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Jose Acacio de Barros discusses as follows [Jose Acacio de Barros, Int. J. Theor. Phys. 50, 1828
(2011)]. Nagata claims to derive inconsistencies from quantum mechanics [K. Nagata, Int. J. Theor.
Phys. 48, 3532 (2009)]. Jose Acacio de Barros considers that the inconsistencies do not come from
quantum mechanics, but from extra assumptions about the reality of observables. Here we discuss
the fact that there is a contradiction within the quantum theory. We discuss the fact that only
one expected value in a spin-1/2 pure state 〈σx〉 rules out the reality of the observable. We do not
accept extra assumptions about the reality of observables. We use the actually measured results of
quantum measurements (raw data). We use a single Pauli observable. We stress that we can use
the quantum theory even if we give up the axiomatic system for the quantum theory.

PACS numbers: 03.65.Ta(Quantum measurement theory), 03.67.Lx(Quantum computer)
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I. INTRODUCTION

Jose Acacio de Barros discusses as follows [1]. Nagata
claims to derive inconsistencies from quantum mechanics
[2]. Jose Acacio de Barros considers that the inconsis-
tencies do not come from quantum mechanics, but from
extra assumptions about the reality of observables. More
clearly, since quantum mechanics forbids the simultane-
ous measurements of non-commuting observables, as they
do not commute, it does not allow us to simultaneously
assign values to them. The contradiction does not come
from quantum mechanics, but from the assumption that
we can assign values to measurements that were not per-
formed.

Here we discuss the fact that there is a contradiction
within the quantum theory. We discuss the fact that only
one expected value of a spin-1/2 pure state 〈σx〉 rules
out the reality of the observable. We do not accept extra
assumptions about the reality of observables. We use
the actually measured results of quantum measurements
(raw data). We use a single Pauli observable. We stress
that we can use the quantum theory even if we give up
the axiomatic system for the quantum theory.

II. THERE IS A CONTRADICTION WITHIN

THE QUANTUM THEORY BY USING JOINT

PROBABILITY

First we discuss an easy contradiction within the quan-
tum theory as follows [3].

Matrix theory is not compatible with probability the-
ory. Matrix theory has axioms. Probability theory has
axioms. We consider joint set of such axioms. Does such
joint set work as new set of axioms for matrix theory and
probability theory?

Let us consider joint probability. A is an observable.
B is an observable. a, b are actually measured results of

quantum measurements in a quantum state, respectively.
A and B are not commutative. Thus,

[A,B] �= O. (1)

We consider as follows: First we measure observable A
and get a as the actually measured result. And next we
measure observable B and get b as the actually measured
result. This joint event is different if we exchange A to
B, in general. Hence

P (

first︷ ︸︸ ︷
A = a∩

second︷ ︸︸ ︷
B = b) �= P (

first︷ ︸︸ ︷
B = b∩

second︷ ︸︸ ︷
A = a). (2)

On the other hand, the joint probability is depictured in
terms of conditional probabilities:

P (A = a|B = b)P (B = b) = P (A = a ∩B = b),

P (B = b|A = a)P (A = a) = P (B = b ∩ A = a).

(3)

From axioms of probability theory, we have

P (A = a ∩B = b) = P (B = b ∩ A = a). (4)

We cannot assign truth value “1” for the proposition (2)
and for the proposition (4), simultaneously. We are in a
contradiction. It turns out that the joint set of axioms
does not work as new set of axioms for matrix theory and
probability theory. There is a contradiction within the
quantum theory.

The first point is actually that, conventional Quan-
tum Mechanics discussions typically do not employ con-
ditional probabilities correctly if at all. This is the central
issue with Bell’s analysis leading to the idea that Quan-
tum Mechanics requires non-locality or irreality and wave
packet collapse and what not!
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III. DOES PAULI OBSERVABLE IN A

QUANTUM STATE HAVE A COUNTERPART IN

PHYSICAL REALITY?

Recently, it is shown that the two expected values of
a spin-1/2 pure state 〈σx〉 and 〈σy〉 rule out the exis-
tence of probability space of von Neumann’s projective
measurement [2, 4].

In this section, we discuss the fact that only one ex-
pected value of a spin-1/2 pure state 〈σx〉 rules out the
existence of probability space of von Neumann’s projec-
tive measurement.

