] = safe_neighbors(i,m,j,n) 
%SAFE_NEIGHBOURS bounds check to avoid index out of scope 
%error 
neighb = [i (j-1); (i-1) j; i (j+1); (i+1) j]; 
if(i==m) 
neighb(4,:)= [i j]; 
end 
if(i==1) 
neighb(2,:)=[i j]; 
end 
if(j==n) 
neighb(3,:)=[i j]; 
end 
if(j==1) 
neighb(1,:)=[i j]; 
end 
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update_fb.m 

 

function [ Fm_newOm_newBm_newOf_sumOb_sum ] = update_fb( F_mask,O_mask,B_mask, 

alpha, I, F, B, tol) 
%UPDATE_FB calcultaes the new F & B mask biy extending the old ones 
%according to the criterias specified below 
%params - the same as before 
%tol - the diff bw F or B value and  value. 

 

 

 
[m n] = size(I); 
Of_plus = zeros(m,n,'uint8'); 
Ob_plus = zeros(m,n,'uint8'); 
for i=1:1:m 
for j=1:1:n 

 
if(O_mask(i,j)==1) 
if((alpha(i,j)>0.95)&& abs((I(i,j)-F(i,j)))<tol) 
%pixel belonging to omega f plus 
Of_plus(i,j) = 1; 
%remove from omega 
O_mask(i,j) = 0; 
end 
if((alpha(i,j)<0.05)&& abs((I(i,j)-B(i,j)))<tol) 
%pixel belonging to omega b plus 
Ob_plus(i,j) = 1; 
%remove from omega 
O_mask(i,j) = 0; 
end 
end 
end 
end 

 
Fm_new = F_mask | Of_plus; 
Bm_new = B_mask | Ob_plus; 
temp = Fm_new|Bm_new; 
Om_new = ~temp; 
Of_sum = sum(Of_plus(:)); 
Ob_sum = sum(Ob_plus(:)); 
end 
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FUTURE DIRECTIONS AND CONCLUSIONS 

The  ultimate  goal  of  matting  research  is  to  develop  intelligent,  userfriendly, computationally  

efficient  tools,  which can  be used to  extract high quality mattes wherever the foreground and 

background are separable to human eyes, both on still images and video sequences. 

8.1)Limitations  of Current Approaches 

Although    matting   techniques   have   been  largely  improved    in recent years, there is still a long 

way to go to achieve this goal.  

 

1) Accuracy 

Current   matting   approaches    can  achieve   good  results  when   the foreground    and  

background     are  smooth    and  well-separable    in the color  space. However,  if the foreground 

and/or background contain(s) highly-textured regions with complex color  patterns, existing matting  

approaches    tend  to  generate  noisy  results  with  noticeable   artifacts. One  could  imagine  that  

a  more  complex  background  will  make  the case  even  worse.  Strong  color  discontinuities  

within  texture  patterns may  be  even  stronger  than  real  foreground  edges,  thus  will  confuse 

most of matting algorithms. How  to improve the accuracy of matting algorithms against such difficult 

examples is a open question.  

 

2) Efficiency 

Although recently proposed matting algo- rithms  tend  to  generate  more accurate  results  than  

early  approaches, they  are generally  more  expensive  to  compute.  The Soft Scissors  sys-tem   

achieves  near-realtime  performance  on  1000  × 1000  images, but  are  not  able  to  give  

instant  feedback  on  larger  ones.  The  mem- ory consumption  of  matting  algorithms  also  need  

to  reduced in  order to deal with gigapixel images. The GPU implementation for the basic Random 

Walk matting  is inspiring, but how to take advantage of GPU computation for other algorithms is still 

unknown. 

