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1. Introduction 

 

In previous work [1], we have heuristically investigated the properties of new class of potential functions 

results from the concept of pq-radial functions with one main real radial variable and three real auxiliary 

parameters. In the present paper, we wish to generalize this concept to the field of complex numbers and 

study the resulting properties. Through this paper, we assume that the reader is familiar with [1] and also 

with the complex analysis. 

 

2. Properties of pq-functions:  

 

We begin our investigation on the aforementioned subject by the following specific definition of the 

concept of pq-functions.  

 

2.1. Specific definition: Suppose U is an open subset of the complex plan C, such that qpF , : U→C,            

 ,θρ,s,,zFz qp,  ; Uρs, ; Rθ,q,p,  ; denote a continuous and differentiable function; qp,F is said 

to be pq-function if and only if is conceptually expressed in the following form: 

 

                                                       θρ,z,Hs,z,G,θρ,s,,zF qp

qp,

  ,                                                 (1) 

 

where  s,z,G  and  θρ,z,H  are, respectively, the weight function and the characteristic function both 

are defined by 

                                                            22 sin2 sszzs,z,G   ,                                                         (2) 

 

                                                           22 cos2 ρθρzzθρ,z,H  .                                                       (3) 

 

In the context of this work, )( iyxz   with Ryx,  is the main complex variable and the complex 

parameters s  and ρ are treated as auxiliary variables; the real angular parameters   and θ stay in general 

fix. Since the characteristic function  θρ,z,H  plays the role of dominator, thus qpF , is defined for each 

Uz such that  

                                                                            ieρz  .                                                                        (4) 
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The pq-function (1) is also a fundamental family of solutions of the following pq-PDE 
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with                                                  

                                   
qpFW , , 0G ,  0H . 

 

2.2. Specific properties of pq-function 

 

The following properties of 
qpF ,
 are very similar to those of pq-radial functions [1].  

 

2.2.1. Properties of  ,θρ,s,,zFF qp,qp,   with respect to θρ,s,,z and  

 

1/ R ,,, qp  and  iθeρρs,,z  \U , we have for    ii eis,eisz , 0, qpF . 

 

2/ R ,,, qp  and  iθeρρs,,z  \U , we have for 0p  and 0q , 1, qpF . 

 

3/ Homogeneity of qpF , with respect to ρands,,z  

 R ,,, qp  we have for  0\ R :    ,θρ,s,,zF,θρ,s,,zF qp,

)qp(

qp,  2 . 

 

4/ Periodicity qpF ,  with respect to θand  

R ,,, qp  and  iθeρρs,,z  \U  we have Zk :    ,θρ,s,,zFkθ,kρ,s,,zF qp,qp,   22 . 

 

Remark: Properties (1) and (2) are very useful particularly for the orthogonality condition of pq-functions 

as we will see, and property (4) means that qpF , is double-periodic. 

 

2.2.2. Properties of qpF ,  with respect to the orders qandp  

 

The following series of properties is very important since it shows us how some basic operations 

performed on pq-functions should reduce to the operations performed on their orders. The demonstration 

of each property should be exclusively based on the compact expression qp

qp, HGF  .  

Therefore, R ,,, qp  and  iθeρρs,,z  \U , we have the following properties: 

 

1/ 0,0,, ppqp FFF   

2/ qpqp FF 

  ,

1

,  

3/  N : ),(,, qpqpqp FFF 
   

4/  Nm, : m

qmpmqp FF  
 /,/,  

5/  Nm, : 
1)(

,/,/

 m

qmpmqp FF 
  

6/ qp

p

qp FGF ,

2

,



   

7/ qp

q

qp FHF ,

2

,                                                                 

8/ R qpqp ,,, : qp

qq

qp

qq

qpqp FHFHFF ,,,, 
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9/ R qpqp ,,, :
qp

qq

qp

qq

qpqp FGFGFF ,,,, 







   

10/ R qpqp ,,, : qqppqpqp FFF   ,,, /  

11/ R qpqp ,,, : qqppqpqp FFF   ,,,  

 

2.2.3. Properties of qpF ,
 with respect to its (partial) derivatives 

 

In this subsection, we study the properties of 
qpF ,

with respect to its (partial) derivatives, which are for 

instance very helpful as new tool to investigate fluid mechanics.   

 

 Holmorphicity of 
qpF ,

: Our main aim here is to show the holomorphicity of 
qpF ,

. This property is 

essential because as we know from complex analysis, the holomorphicity of any given function implies 

its analycity automatically. Since z  is the principal independent complex variable of qpF ,
 and s , ρ  are 

only certain auxiliary complex (variable) parameters, hence, this allows us to focus our interest 

exclusively on the derivatives of qpF ,  with respect to z . But before all that, let us recall some well-known 

definitions. 

  

-Definition.1:  Given a complex-valued function f of a single complex variable, the derivative of f at 

point 0z in its domain is defined by the limit 

                                                                  
0

0

0
0

)()(
lim)(

zz

zfzf
zf

zz 





.                                                      (6) 

 

This is the same as the definition of the derivative for real-valued function, except that all the parameters 

are complex. In particular, the limit is taken as the complex variable z  approaches 0z , and must have the 

same value for any sequence of complex values for z approaches 0z on the complex differentiable at every 

point 0z in an open set S , we say that f is complex-differentiable at the point 0z . From all that occurs the 

following definition. 

 

-Definition.2:  If f is complex differentiable at every point 0z in an open set S , say that f is holo- 

morphic on S . We say that f is holomorphic at the point 0z if it is holomorphic on some neighborhood of 

0z . 

 

Thus, with the help of definitions (1) and (2), we can prove the holomorphicity of qpF ,  as follows. Let  

 iθeρz,z  \0 U  and      θρ,z,Hs,z,G,θρ,s,,zF qp

qp,

   such that  

 

                       
       

0

00
0

0 zz

θρ,,zHs,,zGθρ,z,Hs,z,G
,θρ,s,,zF

qpqp

zz
qp,











 lim .                            (7) 

 

Adding and subtracting    θρ,z,Hs,,zG qp 0
from the numerator of (7), we get 
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0 zz

θρ,,zHθρ,z,H
s,,zGlim

qq
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.                                   (8) 

Finally, we find         

                                                 θρ,,zHs,,zGs,,zGθρ,,zH,θρ,s,,zF qppq

qp, 00000  .             (9) 

 

Therefore, it follows that 
qpF ,

is holomorphic on  iθeρ \U  and consequently is analytic. 

