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INTRODUCTION 

 

 

Prime numbers have always fascinated mankind. For mathematicians, they are a kind of 

“black sheep” of the family of integers by their constant refusal to let themselves to be 

disciplined, ordered and understood. However, we have at hand a powerful tool, insufficiently 

investigated yet, which can help us in understanding them: Fermat pseudoprimes. It was a night 

of Easter, many years ago, when I rediscovered Fermat’s "little" theorem. Excited, I found the 

first few Fermat absolute pseudoprimes (i.e. 561, 1105, 1729, 2465, 2821, 6601, 8911) before I 

found out that these numbers are already known. Since then, the passion for study these numbers 

constantly accompanied me. 

In this book I gathered together 27 of my articles posted on VIXRA about Poulet 

numbers (Fermat pseudoprimes to base 2), Carmichael numbers (absolute Fermat 

pseudoprimes), Fermat pseudoprimes to base 3 and other relative Fermat pseudoprimes, also 30 

sequences of such numbers posted by me on OEIS and 65 open problems regarding, of course, 

these numbers. 

I titled the book in this way to show how many new and exciting things one can say more 

about this class of numbers, but, though indeed these collected papers contain 125 conjectures 

about Fermat pseudoprimes (I will list them at the beginning of this book, not denying it’s title), 

these collected papers contain also many observations about the properties of Fermat 

pseudoprimes and generic formulas for many subclasses of such numbers. Also, among these 

125 conjectures there are some conjectures concerning strictly prime numbers, more precisely 

few types of primes which have arisen in the study of Fermat pseudoprimes. 

Exceptions to the above mentioned theorem, Fermat pseudoprimes seem to be more 

malleable than prime numbers, more willing to let themselves to be ordered than them, and their 

depth study will shed light on many properties of the primes, because it seems natural to look for 

the rule studying it’s exceptions, as a virologist search for a cure for a virus studying the 

organisms that have immunity to the virus. 

All articles in this book use the well-known notions of number theory, with only two 

exceptions, namely those in which we have defined a new concept, id est “a set of Smarandache-

Coman divisors of order k of a composite integer n with m prime factors”. 

Finally, one last observation: don’t blame us for the heterogeneous aspect of the content 

of this book, which is the natural consequence of the fact that it is a collection of articles and is 

not designed as a whole from the beginning. 
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The list with the one hundred and twenty-five conjectures on Fermat 

pseudoprimes which are studied in the articles from this book 
 

 

Conjecture 1: There are infinite many Poulet numbers of the form (4^k – 1)/3, where k is 

positive integer.  

 

Conjecture 2: Any number of the form (4^k – 1)/3, where k is prime, k ≥ 5, is a Poulet number.  

 

Conjecture 3: The formula (n^(n*k + k + n – 1) – 1)/(n^2 – 1) generates an infinity of Fermat 

pseudoprimes to base n for any integer n, n > 1. 

 

Conjecture 4: Any 3-Poulet number which has not a prime factor of the form 30k + 23 can be 

written as p*((n + 1)*p – n*p)*((m + 1)*p – m*p) or as p*((n*p – (n + 1)*p)*(m*p – (m + 1)*p). 

 

Conjecture 5: Any Poulet number with two prime factors can be written as P = (q – 30*n)*(r + 

30*n), where q and r are primes or are equal to 1 and n is positive integer, n >= 1. 

 

Conjecture 6: There is an infinity of Poulet numbers of the form p^2 + 81*p + 3*p*q, where p is 

a prime of the form 30*k + 13 and q is a prime of the form 30*k + 41, where k is an integer, k 

>= 0. 

 

Conjecture 7: There is an infinity of Poulet numbers of the form p^2 + 81*p + 3*p*q, where p is 

a prime of the form 30*k + 41 and q is a prime of the form 30*k + 13, where k is an integer, k 

>= 0. 

 

Conjecture 8: If the number p^2 + 81*p + 3*p*q, where p is a prime of the form 30*k + 13 and 

q is a prime of the form 30*k + 41, is a Poulet number, then the number p^2 + 81*p + 3*p*q, 

where p is a prime of the form 30*k + 41 and q is a prime of the form 30*k + 13 is a Poulet 

number too (k is an integer, k >= 0). 

 

Conjecture 9: For every Wieferich prime p there is an infinity of Poulet numbers which are 

equal to n*p – n + 1, where n is integer, n > 1. 

