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Abstract. Hopf mapping from 2 dimensions (QM) to 3 dimensions (CM) are examined in terms of 
a formalism started by Feynman which has linkage to the (CM) equations of motion have linkage to 
the Serret - Frenet form ( for Differential equations). We argue that in doing so we may then link 
QM representations of quibits to a solved version of the rotating rod problem. Furthermore since a 
rotating rod has linkage to GW generation, as given by Lightman et. al. it is a way to tie quibits 
(Quantum information) to GW generation. We then make observations as to what the results mean 
in terms of QM initial states and the power of GW production from early universe conditions. 

1.Introduction 

 
We examine the results of the Hopf mapping from 2 dimensions (QM) to 3 dimensions (CM) in terms of 

generalizations to a rigid rod rotation [1] which could generate GW (gravitational waves) . This paper was 
initiated by a question by Stephen Kauffman about black holes. I.e. the reality of black hole singularities. To this 
end, this formalism was chosen to be the basis of finding a solution to trying to investigate black hole physics. 
After this formalism is further developed, we will use the two to the three sphere mapping to ask if singularities 
have a presence in astrophysical problems. To start developing mathematics relevant to that future  development, 
we solve on our own a set of equations ( in 3 dimensions) pertinent to a non-symmetric object in rotation in early 
universe which is a way to generate GW and from there state some caveats as to the power of GW which may 
ensue. The final conclusion of our document is in linking a quantum quibit form with the power created by/ 
during GW generation which conceivably could be identified by a suitably designed detector. The document first 
examines what Feynman did with respect to 2 level QM systems, their generalization to Classical rigid rod 
rotation, and then we solve the resulting CM equation of motion. Feynman decomposed the solutions in x, y, and 
z in terms of the 2 level QM system [2], [3] a decomposition which we hold as still relevant and valid, and then, 
using the case of a uniform magnetic field ‘down’ the z axis, as a driver to the physical process leading to non-
symmetric rigid body rotation. That the body is non-symmetric allows us to approximate the GW power 
generated as to the conventions outlined by Lightman, Press, Price, and Teukolsky [4] . We then conclude with a 
description of what our model says about QM generation of states relevant to GWs. In the early universe. 
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2. Outlining the Feynman development of a classical system from 2 level QM 
system. 

We look at how Feynman [1], [2], [3] linked a 2 dim quantum system to a 3 dimensional rigid rod 
style classical mechanics system. In doing so, Feynman worked with a quantum system given as 
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The simplest decomposition of this problem is to set 0y xH H= =  so then the situation is that we have 
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As can be seen by Maggorie [5]  and also Lightman, Press, Price, and Teukolsky [4] since the solution as 
given by Eq.(5) is for a circular moment of a GW there would be a GW associated with it, 
 
We also will be looking at a more complex three dimensional example of motion which is highly complex  
 non withstanding we go to a more complete version of Eq.(1) to Eq.(3) with only 0yH = . Then we get 
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The above two equations have the setting  of what is called the Serret – Frenet form and we will solve these two 
DE equation systems taking the approximation that zH , xH are constants in lieu of the first example. The next 
section solves these two equations with this in mind, leading to a non-symmetric rotation in 3 dimensional space 
which is needed for GW production. 



 
 
 
 
 
 

 
3. Solving a simplified version of Eq. (6) and Eq.(7) to come up with a non- symmetric rigid 

body rotation sufficient to obtain GW. 
 
To do this we look at Eq. (7) in such a way as to have 
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To which we add in the reconciliation of the variables equation result from the last part of Eq.(8), namely  
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Combined once again with Eq.(2), and assuming that the quantity we roughly identify with the “magnetic 
field zH ” is parallel to the  z axis, so long as  0z  as an initial starting point for the z axis is non zero, then 
we have fulfilled the requirement  for a non-uniform motion of a ‘rigid body’ which if related to the 
quantities in Eq.(2) and also Maggiore’s criteria for GW from a non-uniform non spherical generation of GW leads to 
the final part of the GW requirement of non-spherically symmetric motion which lends itself to GW generation. We will 
then make a comment as to how to link this to GW power using Lightman, Press, Price, and Teukolsky[ 3  ] to show 
how frequency from this example can lead to GW generation. 
 
4. Conditions permitting GW power  production  using the inputs from Eq. (5) 
 
The idea is that we need to calculate the following , i.e. a moment of inertia for a system, and also the 
frequency. As to Eq. (5) according to the following, we can come up with a generic Eqn. of motion, namely if 
we do averaging and set out a general time averaging. Fortunately for us the trig identities naturally vanish. 
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We can, as an approximation use m above to be the net mass of the assumed geometry and set. 1
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Then we look at the power loss according to a ‘rigid rod’  construction for GW power generation[4] ,[5]i.e. 
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Note that we can approximate the frequency in this case as directly proportional to the input frequency of the 
magnetic field parallel to the z axis, i.e. looking to first approximation at ~zH ω  according to the 
conventions as given by Kholodenko [1] on page 157. This means that up to a point, if one picks 
representative positions as given by ( ) ( ) ( )2 2 20 0 0x y z+ +  with each of these initial positions, squared, and a 
net mass m . Then we can calculate the net GW (gravitational wave) power loss of this system. We will in 
the end make a comment as to this Eq.(13) value, for the specified inputs into the equation and the Feynman 
quidbit (QM) results for while comparing them to what we can infer as to Eq. (4), and its up and down 2 
dimensional QM states. I.e. this problem is comparatively easy to calculate. In this case the value of Eq.(13) 
if we are near the cosmological origin would have a value of about 
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Next we will look at what happens if we assume the input geometry as given by Eq. (11).  
 