 

2.2.4. Derivatives of 
qpF ,

with respect to z  

 

After we have proved the holomorphicity/analycity of pq-functions let us now investigate the properties 

of 
qpF ,

 through its first derivative with respect to z :  iθiθiθ ise,eis,eρz  \U . Hence, the first order 

derivative of qpF , has the form 

                                                         qp

qp
F
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H
q

G

G
p

dz

dF
,
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 .                                                          (10) 

 

We have, according to the property (2) in subsection (2.3) that is 
),(,, qpqpqp FFF 

  , thus after 

derivation, we get  
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 .                                                      (11) 

 

Introducing the power   in (10) to obtain 
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From (11) and (12), we find the relation 
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 ,  N .                                             (14) 

 

2.2.5. First Order Partial Derivatives of qpF , with respect to x  and y  via z  

 

If we take into account the algebraic form of z , i.e., iyxz   with Ryx, . This algebraic form of the 

principal complex variable implies, among other things, that qpF ,  is conceptually and implicitly 

depending on x  and y . That’s why we can also evaluate the partial derivatives of qpF ,  with respect to x  

and y  to determine the Wirtinger pq-(partial) derivatives in order to establish the link between qpF ,  and 

Laplace equation  

                                                                        0
2

2

2

2











y

u

x

u
.                                                                 (15) 
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Indeed, following Rudin [2], suppose  
qpF ,

 is defined in an open subset CU   with ieρz  . Then 

writing iyxz   for every Uz , in this sense, we can also regard U as an open subset of 2
R , and 

qpF ,
 

as a function of two real variables x  and y , which maps 2
RU  to C . These considerations allow us to 

say that the existence of the partial derivatives xF qp  ,
 and yF qp  ,

 are in fact a direct consequence of 

the expressions: ziyx   and    ,θρ,s,,zF,θρ,s,,iyxF qp,qp,   , from where we get  
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,θρ,s,,iyxF qp,qp, 
,                                           (16) 

and                                       
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,θρ,s,,iyxF qp,qp, 
,                                          (17) 

 

since    1 xz  and   iyz  , hence (16) and (17) become, respectively 

 

                                                                   
z

F

x

F qp,qp,









,                                                                        (18)                 

                                                                  
z

F
i

y

F qp,qp,









.                                                                      (19) 

                                                                                                                                        
From (18) and (19), we can deduce the following equations just after performing a simple substitution 

and multiplication                                                                   

                                                                
y

F
i

x

F qp,qp,









,                                                                      (20)            

                                                                
x

F
i

y

F qp,qp,









.                                                                        (21) 

 

Here, Eqs.(20) and (21) play exactly the same role as the Cauchy-Riemann equations for standard 

complex functions. Now, multiplying the two sides of (19) by i  and adding to (18), to obtain 
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Further, if we replace z  with its conjugate iyxz  in (16) and (17), and following exactly the same 

process as for (22), we get 
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Eqs.(22, 23) are the well-known two Wirtinger [3] derivatives, which in the context of the present work, 

i.e., the formalism of pq-functions, we recall them Wirtinger pq-(partial) derivatives because, here, they 

are generalized since Rqp, . Finally, from (20) or (21) we deduce the equation 
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2.2.6. Second Order Partial Derivatives of 
qpF ,

with respect to x  and y  via z  

 

Our main aim in this subsection is firstly to show that qpF ,
 is also a fundamental family of solutions of 

Laplace equation (15) and secondly establishing the link between Eq.(24) and that to be derived in the 

form of identity. To this end, we have from (18) and (19) 
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,                                             (25) 

and 
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z
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2

qp,

2

qp,
,                                             (26) 

 

sine    1
2
 xz ,      0

22  xz ,    1
2

 yz      and    0
22  yz , thus (25) and (26) reduce to  

 

                                                                       
2

qp,

2

qp,

z

F

x

F








 22

,                                                                (27)     

                                                                     

                                                                    
2

qp,

2

qp,

z

F

y

F








 22

.                                                               (28) 

 

Therefore, from (27) and (28) we obtain the expected equation  

 

                                                                  0

22










2

qp,

2

qp,

y

F

x

F
.                                                               (29) 

 

Eq.(29) means that qp,F  is also a fundamental family of solution of Laplace equation (15). Hence, this 

with result, we can affirm that the pq-functions are also a new class of harmonic functions. Finally, from 

(24) and (29) we get the important identity 

 

                                                
2

qp,

2

qp,qp,qp,
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 2222

.                                               (30) 

 

 

2.3. Orthogonality of pq-functions  

 

We end the study of the properties of pq-functions with the determination of orthogonality condition of 

pq-functions on open contour (C) of extremities 1z  and 2z  when pq-functions are independent of the 

complex parameters s  and  . With this aim, it is worthwhile to note that 

  

                                21

22 sin2 zzzzsszzs,z,G   ,  iisez 1 ,   iisez2  ,                  (31)                                               

and  

                                 43

22 cos2 zzzzρθρzzθρ,z,H  ,   iez 3
,   iez 4  .                 (32)                                                                      

 

Therefore, by substituting (31) and (32) in (1), we get the important expression 
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It is clear from the expression (33), 3zz   and  4zz   are two poles of 
qp,F . Consequently, since 

qp,F is 

supposed independent of the complex parameters s  and  , thus in such a case Eq.(5) reduces to 
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Eq.(34) will be henceforth be called ‘pq-differential equation’ or shortly pq-DE, which here should play a 

central role as follows. Let 
11,1 qpFW  and 

22 ,2 qpFW  be two fundamental families of solutions of the 

following pq-DEs: 
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with   ),(),( 2211 qpqp   and R2211 ,,, qpqp . Integrating Eqs.(35) and (36), to get 
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                                                  22222 cW
H
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q
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 .                                                            (38) 