 

Conjecture 10: The numbers formed through deconcatanation of Carmichael numbers not 

divisible by 5 that ends in the digits that form a number of the form 6*k – 1 and the respective 

number are congruent to 2 (mod 6) or to 5 (mod 6). 

 

Conjecture 11: There is no a Carmichael number with three prime divisors to can be written as 

(6*x + 1)*(6*y + 1)*(6*z – 1), they are all of the form (6*x + 1)*(6*y + 1)*(6*z + 1), (6*x – 

1)*(6*y – 1)*(6*z – 1) or (6*x + 1)*(6*y – 1)*(6*z – 1). 

 

Conjecture 12: For any Carmichael number C that has only prime factors of the form 6*k + 1 is 

true at least one of the following five relations:  

(1) C is a Harshad number;  

(2) If we note with s(m) the sum of the digits of the integer m then C is divisible by n*s(C) – n + 

1, where n is integer;  

(3) C is divisible by s((C + 1)/2);  

(4) C is divisible by n*s((C + 1)/2) – n + 1, where n is integer;  

(5) s(C) = s((C + 1)/2). 
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Conjecture 13: The number (30*n + 7)*(60*n + 13)*(150*n + 31) is a Carmichael number if 

(but not only if) 30*n + 7, 60*n + 13 and 150*n + 31 are all three prime numbers.  

 

Conjecture 14: The number (30*n – 29)*(60*n – 59)*(90*n – 89)*(180*n – 179) is a 

Carmichael number if (but not only if) 30*n – 29, 60*n – 59, 90*n – 89 and 180*n – 179 are all 

four prime numbers.  

 

Conjecture 15: The number (330*n + 7)*(660*n + 13)*(990*n + 19)*(1980*n + 37) is a 

Carmichael number if 330*n + 7, 660*n + 13, 990*n + 19 and 1980*n + 37 are all four prime 

numbers. 

 

Conjecture 16: The number (30*n – 7)*(90*n – 23)*(300*n – 79) is a Carmichael number if 

(but not only if) 30*n – 7, 90*n – 23 and 300*n – 79 are all three prime numbers. 

 

Conjecture 17: The number (30*n + 13)*(90*n + 37)*(150*n + 61) is a Carmichael number if 

(but not only if) 30*n + 13, 90*n + 37 and 150*n + 61 are all three prime numbers. 

 

Conjecture 18: Any Carmichael number can be written as (n^2*p^2 – q^2)/(n^2 – 1), where p 

and q are primes or power of primes or are equal to 1 and n is positive integer, n > 1. 

 

Conjecture 19: For any Carmichael numbers with three prime factors, C = d1*d2*d3, where d1 < 

d2 < d3, is true one of the following two statements: 

(1) d2 can be written as d1*(n + 1) – n and d3 can be written as d1*(m + 1) – m; 

(2)  d2 can be written as d1*n – (n + 1) and d3 can be written as d1*m – (m + 1),  

where m and n are natural numbers. 

 

Conjecture 20: There is an infinity of reversible primes p with the property that the number 

obtained through concatenation of the digits of p with a number of n digits of 0, where n is equal 

to one less than the digits of p, and finally with the digit 1 is a prime. 

 

Conjecture 21: If p and 2p + 1 are both primes, then the number n = p*(2p + 1) – 2*k*p is 

Fermat pseudoprime to base p + 1 for at least one natural value of k. 

 

Conjecture 22: If p and 2p – 1 are both primes, p > 3, then the number n = p*(2p – 1) – 2*k*p is 

Fermat pseudoprime to base p – 1 for at least one natural value of k. 

 

Conjecture 23: If p and q are primes, where q = sqrt(2*p – 1), then the number p*q is Fermat 

pseudoprime to base p + 1. 

 

Conjecture 24: If p is prime, p > 3, and k integer, k > 1, then the number n = p*(k*p – k + 1) is 

Fermat pseudoprime to base k*p – k and to base k*p – k + 2.  

 

Conjecture 25: Any prime number p can be written as p = (C*q – 1)/(q – 1), where C is a 

Carmichael number and q is a prime.   

 

Conjecture 26: If the number 360*(a*b) + 1, where a and b are primes, is equal to c^2, where c 

is prime, then exists an infinite series of Carmichael numbers of the form a*b*d, where d is a 

natural number (obviously odd, but not necessarily prime). 
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Conjecture 27: The expression n^E mod 544 = n, where n is any natural number, is true if E is 

an Euler pseudoprime. 

 

Conjecture 28: For any biggest prime factor of a Poulet number p1 with two prime factors exists 

a series with infinite many Poulet numbers p2 formed this way: p2 mod (p1 – d) = d, where d is 

the biggest prime factor of p1.  