We try to implement double-slit experiment. There is
a detector just after each slit. Interference figure does
not appear, and we do not consider such a pattern. Let
(σz, σx) be the Pauli vector. We assume that a source of
spin-carrying particles emits them in a state |+z〉, which
can be described as an eigenvector of Pauli observable
σz .

We consider a quantum expected value 〈σx〉 as

〈σx〉 = 〈+z|σx|+z〉 = 0. (5)

We introduce a hidden-variables theory for the quan-
tum expected value of the Pauli observable σx. Then,
the quantum expected value given in (5) can be

〈σx〉 =

∫
dλρ(λ)f(λ). (6)

where λ is some local hidden variable, ρ(λ) is a probabilis-
tic distribution, and f(λ) is the predetermined “hidden”
result of the measurement of the dichotomic observable
σx. The possible values of f(λ) are ±1 (in �/2 unit). If a
particle passes one side slit, then the value of the result of
measurement is +1. If a particle passes through another
slit, then the value of the result of measurement is −1.
It is von Neumann’s projective measurement for σx

In what follows, we discuss the fact that we cannot as-
sign the truth value “1” for the proposition (6). Assume
the proposition (6) is true. We have the same proposition

〈σx〉 =

∫
dλ′ρ(λ′)f(λ′). (7)

An important note here is that the value of the right-
hand-side of (6) is equal to the value of the right-hand-
side of (7) because we only change a label.

We derive a necessary condition for the quantum ex-
pected value given in (6). We derive the possible value
of the product 〈σx〉

2δ(λ − λ′) of the quantum expected
value and a delta function. The quantum expected value

is 〈σx〉 given in (6). We have

〈σx〉
2δ(λ− λ′)

=

∫
dλρ(λ)f(λ)×

∫
dλ′ρ(λ′)f(λ′)δ(λ− λ′)

=

∫
dλρ(λ)

∫
dλ′ρ(λ′)f(λ)f(λ′)δ(λ− λ′)

=

∫
dλρ(λ)(f(λ))2

=

∫
dλρ(λ) = 1. (8)

Here we use the fact

(f(λ))2 = 1 (9)

since the possible values of f(λ) are ±1. Hence we derive
the following proposition if we assign the truth value “1”
for a hidden-variables theory for the Pauli observable σx

〈σx〉
2δ(λ− λ′) = 1. (10)

We derive a necessary condition for the quantum ex-
pected value for the system in a pure spin-1/2 state |+z〉
given in (5). We derive the possible value of the product

〈σx〉 × 〈σx〉 × δ(λ− λ
′) = 〈σx〉

2δ(λ− λ′). (11)

δ(λ − λ′) is the delta function. 〈σx〉 is the quantum ex-
pected value given in (5). We have the following propo-
sition since 〈σx〉 = 0

〈σx〉
2δ(λ− λ′) = 0. (12)

We do not assign the truth value “1” for two propo-
sitions (10) and (12), simultaneously. We are in a con-
tradiction. We have to give up a hidden-variables theory
for the expected value of the Pauli observable σx. The
measured observable σx in the state does not have a coun-
terpart in physical reality.

IV. THERE IS A CONTRADICTION WITHIN

THE QUANTUM THEORY BY USING A SINGLE

PAULI OBSERVABLE

Next we discuss the fact that there is a contradiction
within the quantum theory by using a single Pauli ob-
servable [5]. In this case, there is no need to argue that
observables under consideration are commuting or non-
commuting. Especially, we systematically describe our
assertion based on more mathematical analysis using raw
data (the actually measured results of quantum measure-
ments). In this case, there is no need to argue the reality
of observables. There exists raw data because we have
seen it.

We consider the relation between double-slit experi-
ment and projective measurement. We try to implement
double-slit experiment. There is a detector just after
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each slit. Thus interference figure does not appear, and
we do not consider such a pattern. The actually mea-
sured results of quantum measurements are ±1 (in �/2
unit). If a particle passes one side slit, then the value of
the actually measured result of measurement is +1. If a
particle passes through another slit, then the value of the
actually measured result of measurement is −1.

A. A wave function analysis

Let (σz, σx) be the Pauli vector. We assume that a
source of spin-carrying particles emits them in a state
|ψ〉, which can be described as an eigenvector of Pauli
observable σz. We consider a quantum expected value
〈σx〉 as

〈σx〉 = 〈ψ|σx|ψ〉 = 0. (13)

The above quantum expected value is zero if we consider
only a wave function analysis.