                                                                                                           

Multiplying (37) by 2GW  and (38) by 1HW , to find 

 

                                           2111112 WW
H

GH
qGpcWGW 







 
 ,                                                    (39) 

and 

                                           2112221 WW
H

GH
qGpcWGW 







 
 .                                                   (40) 

 

Subtracting (40) from (39) to obtain, after omitting the integration constants 
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Integrating from 1zz   to 2zz  to get 
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If we take into account the property (1) in Sub-subsection 2.2.1 and the expression (31), the left hand side 

of (42) should equal to zero, therefore, we have 
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 Since ),(),( 2211 qpqp  , thus (43) becomes 
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Furthermore, according to property (10) in Sub-subsection 2.2.2, we have 
2121 ,21 qqppFWW  , hence the 

relation (44) becomes after substitution 

 

                                             0
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1

2121 ,
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The relation (45) is exactly the very expected orthogonality condition of pq-functions. 

 

3. Consequences of pq-functions  

 

In this section we will show the existence of two new types of polynomials called in the context of this 

work, p-polynomials and q-polynomials as a direct consequence of pq-functions. The study of some 

properties of these polynomials revealing that the well-known the Legendre polynomials are in fact 

special case of q-polynomials. 

 

3.1. p-Polynomials 

 

In order to establish the existence of p-polynomials, we must return to pq-function (4) and write it in its 

explicit form 

                                                 
 
 q

p

qp,

ρθρzz

sszz
,θρ,s,,zF

22

22

cos

sin

2

2







 .                                             (46) 

 

The property (1) in Sub-subsection 2.2.2 allow us to write q,p,qp, FFF 00 . First, focusing our attention 

on 0p,F for the case 1z , that is 

                                                       p

p, sszz,θρ,s,,zF 22

0 sin2   .                                              (47) 

 

As we can remark it, the pq-function (47) for 0q  is explicitly independent of the parameters   and  , 

hence it may be written as follows 

                                pp

p, s,θρ,s,,zF 22

0 sin21   , with  sz /  and 1 .                        (48) 

 

We have according to the Newton’s generalized binomial (theorem) formula 
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11 32  ,             (49) 

 

with 1  and R . 
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By putting   sin22 and p  in (49), and after rearranging and collecting terms in powers of 

 , we find 
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2
1sin21 ξ
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 424
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32116
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 535 sin
!3

216
sin

!4

32132
sin

!5

432132
ξ

pqpppppppppp             (50) 

 

Therefore, the coefficients of   should take the explicit expressions 

 

  1sin0  p,A ;  
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sin 2

2
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p,A ;                                                                                                                                                            

 
    















 sin
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14
sin

!3

218
sin 3

3

ppppp
p,A ;                                                                            
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1
sin

!3

2112
sin

!4

32116
ins 24

4
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sin
!3

216

sin
!4

32132
sin

!5

432132
sin 35

5

ppp

ppppppppp
p,A

                  (51) 

… 

 

The coefficients  p,An sin  are exactly the very expected p-polynomials. Thus (50) may be written as  

                       

                                         





0

2 sinsin1 2
n

n

n

p
ξp,Aξξ ,   1 .                                           (52) 

 

Result: for the case when q = 0 and 1z , the pq-function (46) may be written in the form of p-series as 

follows                                                                   
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2
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n

n

n
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p, zp,As,θρ,s,,zF ,   1z .                                        (53) 
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3.2. Properties of p-Polynomials 

3.2.1. Expression of p-polynomials for 2/   

 

Many important properties of p-polynomials can be obtained from (52). Here, we derive immediately a 

few ones as follows. Let 2/  in (52), and then the left-hand side is 
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np...pppppppp
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12122
1

!3
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The right-hand side is 

 

           n

n p,Ap,Ap,Ap,Ap,A 11111 3

3

2
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Comparing the coefficients of n  on both sides we get  

 

                                                      
   

!

12122
11

n

np...pp
p,A

n

n


 .                                             (54) 

And when we substitute 2/   in (52), we obtain 

 

                                                       
   

!

12122
1

n

np...pp
p,An


 .                                                 (55) 

 

3.2.2. Recurrence Relation for p-Polynomials  

 

To obtain the recurrence relation, first we put sint  in (52) to get 

 

                                                          





0

2
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n

n

n

p
ξpt,Aξtξ .                                                    (56) 

 

Differentiating (56) with respect to   on both sides and rearranging to obtain 
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or equivalently 

                                          










0

12

0

212
n

n

n

n

n

n ξpt,Anξtξξpt,Atξp .                                   (58) 

 

Equating the coefficients of powers of n  to get the very expected recurrence relation  

 

                                              pt,Apnpt,Atpnpt,An nnn 11 1221   ,                                 (59)                               

with                                        

                                                10 pt,A ,   tppt,A 21    and  sint . 

 

The recurrence relation (59), along with the first two p-polynomials  pt,A0  and  pt,A1 , allows the  

p-polynomials to be explicitly expressed. 
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3.2.3. Associated p-Functions 

 

Our purpose here is to show the existence of p-functions. As we will see, this kind of functions is in fact a 

direct consequence of p-polynomials. First, it is important and easy to show that the special case when  

1/2p , the p-polynomials become a fundamental solution of the second order homogeneous ODE: 

 

                                                         01
1











 
L

L
nn

d

d
cos

d

d

cos
,                                           (60) 

 

or by substituting sint , we find 

 

                                              011 2 







 L

L
nn

dt

d
t

dt

d
,   1/2 ,tAnL .                                 (61) 

 

Accordingly, for the general case that is R p , the p-polynomials    pt,Ap,sinA nn   should be 

also a fundamental solution of the following second order non-homogenous ODE: 

 

                                          p,tfnn
dt

d
t

dt

d
n








 K

K
11 2 ,   p,tAnK .                               (62) 

 

It is worthwhile to note that Eq.(62) should reduce to Eq.(61) when 1/2p , this implies 

 

                                                               01/2 t,fn , Nn .                                                           (63)                                                    

 

Result: It follows from all that the p-functions  p,tfn  are associated to p-polynomials  p,tAn  through 

Eq.(62) that ‘s why are called ‘associated p-functions’. To illustrate this association, the Table 1 below 

gives us the first few p-polynomials and their associated p-functions. 