 

Conjecture 29: Any Poulet number p2 divisible by d can be written as (p1 – d)*n + d, where n is 

natural, if exists a smaller Poulet number p1 with two prime factors divisible by d.  

 

Conjecture 30: For any biggest prime factor of a Poulet number p1 exists a series with infinite 

many Poulet numbers p2 formed this way: p2 mod (p1 – d) = d, where d is the biggest prime 

factor of p1. 

 

Conjecture 31: Any Poulet number P with three or more prime divisors has at least one prime 

divisor q for that can be written as P = q*((r + 1)*q – r), where r is a natural number.  

 

Conjecture 32: The only Poulet number divisible by a smaller Poulet number that can’t be 

written as p*((m + 1)*p – m)*((n + 1)*p – n), where m, n, p are natural numbers, are multiples of 

5461 and can be written as 5461*(42*k – 13).  

 

Conjecture 33: There are infinite many Poulet numbers of the form 7200*n^2 + 8820*n + 2701. 

 

Conjecture 34: There are infinite many Poulet numbers of the form 144*n^2 + 222*n + 85.  

 

Conjecture 35: If a Poulet number can be written as 8*p*n + p^2, where n is an integer number 

and p one of it’s prime factors, than can be written this way for any of it’s prime factors.  

 

Conjecture 36: For any m natural, m > 1, there exist a series with infinite many Fermat 

pseudoprimes to base 2, P, formed this way: P = (n^m + m*n)/(m + 1).  

 

Conjecture 37: There are infinite many Poulet numbers that can be written as (n + 1)*p^2 – n*p, 

where n is natural, n > 0, and p is another Poulet number.  

 

Conjecture 38: For any Poulet number p there are infinite many Poulet numbers that can be  

written as (n + 1)*p^2 – n*p, where n is natural, n > 0.  

 

Conjecture 39: For any Poulet number, p1, there exist infinite many Poulet numbers, p2, formed 

this way: p2 = (p1^n + n*p1)/(n + 1), where n natural, n > 1.  

 

Conjecture 40: For any Carmichael number, C1, there exist infinite many Carmichael numbers, 

C2, formed this way: C2 = (C1^n + n*C1)/(n + 1), where n natural, n > 1.  

 

Conjecture 41: There is no absolute Fermat pseudoprime m for which n = (5*m – 1)/24 is a 

natural number. 

 

Conjecture 42: Any Carmichael number C divisible by p and 2p – 1 (where p and 2p – 1 are 

prime numbers) can be written as C = p*(2p – 1)*(n*(2p – 2) + p).  
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Conjecture 43: For any odd number p we have an infinite number of Carmichael numbers of the 

form n*(2*n – 1)*(p*n – p + 1)*(2*p*n – 2*p + 1).  

 

Conjecture 45: A Carmichael number C1 can be written as C1 = (C2 + C3)/2, where C2 and C3 

are also Carmichael numbers, only if both C1 and C3 are divisible by C2.  

 

Conjecture 44: All Carmichael numbers C (not only with three prime divisors) of the form 10*n 

+ 1 that have only prime divisors of the form 10*k + 1 can be written as C = (30*a + 1)*(30*b + 

1)*(30*c + 1), C = (30*a + 11)*(30*b + 11)*(30*c + 11), or C = (30*a + 1)*(30*b + 11)*(30*c 

+ 11). In other words, there are no such numbers of the form C = (30*a + 1)*(30*b + 1)*(30*c + 

11).  

 

Conjecture 46: If m*126 + n = 1729, m*126 > n, then exists a series with infinite many 

Carmichael terms of the form C mod m*234 = n.  

 

Conjecture 47: If m*234 + n = 1729, m*234 > n, then exists a series with infinite many 

Carmichael terms of the form C mod m*234 = n.  

 

Conjecture 48: If m*342 + n = 1729, m*342 > n, then exists a series with infinite many 

Carmichael terms of the form C mod m*342 = n.  

 

Conjecture 49: For any prime factor of a Carmichael number C1 exists a series with infinite 

many Carmichael terms C2 formed this way: C2 mod m*18*d = n, where m*18*d + n = C1, 

where d is the prime factor of C1 and m, n are natural numbers, m*18*d < n.  

 

Conjecture 50: There are infinitely many Fermat pseudoprimes to base 3 of the form (3^(4*k + 

2) – 1)/8, where k is a natural number.  