 

8.2 Future Directions 

There   are   a  number    of  directions   that  one   can  explore   in  order to  improve   current   

matting    algorithms,   or  build  new   matting    sys-tems  that outperform existing  ones. 
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Automatic  Evaluation  towards Self-Adjusting  Mattes  

 There are some common properties of good mattes extracted from natural images.  For  instance,  the  

transition  from  foreground to  back- ground are generally  smooth, and  it is  almost impossible to have  

two neighboring  pixels  whose  alpha  values  are  1  and  0,  or  have  a  region where  every  pixel  

has  the  same  alpha  value  of  0.5.  These  errors  can often be spotted in erroneous mattes.  

Developing automatic means that can detect erroneous matting re- sults,  both  globally  and  locally,  

can  be  beneficial  to  existing  matting systems. Most of existing matting algorithms have a number of 

tunable parameters, which are either fixed internally, or provided to the user to tweak. If the resulting 

matte can be automatically evaluated, matting algorithms thus can adjust their parameters to find the 

best parameter combination, which can generate the best possible result.  

Automatic evaluation can also help build hybrid matting system by combining  a  number of  techniques  

together.  Different matting algorithms have quite different characteris tics,  thus  may  work  well  in  

different  situations.  By  evaluating  results generated  by  different  algorithms  from  the  same  input,  

a  better  one can  be  produced  by  combining  all  of  them  together   using  thebest  parts of each of 

them. 

 

8.3 Learning/Example-based Approaches 

  Existing matting approaches only rely on the current input to gen- erate a result, thus could fail in similar 

situations over and over again. This gives us the opportunity to use example-based learning approaches 

to augment matting systems, and give them the ability  to learn whatthe correct mattes  should be in 

certain situations. Potentially,  a matting  system  could  be  customized  if  the  user  keeps  feeding  it  

certain types of inputs. As more training examples are available one can hope the systems can improve. 

As a result, the required user efforts for gen- erating good results will be reduced over time.  

The idea may sound straightforward, but how to implement such a system remains an open problem. 

Since foregrounds in different images usually  have  quite  different  colors  and  shapes,  the  training  

samples may contain extremely large variances. A compact set of features thus need be extracted which 

can capture the essential characteristics of the underlying  mattes,  while  ignoring  the  absolute  

foreground  and  back- ground colors in each example.  

The newly proposed high resolution matting system has made the first attempt  along  this  direction.  A 

high  resolution  ground-truth data set is constructed, and a new gradient preserving prior on alpha is  

developed  based  on  the  training  data,  which  is  used  in  the  “alpha deblurring”  process  for  

improving  the  results  generated  by  previous approaches.  Such  a  data  set  is  extremely  valuable  

for  exploring  new example-based matting approaches in the future. 
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8.4More  Practical  Video  Matting  Systems  

A number of image matting systems have already been successfully commercialized.  Compared  with  

image    matting    tools,  current  video matting  systems  are  somewhat  less  practical.  Existing  

systems  either  are  computationally  expensive,  or  have too many assumptions which may or may not 

hold in practice. Further- more,  it  is  unclear  what  is  the  right  user  interface  for  video  matting. 

Keyframe-based  interfaces  are  natural  and  intuitive,  but  may  not  be efficient when large motions 

present. Volume-based interfaces are very efficient  for  marking  foreground  objects  in  multiple  

frames,  however are less intuitive for normal users. A hybrid interface which combines them together may 

stand out in the future. 

Once a  matte  has  been extracted,  what can  one do with  it?  We  have barely  touched  on  this  

topic.  The  obvious  application  is  compositing the  matte    and  associated    image  onto    a  new  

background,  but  other applications    are  possible.  We    have   shown  one  application      for  refor- 

matting  images  by  making  the  foreground  object  bigger  on  the  same background. One can also 

envision much more interesting compositing applications  where  multiple  matted  images  and  video  

are  combined.  

This raises  other  issues  such as  adjusting the lighting,  color  tempera- ture, and shadowing to create a 

seamless composite. We are sure there are  other  applications  we  have  not  thought  of.  Hopefully  

this  survey will provide a good basis for those wanting to push the state-of-the-art in matting methods 

and for developing new unforseen applications. 
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