 

 

 

   p-polynomial                                              associated p-function 

       
     pt,A1                 01 pt,f                                                                
           

       pt,A2                  1222  pppt,f  

         

     pt,A3                       tppppt,f 12143              

         

     pt,A4                           121212214
2

4  ppptpppppt,f         

                      

                   pt,A5                             tqppptppppppt,f 1221412321
3
8 3

5   

   
                                         

                                                Table 1: Expressions of the associated p-functions  pt,fn , 5...21,n  
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3.2.4. Orthogonality of p-Polynomials  

 

We have already seen the orthogonality of pq-functions, now we will show the orthogonality of p-

polynomials on the interval )11( , . With this aim, let  pt,Ag m  and  pt,Ah n  then by Eq.(62), we 

have 

                                                                      mm fgkgt
dt

d
 21 ,                                                    (64) 

 and                                                     

                                                                      nn fhkht
dt

d
 21 ,                                                    (65) 

with            

                                t,pff mm  ;  t,pff nn  ; )1(  mmkm ; )n(nkn 1 and nm . 

 

Multiplying (64) by h  and integrating from 1t  to 1t  to obtain 

 

                                                 




1

1

1

1

1

1

21 dtfhdthgkdthgt
dt

d
mm

. 

 

Integrating the first integral by parts we get 

 

                                        





1

1

1

1

1

1

21

1

2 11 dtfhdthgkdthgthgt mm
. 

 

But since  21 t  is zero both at 1t  and 1t  this becomes 

 

                                             




1

1

1

1

1

1

21 dtfhdthgkdthgt mm
.                                                   (66) 

 

In exactly the same way we can multiply (65) by g  and integrating from 1t to 1t to get 

                                                   




1

1

1

1

1

1

21 dtfgdthgkdthgt nn
.                                             (67) 

 

Subtracting (67) from (66), we find  

 

                                                     




1

1

1

1

1

1

dtfgdtfhdthgkk nmnm
. 

 

Or since  pt,Ag m ;  pt,Ah n ;  pt,ff mm   and  pt,ff nn  , hence we obtain after substitution 

 

                                   




1

1

1

1

dtpt,fpt,Apt,fpt,Adtpt,Apt,Akk nmmnnmnm
, 

 

this gives us the following expected orthogonality condition 
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nm,dt
pt,A

pt,f

pt,A

pt,f

kk
pt,Apt,A

n

n

m

m

nm

nm 

























0
1

1

1

1

.                            (68) 

 

According to (63), we should have     01/21/2  ,f,f tt nm , thus as a special case the orthogonality 

condition (68) reduces to 

                                                        nm,dt,A,A tt nm 


0

1

1

1/21/2 .                                                (69) 

Besides the important property (68), there is another, namely  


1

1

2
dtpt,An , which may be determined as 

follows: first putting sint  in (52), squaring and integrating from 1t to 1t .  Due to orthogonality 

only the integrals of terms having  pt,An

2  survive on the right-hand side. So we have 

 

                                                    


 


0

1

1

22

1

1

22
21

n

n

np
dtpt,Adtt  .                                             (70) 

 

For the special case when 1/2p , we have from (70) 

 

                                           


 























 0

1

1

22

0

2

1/2
12

2

1

1
ln

1

n

n

n

n

n

dtt,A
n

.                                            (71) 

 

Comparing the coefficient of n2  we get the important relation 

 

                                                          
12

2
1/2

1

1

2





n

dtt,An .                                                               (72) 

 

 Hence, what we need for the general case is only to put 

 

                                                       




1

1

2 dtpt,ApK nn ,  Rp .                                                           (73) 

The formula (73) defines us the polynomials  pKn  that exclusively depend on the real parameter p . As 

we will see,  pKn  are characterized by the following properties: 

 

                                                            20 pK ,  R p ,                                                                   (74) 

and  

                                                       00 nK ,  Nn , 0n .                                                              (75) 

 

Expressions of  pKn  for 3,2,1,0n : 

 

   




1

1

2

00 2dtpt,ApK ;     2

1

1

2

11
3

8
pdtpt,ApK  



; 

        2222

1

1

2

22 21
3

8
1

5

8
pppppdtpt,ApK  



; 



14 

 

             2222222

1

1

2

33 1
3

8
21

15

32
21

63

32
 



ppppppppdtpt,ApK . 

 

3.2.5. Series of p-Polynomials 

 

As a direct consequence of the existence of p-polynomials we can refer to the series of p-polynomials; 

that is to say any continuous function  tf  such that 11  t , may be expanded in series of p-

polynomials. More precisely, let us prove that if 

 

                                                  





0k

kk pt,Actf ,  11  t , R p ,                                              (76) 

this implies 

                                                              




1

1

1 dttfpt,ApKc kkk .                                                        (77) 

 

To this end, multiplying the series (76) by  ptAn ,  and integrating from 1t  to 1t , and taking 

into account the previous result, namely formula (73), we get 

 

                                                dttfp,tAp,tAcdttfp,tA kn

k

kn 








1

10

1

1

, 

 

for the case when kn  , we have 

 

                                                pKcdtpt,Acdttfpt,A nnnnn  


1

1

2

1

1

, 

 

from where we obtain the very expected formula (77). Furthermore, if we consider the important special 

case that is when 1/2p , we get according to (72), (76) and (77)                                  

                                                         





0

21
k

kk /t,Actf ,  11  t ,                                                  (78) 

and 

                                                            







1

1

21
2

12
dttf/t,A

k
c kk .                                                    (79) 

 

3.3. q-Polynomials 

 

After we have established the existence and studied the properties of p-polynomials which are a direct 

consequence of pq-functions, at present, we would derive the other polynomials, namely q-polynomials. 