 

Conjecture 51: Any Poulet numbers P which have the numbers p = 23 and q = 67 as prime 

factors can be written as P = p*q*(n*(q – 1) + p) = 3*p^3*(3*n + 1) – p^2*(15*n + 2) + 6*p*n, 

where n non-null positive integer. 

 

Conjecture 52: Any Poulet numbers P which have the numbers p = 30*k + 23 and q = 90*k + 

67, where k non-negative integer, as prime factors can be written as P = 3*p^3*(3*n + 1) – 

p^2*(15*n + 2) + 6*p*n, where n non-null positive integer. 

 

Conjecture 53: There is an infinity of Poulet numbers which have the numbers p = 30*k + 23 

and q = 90*k + 67, where k non-negative integer, as prime factors (implicitly there is an infinity 

of pairs of primes of the form [30*k + 23, 90*k + 67]). 

 

Conjecture 54: Any Poulet numbers P which have the numbers p = 11 and q = 61 as prime 

factors can be written as P = p*q*(n*(q – 1) + p) = 6*p^3*(6*n + 1) – p^2*(66*n + 5) + 30*p*n, 

where n non-null positive integer. 

 

Conjecture 55: Any Poulet numbers P which have the numbers p = 30*k + 11 and q = 180*k + 

61, where k non-negative integer, as prime factors can be written as P = 6*p^3*(6*n + 1) – 

p^2*(66*n + 5) + 30*p*n, where n non-null positive integer. 
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Conjecture 56: There is an infinity of Poulet numbers which have the numbers p = 30*k + 11 

and q = 180*k + 61, where k non-negative integer, as prime factors (implicitly there is an infinity 

of pairs of primes of the form [30*k + 11, 180*k + 61]). 

 

Conjecture 57: The length of the period of the rational number which is the sum, from n = 1 to n 

= ∞, of the numbers 1/(Cn – 1), where {C1, C2, ..., Cn} is the ordered set of Carmichael numbers, 

is always multiple of 66. 

 

Conjecture 58: Any 2-Poulet number P can be written at least in one way as P = 

(q*2^a*3^b*5^c ± 1)*2^n + 1, where q is a prime, a square of prime or a semiprime, a, b, c are 

non-negative integers and n is non-null positive integer. 

 

Conjecture 59: If r is equal to the positive rational number 1/(d1 – 1) + 1/(d2 – 1) +...+ 1/(dn – 1), 

where d1,..., dn are the prime factors of a Poulet number P, and m is equal to the last denominator 

obtained applying the Egyptian fraction expansion to r, then the number m + 1 is a prime or a 

power of prime for an infinity of Poulet numbers. 

 

Conjecture 60: If r is equal to the positive rational number 1/(d1 – 1) + 1/(d2 – 1) +...+ 1/(dn – 1), 

where d1,..., dn are the prime factors of a Poulet number P, and r is represented by the irreducible 

fraction x/y, where x, y positive integers, then the number y + 1 is a prime or a power of prime 

for an infinity of Poulet numbers. 

 

Conjecture 61: If d1,..., dn are the prime factors of a Poulet number P, then the number lcm((d1 – 

1), (d2 – 1), ..., (dn – 1)) is a prime or a power of prime for an infinity of Poulet numbers. 

 

Conjecture 62: There is an infinity of 2-Poulet numbers which have the set of Smarandache-

Coman divisors of order 1 equal to {p, p}, where p is prime. 

 

Conjecture 63: There is an infinity of 2-Poulet numbers which have the set of SC divisors of 

order 2 equal to {p, p + 20*k}, where p is prime and k is non-null integer. 

 

Conjecture 64: There is an infinity of 2-Poulet numbers which have the set of SC divisors of 

order 2 equal to {a, b}, where a + b + 1 is prime. 

 

Conjecture 65: There is an infinity of 2-Poulet numbers which have the set of SC divisors of 

order 2 equal to {a, b}, where a + b – 1 is prime. 

 

Conjecture 66: There is an infinity of 2-Poulet numbers which have the set of SC divisors of 

order 2 equal to {a, b}, where a + b – 1 and a + b + 1 are twin primes. 

 

Conjecture 67: There is an infinity of pairs of 2-Poulet numbers which have the set of SC 

divisors of order 2 equal to {a, b}, respectively to {c, d}, where a + b = c + d and a, b, c, d are 

primes. 

 

Conjecture 68: There is an infinity of pairs of 2-Poulet numbers which have the set of SC 

divisors of order 2 equal to {a, b}, respectively to {c, d}, where a + b + 1 = c + d – 1. 