We derive a necessary condition for the quantum ex-
pected value for the system in the pure spin-1/2 state |ψ〉
given in (13). We derive the possible value of the product
〈σx〉× 〈σx〉 = 〈σx〉

2. 〈σx〉 is the quantum expected value
given in (13). We derive the following proposition

〈σx〉
2 = 0. (14)

B. Projective measurement

On the other hand, a mean value E admits projective
measurement if it can be written as

E =

∑m

l=1 rl(σx)

m
(15)

where l denotes a label and r is the actually measured
result of projective measurement of the Pauli observable
σx. We assume the actually measured value of r is ±1
(in �/2 unit).

Assume the quantum mean value with the system in an
eigenvector (|ψ〉) of the Pauli observable σz admits pro-
jective measurement. One has the following proposition
concerning projective measurement

〈σx〉(m) =

∑m

l=1 rl(σx)

m
. (16)

We can assume as follows by Strong Law of Large Num-
bers [6],

〈σx〉(+∞) = 〈σx〉 = 〈ψ|σx|ψ〉. (17)

In what follows, we show that we cannot assign the truth
value “1” for the proposition (16) concerning projective
measurement.

Assume the proposition (16) is true. By changing a
label l into l′, we have the same quantum mean value as
follows

〈σx〉(m) =

∑m

l′=1 rl′(σx)

m
. (18)

An important note here is that the actually measured
value of the right-hand-side of (16) is equal to the actually
measured value of the right-hand-side of (18) because we
only change the label. We have

〈σx〉(m)× 〈σx〉(m)

=

∑m

l=1 rl(σx)

m
×

∑m

l′=1 rl′(σx)

m

=

∑m

l=1 rl(σx)∑m

l=1

×

∑m

l′=1 rl′(σx)∑m

l′=1

×
δll′

δll′

=

∑m

l=1

m
· (rl(σx))

2 =

∑m

l=1

m
= 1. (19)

Here δll′ is a delta function. We use the following fact

(rl(σx))
2 = 1 (20)

and

δll′

δll′
= 1. (21)

Thus we derive a proposition concerning the quantum
mean value under an assumption that projective mea-
surement is true (in a spin-1/2 system), that is

〈σx〉(m)× 〈σx〉(m) = 1. (22)

From Strong Law of Large Numbers, we have

〈σx〉 × 〈σx〉 = 1. (23)

Hence we derive the following proposition concerning
projective measurement

〈σx〉
2 = 1. (24)

We do not assign the truth value “1” for two propo-
sitions (14) (concerning a wave function analysis) and
(24) (concerning projective measurement), simultane-
ously. We are in a contradiction.

We cannot accept the validity of the proposition (16)
(concerning projective measurement) if we assign the
truth value “1” for the proposition (14) (concerning a
wave function analysis). In other words, such projec-
tive measurement does not meet the detector model for
spin observable σx. There is the contradiction within the
quantum theory.

We note here that there is much nonsense in the
Physics literature regarding the theoretical formality for
Spin. The formalism is correct so long as only one di-
mension is under consideration–a restriction that is fully
acceptable in view of the fact that to engage spin empiri-
cally a Magnetic (B) field is required and it can have only
one direction at the point of interacting with a charge.
All formal talk of the spin of a particle in both the Z and
X or Y directions at the same instant is vacuous for lack
of B-fields in two directions at once.
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V. CONCLUSION

In conclusions, Jose Acacio de Barros has discussed
as follows. Nagata has claimed to derive inconsistencies
from quantum mechanics. Jose Acacio de Barros has con-
sidered that the inconsistencies do not come from quan-
tum mechanics, but from extra assumptions about the
reality of observables. Here we have discussed the fact
that there is a contradiction within the quantum theory.

We have discussed the fact that only one expected value
of a spin-1/2 pure state 〈σx〉 rules out the reality of the
observable. We do not have accepted extra assumptions
about the reality of observables. We have used the ac-
tually measured results of quantum measurements (raw
data). We have used a single Pauli observable. We have
stressed that we can use the quantum theory even if we
give up the axiomatic system for the quantum theory.
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