For this purpose, we must follow exactly the same previous process that led to p-polynomials. Thus let us 

return to the expression (46) and consider the second case that is when 0p , 0q and 1z  to obtain 

 

                                               q

q, θzρz,θρ,s,,zF


 22

0 cos2 ,   1z  .                                 (80) 

 

As we can remark it, the pq-function (80) for 0p  is explicitly independent of the parameters s  and  , 

hence it may be written as follows 



15 

 

                             qq

q, θ,θρ,s,,zF
  22

0 cos21 ,    with  



z

   and  1 .                     (81) 

By putting  θcos22  and q  in (49), and after rearranging and collecting terms in powers of 

 , we find 

 

    























 222

!1
cos

!2

14
cos

!1

2
1cos21

qqqq
θθθ

q
 

    








 


 33 cos
!2

14
cos

3

218
θθ

qq

!

qqq
                                                                                    

        








 





 424

!2

1
cos

!3

2112
cos

!4

32116 qqqqqqqqq
θθ    

           








 





 535 cos
!3

216
cos

!4

32132
cos

!5

432132
θθθ

qqqqqqqqqqqq
             (82) 

                                          

Therefore the coefficients of   should take the explicit expressions 

 

  1cos0 q,B θ ;   θθ
q

q,B cos
!1

2
cos1  ;  

 
!1

cos
!2

14
cos 2

2

qqq
q,B θθ 


 ;  

 
    

θθθ
qqqqq

q,B cos
!2

14
cos

!3

218
cos 3

3





 ;                                                                            (83)                                                               

 
        

!2

1
cos

!3

2112
cos

!4

32116
cos 24

4










qqqqqqqqq
q,B θθθ  

 
           

θθθθ
qqqqqqqqqqqq

q,B cos
!3

216
cos

!4

32132
cos

!5

432132
cos 35

5








  

… 

 

The coefficients  q,B θn cos  are exactly the expected q-polynomials. Further, it is clear that 

when 1/2q , the q-polynomials (83) reduce to those of Legendre, that is 

 

                                                              θθ nn P,B coscos 1/2  .                                                               (84) 

 

This implies, among other things, that the Legendre polynomials  θnP cos  are in fact a special case of q-

polynomials  q,B θn cos  for the case 1/2q . Therefore, expression (83) may be written as 

                                         





 

0

2 coscos1 2
n

n

n

q
q,B θθ ,   1 ,                                             (85) 

Result: for the case when 0p  and 1z , the pq-function (46) may be written in the form of q-series: 

                                       





0

)2(

0 cos
n

n

n

nq

q, zq,B,θρ,s,,zF θ ,    1z .                                      (86) 

Recall that since the beginning our main interest is essentially focused on the investigation of structure, 

properties and consequences of pq-functions as an extension of pq-radial functions [1] that’s why, here, 

we are not particularly concerned with the study of the Legendre polynomials because they are well-

known since their introduction in 1784 by the French mathematician A. M. Legendre [4]. Also, the q-

polynomials have already been studied in [1] but in the present work )(cos q,Bn   are direct 
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consequences of pq-functions. However, the reader who is interested in q-polynomials and their 

properties can refer to [1]. Nevertheless, it seems that the determination of the recurrence relation for q-

polynomials is necessary because, as we shall see, )(sin q,An   and )(cos q,Bn   are essential for pq-

series. 

 

3.3.1. Recurrence Relation for q-Polynomials 

 

The recurrence relation for q-polynomials is so important, although it was already determined in the 

previous work [1], here we are obliged to drive it again in the context of pq-functions since with the aid 

of this relation and the first two q-polynomials )(cos0 q,B   and )(cos1 q,B  we can explicitly express the 

q-polynomials of any degree. To this aim, putting  cosτ  in (85), we get 

 

                                                     







0

2
21

n

n

n

q
q,B ττ  .                                                      (87) 

 

Differentiating (87) with respect to   on both sides and rearranged to obtain 

 

                                         
 

 
   










0

12

2
2

2
1

1

2

n

n

nq
q,Bn

q
ττ

τ

τ
,                                     (88) 

or equivalently 

                                       










0

12

0

212
n

n

n

n

n

n q,Bnq,Bq ττττ  .                              (89) 

 

Replacing the dominator with its definition (87), and equating the coefficients of powers of n in the 

resulting expansion gives the expected Recurrence Relation for q-polynomials  

                                

                                               q,Bqnq,Bqnq,Bn ττττ nnn 11 1221   ,                              (90) 

with    

                                         10 q,B τ   and    ττ qq,B 21   

 

This relation, along with the first two polynomials  q,B τ0  and  q,B τ1 , allows the Legendre Polynomials 

to be generalized recursively. Furthermore, it may be worth noting that the p-polynomials and q-

polynomials have almost the same general properties, for instance,  p,tAn  and  q,B τn  both have the 

same periodicity with respect to their angular parameters since sint   and cosτ . Also, there is 

another interesting particular case that is when )π/,π/(),( 44  and qp  , we get 

   q,Bq,A nn 2222  . 

 

3.4. pq-Series  

 

The existence of p-series (53) and q-series (86), as a direct consequence of pq-functions, allows us to 

introduce the notion of pq-series that may be considered as a very important useful tool particularly for 

expanding any pq-function with Rq,p  and 1z , also may be used for evaluating certain ‘new’ type 

of integrals as we will see. 

 

Since p-series and q-series are in fact power series, therefore, to arrive at the explicit expression of pq-

series, it suffices to multiply side to side the above mentioned series (53) and (86) to obtain: 
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0

2

2

2

cossin
n

n

nnnq

np

q,p zq,Bp,A
ρ

s
,θρ,s,,zF θ ,    1z ,                          (91) 

with                       

                                        )()( 00,s,,,s   CU    and  R θ,,q,p . 

 

 

3.4.1. Properties of pq-Series  

 

i) Let   ,θρ,s,,zFF q,pq,p   be an expandable pq-function in pq-series for any   ieρz \U  and 

1z ; let U z  such that if  zz    ,θρ,s,,zF,θρ,s,,zF q,pq,p  . This means there is parity 

between  
q,pFz  and 

q,pFz   via the pq-series. 