 

Conjecture 69: There is an infinity of 2-Poulet numbers which have the set of SC divisors of 

order 6 equal to {p, q}, where abs{p – q} = 6*k, where p and q are primes and k is non-null 

positive integer. 
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Conjecture 70: There is an infinity of 2-Poulet numbers which have the set of SC divisors of 

order 6 equal to {a, b}, where abs{a – b} = p and p is prime. 

 

Conjecture 71: There is an infinity of 2-Poulet numbers which have the set of SC divisors of 

order 6 equal to {p, q}, where one from the numbers p and q is prime and the other one is twice a 

prime. 

 

Conjecture 72: There is an infinity of 3-Poulet numbers which have the set of SC divisors of 

order 1 equal to {a, b, c}, where a + b + c is prime and a, b, c are primes. 

 

Conjecture 73: There is an infinity of 3-Poulet numbers which have the set of SC divisors of 

order 1 equal to {a, b, c}, where a + b + c - 1 and a + b + c + 1 are twin primes. 

 

Conjecture 74: There is an infinity of 3-Poulet numbers which have the set of SC divisors of 

order 1 equal to {n, n, n}. 

 

Conjecture 75: There is an infinity of 3-Poulet numbers which have the set of SC divisors of 

order 2 equal to {5, p, q}, where p and q are primes and q = p + 6*k, where k is non-null positive 

integer. 

 

Conjecture 76: There is an infinity of Poulet numbers divisible by 15 which have the set of SC 

divisors of order 1 equal to {2, 4, 7, n1, ..., ni}, where n1, ..., ni are non-null positive integers and i 

> 0.  

 

Conjecture 77: There is an infinity of Poulet numbers divisible by 15 which have the set of SC 

divisors of order 1 equal to {2, 4, 23, n1, ..., ni}, where n1, ..., ni are non-null positive integers and 

i > 0.  

 

Conjecture 78: There is an infinity of Poulet numbers which are multiples of any Poulet number 

divisible by 15 which has the set of SC divisors of order 1 equal to {2, 4, n1, ..., ni}, where n1 = 

n2 =...= ni = 7 and i > 0.  

 

Conjecture 79: There is an infinity of pairs of primes, not necessarily consecutive, of the form 

(p, p + 24). 

 

Conjecture 80: There is, for any odd prime q, q > 3, an infinity of primes of the form q + p*(p + 

24) – 1, where p and p + 24 are both primes. 

 

Conjecture 81: There is, for any pair of twin primes (p, q), (p, q) ≠ (3, 5), an infinity of pairs of 

twin primes of the form (p + m*n – 1, q + m*n – 1), where m and n are both primes and n = m + 

24.  

 

Conjecture 82: There is an infinity of 2-Poulet numbers P, P = p1*p2, for which p2 – p1 + 1 = 

q1*q2, where q1 and q2 are primes and q2 – q1 = 24.  

 

Conjecture 83: There is an infinity of 2-Poulet numbers P, P = p1*p2, for which p2 – p1 + 1 = q, 

where q is prime or a square of prime.  

 

Conjecture 84: There is an infinity of 2-Poulet numbers P, P = p1*p2, for which p2 – p1 – 1 = q, 

where q is prime or a square of prime.  
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Conjecture 85: There is an infinity of 2-Poulet numbers P, P = p1*p2, for which p2 – p1 – 1 and 

p2 – p1 + 1 are both primes. 

 

Conjecture 86: For any pair of twin primes (q1, q2) there exist at least a pair of primes (p1, p2) 

such that q1 = p2 – p1 – 1 and q2 = p2 – p1 + 1 are both primes and P = p1*p2 is a 2-Poulet number. 

 

Conjecture 87: There is an infinity of pairs of primes, not necessarily consecutive, of the form 

(p, p + 84). 

 

Conjecture 88: There is an infinity of 2-Poulet numbers P, P = p1*p2, for which p2 – p1 = 84.  

 

Conjecture 89: Any Carmichael number C divisible by 7 and 13 can be written as C =  

7*13*(18*k + 1) or as C = 7*13*(18*k + 13), where k is natural. 

 

Conjecture 90: Any Carmichael number C divisible by 19 and 37 can be written as C = 

19*37*(18*k + 1), where k is natural. 

 

Conjecture 91: Any Carmichael number C can be written as a product of three numbers in one 

of two ways:  

I. C = n*(a*n – a + 1)*(b*n – b + 1), where n is the smallest prime divisor of  C and a, b natural 

numbers;  

II. C = n*(a*n – a – 1)*(b*n – b – 1), where n is the smallest prime divisor of  C and a, b natural 

numbers.  