Both of these results will be then compared to as to the simple case of Eq.(4) as due to the first set of inputs 
into Eq. (13) if the spatial geometry of Eq.(5) is used, and then Eq. (4) will be guessed at if we use the 
geometry of Eq. (11). I.e. we will guess what Eq. (11) does to Eq. (4) and compare that with what Eq. (11) 
does to Eq. (4) 
 
5. Conditions permitting GW power production using the inputs from Eq. (11) 
 

This is a mess. I.e. what we have to do is to look at how to calculate the moment of inertia, and then going to Eq. 
(13), even if we assume the same mass which was used earlier to calculate Eq. (14) above for relic conditions. 
To start this, look at, even if 1
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The problem starts immediately, in that the parenthesis of Eq. (15) above would have to be a time averaged 
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Then the magnitude of the GW power would be, per second about 10,000 times bigger.  
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6. Comparison of Eq. (14) and Eq. (19) results in terms upon solving Eq.(1) 
 
The  value for the simple geometry (in terms of simple quidbits ) to understand working with both Eq. (1) and 
then Eq.(4) has , if a particle is in a constant magnetic field, then according to [4] it is a special case of working 

with quidbits, according to [1], [5] , the values of   
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 if only zH    is non zero, for the below equation 

become very simple. The problem of solving for the  functions of an applied non zero zH in [1],[2],[3] 
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is much simpler than when zH and xH are both non zero.   Is in the case of Eq. (4) with only zH  not 
equal to zero, then looking at the terms for a and b in the case of Eq. (4) is extremely simple, for the situation for 
Eq.(14) as diagrammed out above. It is the same problem for Eq. (19) and the much larger GW power situation, 

but due to the ‘noisy’ values for a and b, then 
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 is the same as looking at highly non-linear inputs into   
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 QM  values which are still then mapped into the 3 dimensional CM results.   . Still the same rotating rigid 

body problem approximated by a rod in spatial rotation, but the movements and more would become much more 

complicated. And then we find that  
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 the input values are MUCH harder to solve. 

7. Conclusion. CM and QM correspondence remains, but turbulence, a.k.a. Duerrer 
and Beckwith results for early universe GW generation makes the QM connection 
very hard to mathematically identify. Simple logical process, MESSY algebra ahead. 
With a possible answer to the question if singularities are essential in Cosmology.  

 
      Looking at Eq. (13) , simpler and harder cases, still in the case of relic GW production has large number 
correspondence and scaling as mentioned by Valev [6], with his H, not a Hamiltonian, but instead  
 
                           1( ) ~r radius of universe cH −− −             (21) 
 
Also, the mass of the Universe, as given by Valev [6] is  

                     ( ) 13 1(Mass ) ~ 2M of universe c G H −−= − − ⋅ ⋅ ⋅         (22) 

 More or less there is , when we look at physics innate simplicity in the inter relationship, of the sort mentioned 
by Valev, in terms of space-time geometry. The inter relationship of CM and QM given by Eq. (1) and then Eq. 
(3) with the stunning interplay between x, y, z and a,b given by Eq.(2) is, we believe, obscured by how complex 

the problem is of finding  
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.However, there is a tremendous inter relationship between 

the quibits given in Eq.(20)and the inputs into Eq. (2), depending upon the values 
of inputs into the complex systems as given by Eq.(11) for CM, or the much simpler 
space geometry represented by the simple Eq.(5) as seen in references[7],[8]. 
Finally the author proposes that the inter linkage of QM to classical conditions in 
three sphere topology, which is where turbulence relevant to GW development and 
generation is the perfect template to answering a question raised by Stephen 
Kenneth Kauffman as to the reality of black holes and cosmological singularities. 
As related by Dr. Kauffmann, quantum mechanics routinely prunes out non-physical 
solutions in regards to hydrogen atom problems and picks only solutions which are 
physically feasible, which Kauffman asserts is not done in black hole and early 



 
 
 
 
 
 

universe singularity physics. As written by Dr. Kauffmann to Dr. Corda, Dr. 
Beckwith, Johnathan Dickau, and others, there is a conscious choice given in 
classical GR to accept nonsensical solutions. The author (Beckwith) in [8] that GW 
may be generated in the electro weak era, at the beginning and perhaps as early as 
the Planckian regime of space-time. Furthermore Beckwith asserts that turbulence as 
signified by [7] is the driver for relic GW and GW power. If so, further 
development of the Hopf mapping results from 2 dimensions (QM) to 3 dimensions(CM) 

may enable us to identify necessary conditions for finding  
a
b
 
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 in initial QM states 

necessary for relic GW development. It is well known that spherically symmetric 

geometry will generally not generate GW. This puts a restriction upon finding  
a
b
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 
 

 

which in turn would answer if an initial space-time singularity is even feasible. 
While String theory and loop quantum gravity via different mechanisms [9],[10] 
purport to have solutions to the initial cosmological state, the author views 

development of mandatory restrictions upon acceptable   
a
b
 
 
 

 quantum initial states 

for GW development as essential for finding and investigating rigorously the question if singularities 
are indeed necessary and even allowed in astrophysical problems. The author, also has an accepted publication in 
the Journal of Applied mathematics, SCIRP in part on this very question [11] with the answer that this question 
is not open and shut. I.e. that further work needs to be done in this area. This present Hopf mapping from QM to 
CM with , as argued here, CM turbulence generating GW, may be a way to determine restrictions upon initial 
states in QM  which the author views, as a way to answer Dr. Kauffmann’s question in a rigorous role in the near 
future. 
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