 

ii) Let Rq,p  and Nk . If  qp,kF  is an expandable pq-function in pq-series for any   ieρz \U   

and 1z : we should have  

                        

















0

2

2

2

cossin
n

n

nnnkq

nkp

qp,k zkq,B,kpA
ρ

s
,θρ,s,,zF θ ,   1z ,  Nk .               (92) 

 

3.4.2. Application of pq-Series                                                    

 

By the present pedagogical example, we would show how a given standard complex function may be 

expanded in pq-series.  With this aim, let   be a standard complex functions defined as follows. 

       -2/31/2
111 ,\:  zzzz  CU  such that   is continuous and differentiable for 

all  1\| Uzz . Our goal is to expand  z  in pq-series with 1z . For this reason, we must rewrite 

  in the form of pq-function (46), for the particular case when    1/31/4, ,qp  ,    11,, ρs , 

    ,θ 2/,   . After substitution, we get 

                                                                
 
 2/3

1/2

1/31/4
1

1
211

z
π/






z
,,,,zF ,  . 

 

Now, with this expression, we can expand  in pq-series (91) through  ,,,,zF , 211 π/1/31/4  and we find 

 

     





0

2

1/31/4, 1/311/41/2211 π/
n

n

nn z,B,A,,,,zF  ,   1z  

 

The coefficients  1/41/2,nA  and  1/31,Bn   may be easily determined from the recurrence relations (59) 

and (90), respectively.  

 

4. pq-Integrals  

 

As it was already mentioned, at the present we are dealing with the application of p-series, q-series and 

pq-series for the purpose of evaluating some ‘new’ kind of integrals, the pq-integrals of general form: 


D

qp, dzF  which, according to the explicit expression (33) of pq-function, it is not easy task to evaluate the 

integral of (33) even with the help of the usual methods. Indeed, the notion of pq-integrals is a natural 

consequence of pq-functions that may be defined as follows. Let  ,θρ,s,,zFF q,pq,p   be a 
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holomorphic pq-function on the complex plane CU   with ieρz   and in the unit disc 

  1:\z   zeρD i
U ; we call pq-integral any integral of the general form: 

 

                                                                       
D

qp, dzF ,  1z .                                                                 (93) 

 

There are two special cases that may be derived from the pq-integral (93), namely the p-integral for the 

case when 0p  and 0q : 

                                                                        
D

p, dzF 0
,  1z .                                                                (94) 

 

And the q-integral for the opposite case, that is when 0p  and 0q : 

 

                                                                        
D

q, dzF0
,  1z .                                                                (95) 

 

The integrals (93), (94) and (95) should be evaluated by using the pq-series, p-series and q-series, 

respectively. 

 

4.1. Properties of pq-Integrals  

 

Generally, all the properties of pq-functions with respect to the orders p and q are transposable to pq-

integrals. Here, we are particularly concerned with four properties: 

 

i)   R q,p :                                       
D

q,p,

D

qp, dzFFdzF 00
,   1z ,                                              (96) 

 

ii)   R q,p :                                         

 
D

q,p

D

qp, dzFdzF 1 ,   1z ,                                                 (97) 

 

iii)   R q,p :                                        
D

)q,p(

D

qp, dzFdzF 
 ,   1z ,                                                (98) 

 

iv)   R q,p :                                dzFdzFF
D

qq,pp

D

q,pqp,    ,   1z .                                         (99) 

 

To illustrate the practical importance of pq-series and its strong link with pq-integrals, let us examine the 

following pedagogical example: Let  ,θρ,s,,zFF q,pq,p   be a holomorphic pq-function in the unit disc 

  1:\z   zeρD i
U , here, our aim is to determine the explicit expression of another pq-function 

 0z,zf q,p , Dzz 0,  such that  

                                                                  

z

z

qp,q,p dzFz,zf

0

0 ,   1z .                                                (100) 

 

Since q,pF is holomorphic in D and 1z , thus q,pF  is expandable in pq-series (91). Therefore, for the 

purpose of finding this pq-integral, substituting (91) in (100) to get, after integration from z  to 0z : 
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12

0

12

2

2

0
12

cossin
n

nn

nnnq

np

q,p
n

zz
q,Bp,A

ρ

s
z,zf θ ,    1z .                  (101) 

 

As we can remark it, by using the pq-series, we have easily and rapidly determined the explicit 

expression (101) of pq-function  0z,zf q,p
 by evaluating the pq-integral (100). However if, for example, 

we want to evaluate the same pq-integral without using pq-series, in such situation we must, first, rewrite 

(100) according to (33) as follows:  

                                               
 
 






z

z

q

pz

z

qp,qp, dz
zzzz

zzzz
dzFzzf

00
))((

))((
,

43

21
0 . 

 

With this above expression and under the condition ‘do not use the pq-series’, the advanced student or 

even the professional mathematician should have a great difficulty and hard task to arrive at the expected 

explicit expression of  0z,zf q,p  by using the usual methods only. Even with the help of the repetitive 

usage of the usual processes of evaluation, there is always some residual pq-integral to evaluate again! 

Hence, the pq-series is essential for pq-integrals. 

 

In what follows it is a systematic application of the concept of pq-functions to standard complex 

functions in order to rewrite their integrals in the form of pq-integral with the pedagogical aim to show 

how for example pq-integral apply to evaluate some standard integrals.  