 

Conjecture 92: Any Poulet number P, except for a set of definable exceptions, can be written as 

P = ((d – 1)*(d + m)/m) + 1, where d is any prime factor of P (the first exception is the 15-th 

Poulet number, the number 4371). 

 

Conjecture 93: For any Poulet number P, except for a set of definable exceptions, is true one of 

the following two relations: (P/d) – 1 is divisible by d – 1 or d – 1 is divisible by (P/d) – 1 for 

any d prime factor of P (the first exception is the 15-th Poulet number, the number 4371). 

 

Conjecture 94: For any 2-Poulet number P, except for a set of definable exceptions, is true the 

following relation: P = ((d – 1)*(d + m)/m) + 1, where m is natural and d is any of the two prime 

factors of P (the first three exceptions are the 19-th, the 35-th and the 38-th Poulet numbers, i.e. 

the numbers 7957 = 73*109, 18721 = 97*193 and 23377 = 97*241). 

 

Conjecture 95: For any Poulet number P there exist n such that P – 80*n is prime. 

 

Conjecture 96: For any Poulet number P there exist n such that P – 150*n is prime. 

 

Conjecture 97: For any 3-Carmichael number C = d1*d2*d3, except for a set of definable 

exceptions, is true that d3^2 > d1^2 + d2^2 (the first exception is the Carmichael number 

116682721 = 281*617*673). 

 

Conjecture 98: Any Carmichael number C, except for a set of definable exceptions, can be 

written as C = p*q + p – q, where p and q are primes. 
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Conjecture 99: Any Carmichael number C of the form 10*k + 1, not divisible by 3, can be 

written at least in one of the following two forms: C = 1800*n^2 + 840*n + p or C = 1800*n^2 – 

840*n – q, where p and q are primes (p of the form 30*h + 1 and q of the form 30*h + 29).  

 

Conjecture 100: For any 2-Poulet number P = d1*d2, except for a set of definable exceptions, 

there exist the non-null positive integers m, n such that P mod (n*d2 – n) = (m + 1)*d1 – m. 

 

Conjecture 101: The number N = p*(p + 2) + 1729, where p and p + 2 are twin primes, is 

always equal to a product of powers of the numbers 2 and 3 and of prime factors of the form 

30*k + 1, 30*k + 7, 30*k + 13 and 30*k + 19.  

 

Conjecture 102: Any Poulet number P of the form 10*k + 1, 10*k + 5 or 10*k + 9  (not of the 

form 10*k + 3 or 10*k + 7) can be written as  P = (a^2 – b^2)/8, where a and b are non-null 

positive integers. 

 

Conjecture 103: Let C be a Carmichael number and s(C) be its digital root. If C is not a Harshad 

number and s(C) is not equal to 1, then any prime factor d of C, d ≠ 3, can be written as d = 

n*s(C) – n ± 1, where n is a non-null positive integer. 

 

Conjecture 104: Let C be a Carmichael number and s(C) be the sum of its digits. Any C except 

for a set of definable exceptions can be written as C = n*s(C) – n + 1, where n is a non-null 

positive integer. 

 

Conjecture 105: There exist an infinity of 3-Carmichael numbers C = d1*d2*d3 for which the 

number N = 2*(d1 + d2 + d3 – 6)*(C – 2) – 1 is also a Carmichael number. 

 

Conjecture 106: There exist an infinity of n-Carmichael numbers C = d1*d2*…*dn for which the 

number N = 2*(d1 + d2 +…+ dn – 2*n)*(C – 2) – 1 is also a Carmichael number. 

 

Conjecture 107: For any Carmichael number C, except for a set of definable exceptions, is true 

at least one of the two following statements:  

(1) C – 1 is divisible by s(C) – 1; 

(2) C – 1 is divisible by s(C) + 1, where s(C) is the sum of digits of C. 

 

Conjecture 108: Any Carmichael number C can be written as C = (n*(n + p))/8, where n is non-

null positive integer and p is prime or power of prime. 

  

Conjecture 109: There is an infinity of Carmichael numbers of the form (104*(104 + p)/8, 

where p is prime (for p = 29 and 113 are obtained Carmichael numbers 1729 and 2821). 

 

Conjecture 110: There is an infinity of primes p of the form p = 7*q – 104, where q is a prime 

of the form 6*k + 1. 

 

Conjecture 111: There is an infinity of primes p of the form p = q1*q2 – 8*(q1 + 6), where q1 

and q1 + 6 are primes of the form 6*k + 1 and q is also prime of the form 6*k + 1. 

 

Conjecture 112: Any Carmichael number C can be written as C = (n*(n + a))/(a + 1), where n 

and a are non-null positive integers. 
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Conjecture 113: For any Poulet number P1 there is an infinity of primes p such that P1 + p*(p – 

1) = P2, where P2 is also a Poulet number. 

 

Conjecture 114: For any Poulet number P1 there is an infinity of primes p such that P1 + 2*p*(p 

– 1) = P2, where P2 is also a Poulet number. 

 

Conjecture 115: There is an infinity of Carmichael numbers C of the form C = 2821 + 26520*n, 

where n is non-negative integer (for n = 0, 1 and 7 are obtained the Carmichael numbers 2821, 

29341 and 188461). 

 

Conjecture 116: There is an infinity of Carmichael numbers C of the form C = p^4 + 60*p, 

where p is prime (for p = 7 and 13 are obtained the Carmichael numbers 2821 and 29341). 

 

Conjecture 117: Any Carmichael number C can be written as C = 2^n*p + q, where p and q are 

primes and abs{p – q} = 10*k, where k is non-negative integer. 

 

Conjecture 118: There is an infinity of Carmichael numbers C of the form C = n*(n + 1) + p^2, 

where n is non-null positive integer and p is prime (for n equal to 23 and 32 and p equal to 3 and 

7 are obtained 561 and 1105). 

 

Conjecture 119: There is an infinity of Carmichael numbers C which can be written as C = 2^m 

+ 7^n, where m and n are non-null positive integers (for m equal to 9 and 6 and n equal to 2 and 

4 are obtained 561 and 2465). 

 

Conjecture 120: There is an infinity of Carmichael numbers C which can be written as C = (p^2 

+ n)/(n + 1), where p is prime and n non-null positive integer. 

 

Conjecture 121: There is an infinity of Carmichael numbers C which can be written as C = 

(p^2*q^2 + n)/(n + 1), where p and q are primes and n non-null positive integer. 

 

Conjecture 122: There is an infinity of Carmichael numbers C which can be written as C = 

(sqrt(4*p – 1)/3) + 2, where p is prime. 

 

Conjecture 123: Any Carmichael number C can be written as C = p*q + q – p, where p and q 

are primes (appears that often q – p is of the form 10*k). 

 

Conjecture 124: Any 3-Carmichael number C divisible by 5 can be written as C = p*(q – 2^n), 

where p is one of its prime factors beside 5, q is a prime and n is non-null positive integer. 

 

Conjecture 125: For any p odd prime, p ≠ 5, there exist an infinity of numbers n such that q = 

5*p + 2^n is prime. 
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SUMMARY 
 

 

 

Part one. Twenty-seven articles on Fermat pseudoprimes 

 

 

1. A formula for generating primes and a possible infinite series of Poulet numbers 

2.  A new class of Fermat pseudoprimes and few remarks about Cipolla pseudoprimes 

3. Formulas that generate subsets of 3-Poulet numbers and few types of chains of 

primes 

4. A conjecture about 2-Poulet numbers and a question about primes 

5. A formula that generates a type of pairs of Poulet numbers 

6. A method of finding subsequences of Poulet numbers 

7. A possible infinite subset of Poulet numbers generated by a formula based on 

Wieferich primes 

8. Four sequences of integers regarding balanced primes and Poulet numbers 

9. Six polynomials in one and two variables that generate Poulet numbers 

10. A conjecture about a large subset of Carmichael numbers related to concatenation   

11. A conjecture about primes based on heuristic arguments involving Carmichael 

numbers 

12. A conjecture regarding the relation between  Carmichael numbers and the sum of 

their digits 

13. A list of 13 sequences of Carmichael numbers based on the multiples of the 

number 30 

14. A possible generic formula for Carmichael numbers  

15. An interesting and unexpected property of Carmichael numbers and a question 

16. Connections between the three prime factors of 3-Carmichael numbers 

17. Formulas for generating primes involving emirps, Carmichael numbers and 

concatenation 

18. Four conjectures regarding Fermat pseudoprimes and few known types of pairs of 

primes 

19. Special properties of the first absolute Fermat pseudoprime, the number 561 

20. Six conjectures and the generic formulas for two subsets of Poulet numbers 

21. A pattern that relates Carmichael numbers to the number 66  

22. A generic formula of 2-Poulet numbers and also a method to obtain sequences of 

n-Poulet numbers 

23. Few interesting results regarding Poulet numbers and Egyptian fraction expansion 

24. The Smarandache-Coman divisors of order k of a composite integer n with m 

prime factors 

25. Seventeen sequences of Poulet numbers characterized by a certain set of 

Smarandache-Coman divisors 

26. Few types of chains of primes arising in the study of pseudoprimes 

27. Ten conjectures about certain types of pairs of primes arising in the study of 2-

Poulet numbers 
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Part two. Thirty sequences of Fermat pseudoprimes 