 

4.2. Application of pq-Integral  

 

Let u be a standard complex functions defined as follows.       22
1,\:


 zzuziu CU  and u is 

holomorphic in unit disc   1:\z  ziDu U . Our goal is to evaluate the integral of function 

 zu  from z  to 0z  with uDzz 0, . This is equivalent to find new standard complex function defined by  

   

z

z

dzzuz,zu

0

0 , uDzz 0, , 1z . First, we look at the function  zu , which has singularities at iz   

and iz   but since  zu  is holomorphic in the unit disc   1:\z  ziDu U  this allows us to 

rewrite it in the form of pq-function that is  zu  should be a special case of pq-function (46). Note that 

there are, in fact, several manners to rewrite  zu  in the form of pq-function by, of course, selecting the 

adequate values for the parameters and orders. For example, in addition to its initial standard form,  zu  

may be rewritten in the form     22
1


 zzu this means  12 z  may be interpreted as a weight function 

or a characteristic function. This remark allows us to choose according to the expression (46): 

   11,, qp ;    11,, ρs  and    2,,  θ , and we get after substitution in (46) 

 

                                          
 
   

  22

2212

12

11, 1
1

11
211




 






 z

zz

z
,,,,zF

1
 .                                   (1.a) 

  

After this process, we can say: we have rewritten the standard complex function  zu  in the form of 

complex pq-function or we have transformed the standard complex function  zu  into complex pq-

function or simply we write:    21111,  ,,,,zFzu   and its integral becomes via this transformation  

   01,10 ,, zzfzzu   or more explicitly 
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z

z

dzFzzfzzu

0

1,101,10 ,, .                                               (1.b) 

 

Since 
1,1F is holomorphic in 

1,1FuD  and 1z , thus 
1,1F is expandable in pq-series (91) 
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11 1010211
n

n

nn, z,B,A,,,,zF  .                                    (1.c) 

The coefficients  10 ,An  and  10 ,Bn  may be easily determined from the expressions (59) and (90), 

respectively. Therefore substituting (1.c) in (1.b), to find, after a direct evaluation  
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nn

nn
n

zz
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5. Physical Interpretation of pq-Functions  

 

In this section, we are particularly interesting in the importance of pq-functions in physics especially 

when the phenomena depend at the same time on the main complex variable z , the auxiliary complex 

parameters )( ρ,s  and the real angular parameters ),( θ . For instance, in the framework of fluid 

mechanics, q,pF may be interpreted under, of course, some experimental and/or theoretical conditions as a 

power law of complex potential flow. This power law should be defined by the expression (33). The pq-

DE that governing such a complex potential is, according to (33) and (34), of the form 
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αz
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with 

                                                                    
2

21 zz
α


 ,  

2

43 zz
β


 .         

 

As illustration, let us show that the well-known Joukowski function (JF) is a special case of pq-function. 

This property should, among other things, extend the field of application of pq-functions. Historically, the 

Russian scientist N. E. Joukowski (1847-1921) who first studied the properties of the function  

 

                                                                     









z
zzJ

1

2

1
,  0z ,                                                    (103) 

 

in the early 20th century. He showed that the image of a circle passing through 11 z  and 12 z  is 

mapped onto a curve shaped like the cross section of an airplane wing. We call this curve the Joukowski 

airfoil as shown in Figs. 1 and 2. 
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                                                        Fig.1: Image of a fluid flow under the Joukowski function 
  

 

 
                                                       

                                                                       Fig.2: Illustration of Joukowski airfoil 
 

 

JF is very important for its applications in fluid mechanics. For example, if the streamlines for a flow 

around the circle are known, then their images under the mapping  zJw   will be streamlines for a flow 

around Joukowski airfoil. However, technically, the Joukowski airfoil/profile suffers from a cusp at 

trailing edge. This implies that if, for instance, one had to build wings with such a profile, and one should 

obtain a very thin, hence fragile rear part of the wing. For this reason more general profiles having a 

singularity with distinct tangents at the trailing edges have been introduced (Karman-Trefftz profile).  

 

Another generalization of Joukowski profile goes in the direction of enlarging the number of parameters 

(Von Mises profile). Now, returning to the explicit expression (46) and showing that with the help of 

property (3) in Sub-subsection 2.2.1 regarding the homogeneity of qp,F with respect to ρands,,z , and 

by an appropriate choice of some values for the real angular parameters ),( θ , we can generalize JF. For 

this purpose, let us begin by rewriting (46) 
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Thus, according to the above mentioned property (3), we have  0\ R : 
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 .                             (104) 

 

So let us deduce the expected generalized JF for the case when    2/, ppqp,  ,    0,sρs,   and 

   θθ, ,  : 
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Here, the generalization is done in power form with the presence of two parameters ε  and s . 

Furthermore, it is worthwhile to note that (105) reduces to the usual JF (103) for the special case when 

1p , 2ε  and 1s . Therefore, the study of properties and behavior of (105) via its graphical 

representations should depend on the appropriate choice of the numerical values for p , ε  and s , 

respectively. 

 

6. Structural Properties of pq-DE  

 

In this section, we would focus our attention exclusively on the structural properties of pq-DE (34), which 

as we know is derived from pq-PDE (5) when the pq-function is supposed independent of the complex 

auxiliary parameters s  and ρ . But first, let us rewrite (34) in its more explicit form, namely: 
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We remark from Eq.(106) that the orders, the weight function, the characteristic function and their 

derivatives all are essential elements that entering in the structure of this equation. This allows us to say 

that the study of structural properties of Eq.(106) is completely depending on those mentioned elements as 

we shall see. 

 

6.1. Relationship between pq-DE and Fuchs’ class 

 

Our aim, here, is to prove that under some conditions relative to very interesting particular cases, Eq.(106) 

belongs to Fuchs’ class. For this purpose, considering the following cases. 

 

Case.1: when 0p  and 0q , Eq.(106) takes the dorm 
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Anyone well familiarized with the equations of Fuchs’ class can immediately affirm that Eq.(107) is 

really belonging to Fuchsian class since its variable coefficients satisfying Fuchs’ condition, and 

according to the explicit expression of the weight function (31), Eq.(107) has two regular singular points:  

1zz   and 2zz  . 

 

Case.2: when 0p  and 0q , Eq.(106) takes the dorm 
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Also, the variable coefficients of Eq.(108) satisfying Fuchs’ condition, and the explicit expression of the 

characteristic function (32) implies that Eq.(108) has two regular singular points: 3zz   and 4zz  . 

 

 



23 

 

6.2. Relationship between pq-DE and DE of Sturm-Liouville form 

 

After we have proven that pq-DE (106) belongs to Fuchs’ class under some well-established conditions, 

at present we shall show that the same equation may be written in classical form of Sturm-Liouville DE, 

particularly, when its spectral (eigenvalue) 1λ , and when the orders    11,, qp  for Eq.(106). First, 

let us write the classical form of Sturm-Liouville DE: 

 

                                              0 RzγzβRzα
dz

Rd
 ,   zRR  ,    0zα .                              (109) 

 

Considering the very important case when 1λ  and R is supposed holomorphic in its domain. Hence, 

after substitution, differentiation and rearrangement, we get 
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Concerning Eq.(106), we have for the case    11,, qp : 
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Or equivalently 
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As we can remark it, the expression of Eq.(112) is comparable to that of Eq.(110), consequently we can 

rewrite it in the following form    
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Eq.(113) is exactly the expected classical form of Sturm-Liouville DE for the case when 1λ . However, 

if we take into account the previous result we find that the variable coefficients of Eq.(113) do not justify 

Fuchs’ condition, therefore, Eq.(113) does not belong to Fuchsian class, in this sense we call it “ pq-DE 

in Sturm-Liouville form for 1λ  and    11,, qp  ”. 

 

6.3. Question 

 

From all that we arrive at the central question that arises in the context of pq-DEs: Is there some 

relationship between the DEs of Fuchsian class and the DEs of Sturm-Liouville form in spite of their 

quite distinct structures? 

 

From previous result concerning the structure of pq-DEs that are belonging to Fuchsian class and 

Eq.(112), we begin to answer this question as follows. The above mentioned relationship may be really 

exist through pq-DEs if and only if    01,, qp  or    10,, qp  when 1λ . Indeed, for the case 

   01,, qp , Eq.(106) reduces to 
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It is clear from the expression of Eq.(114), which is also an important special case of Eq.(107) when 

1p , therefore it follows that the variable coefficients of Eq.(114) satisfying Fuchs’ condition and 

consequently the equation has two regular singular points similar to those of Eq.(107). Furthermore, the 

structure of Eq.(114) allows us to write in Sturm-Liouville form for the case 1λ : 
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Eq.(115) is precisely the first answer to our question -relating to the relationship between the DEs of 

Fuchsian class and the DEs of Sturm-Liouville form. The second answer comes from the case when 

   10,, qp , thus Eq.(106) reduces to 
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Eq.(116) is also an interesting special case of Eq.(108) when 1q . Hence, it follows that the variable 

coefficients of (116) satisfying Fuchs’ condition therefore the equation has two regular singular points 

similar to those of Eq.(108). Moreover, the structure of Eq.(116) permits us to write in Sturm-Liouville 

form for the case 1λ : 

                                                                 0

2








 
 W

H

H
HWH

dz

d
.                                           (117) 

 

Eq.(117) is exactly the second answer to our central question. That is to say, in the context of pq-DEs, 

there is really a certain relationship between the DEs of Fuchsian class and the DEs of Sturm-Liouville 

form.  

 

6.4. Reciprocal characteristic properties 

 

The main purpose of this subsection is to show the existence of some reciprocal properties that 

characterize at the same time the structure of pq-function and its pq-DE. Hence, we must return to (106), 

which has in reality three independent families of solutions, namely: 

 

                                     qp,FW 1 ;   dzWWW  -1

112 ;   22113 WcWcW  ;   C21 c,c .                         (118) 

 

In order to make the understanding of this investigation more easy let us, first, begin with the following 

theorem. 

 

Theorem: -The Wronskian of two fundamental families of solutions of pq-DE (106) is itself a 

fundamental family of solutions of the same equation. 

Proof of theorem: -Let qp,FW 1  and dzWWW  -1

112  two fundamental families of solutions of pq-DE 

(106), thus their Wronskian is   122121 WWWWW,W W .                                                             

We have for the derivative of 2W , the expression 1
-1

11   dzWWW2 . Hence, after substitution in the 

Wronskian, we get       1

-1

111

-1

11121 1 WdzWWWdzWWWW,W  W .                                                                                                                         
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Secondly, we would show that the solutions (118) and their pq-DE (106) are in fact special case. With 

this aim, let  0\Z , hence the property (2) in Sub-subsection 2.2.2 allows us to write 

 

                                                 qp,Fw 1 ;   dzwww  -1

112 ;   22113 wcwcw  .                                 (119) 

 

Note that since the solutions (118) are special case of (119) when 1 , this implies that the solutions 

(119) themselves should be families of solutions of the following pq-DE: 
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The mutual presence of the parameter   in the solutions (119) and their pq-DE (120) defines us, in this 

sense, the reciprocal characteristic properties of pq-DE and its solutions. Indeed, like its solutions, pq-

DE (120) reduces to (106) when 1 . Moreover, if presently we suppose   0\N  such that   is not 

fixed, thus in such a case w  is not simply a fundamental family of solutions, but it should be a system of 

fundamental families of solutions defined by finite summation: 
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Therefore, pq-DE (120) becomes 
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or equivalently  
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Recall that until now the orders  q,p are always considered as fixed real numbers, however, if hereafter 

they are supposed to be non fixed positive integers, that is  Nq,p ; in such case we can distinguish two 

systems (of fundamental families) of solutions defined as a finite summation. 

 

Case 1:  0\N ; Nq,p  and qp >  such that 
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this justifies the following system of pq-DEs 
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Case 2:  0\N ; Nq,p  and qp   such that 
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The corresponding system of pq-DEs takes the form 
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Hence, Eqs.(125) and (127) define us two systems of pq-DEs when p and q are non fixed positive 

integers and nw  is defined by (124) and/or (126). Furthermore, as it was previously mentioned, the 

different structural properties of Eq.(108) as a system of pq-DEs depend exclusively on the expressions of 

pq-function and vice versa. 

 

 

7. Conclusion 

 

In this paper, we have developed a theory based exclusively on the concept of pq-functions which should 

regard as an extension of previous work. We have studied the specific properties of pq-functions and the 

structural properties of pq-(P) DE and their consequences which, to our knowledge, have not previously 

been reported in the literature. 
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