 

 

1. Poulet numbers with two prime factors  

2. Poulet numbers with three prime factors 

3. Poulet numbers with three prime factors divisible by a smaller Poulet number 

4. Poulet numbers of the form (6*k + 1)*(6*k*n + 1), where k, n are integers 

different from 0 

5. Poulet numbers of the form (6*k – 1)*((6*k – 2)*n + 1), where k, n are integers 

different from 0 

6. Poulet numbers of the form 7200*n^2 + 8820*n + 2701 

7. Poulet numbers of the form 144*n^2 + 222*n + 85 

8. Poulet numbers of the form 8*p*n + p^2, where p is prime 

9. Poulet numbers of the form (n^2 + 2*n)/3 

10. Poulet numbers that can be written as 2*p^2 –  p, where p is also a Poulet number 

11. Poulet numbers of the form m*n^2 + (11*m – 23)*n + 19*m – 49 

12. Poulet numbers that can be written as (p^2 + 2*p)/3, where p is also a Poulet 

number 

13. Poulet numbers that can be written as p^2*n –  p*n + p, where p is also a Poulet 

number 

14. Primes of the form (24*p + 1)/5, where p is a Poulet number 

15. The smallest m for which the n-th Carmichael number can be written as 

p^2*(m+1) – p*m  

16. Carmichael numbers of the form (30*k + 7)*(60*k + 13)*(150*k + 31) 

17. Carmichael numbers of the form C = (30*n – 7)*(90*n – 23)*(300*n – 79) 

18. Carmichael numbers of the form C = (30*n – 17)*(90*n – 53)*(150*n – 89) 

19. Carmichael numbers C = (60*k + 13)*(180*k + 37)*(300*k + 61) 

20. Carmichael numbers C = (30*n – 29)*(60*n – 59)*(90*n – 89)*(180*n – 179) 

21. Carmichael numbers C = (330*k + 7)*(660*k + 13)*(990*k + 19)* (1980*k + 37) 

22. Carmichael numbers of the form C = (30*n – p)*(60*n – (2*p + 1))*(90*n – (3*p 

+ 2)), where p, 2*p + 1, 3*p + 2 are all three primes 

23. Carmichael numbers of the form C = p*(2*p – 1)*(3*p – 2)*(6*p – 5), where p is 

prime 

24. Carmichael numbers of the form C = p*(2*p – 1)*(n*(2*p – 2) + p), where p and 

2*p – 1 are primes 

25. Carmichael numbers of the form n*(2*n – 1)*(p*n – p + 1)*(2*p*n – 2*p + 1), 

where p is odd 

26. Carmichael numbers of the form 3*n*(9*n + 2)*(18*n – 1), where n is odd 

27. Carmichael numbers that have only prime divisors of the form 10*k + 1 

28. Carmichael numbers divisible by a smaller Carmichael number 

29. Carmichael numbers divisible by 1729 

30. Fermat pseudoprimes n to base 3 of the form n = (3^(4*k + 2) – 1)/8 
 

 

Part three. Sixty-five open problems regarding Fermat pseudoprimes 
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Part one. Twenty-seven articles on Fermat pseudoprimes 
 

 

1. A formula for generating primes and a possible infinite series of Poulet 

numbers 
 

 

Abstract. An amazingly easy to formulate but rich in consequences property of Fermat 

pseudoprimes to base 2 (Poulet numbers). 

 

 

A formula for generating primes 

 

I studied Fermat pseudoprimes for quite a while (I posted on OEIS few series and properties of 

Carmichael numbers and Poulet numbers) and I always believed that in the structure of 

pseudoprimes resides a key for obtaining primes. Here I expose such a formula that generates 

primes and products of few primes. 

 

I first noticed that the first Poulet number, 341, can be written as (2^10 – 1)/3 and after that I 

found other Poulet numbers that can be written as (2^k – 1)/3: 5461, 1398101, 22369621, 

5726623061, 91625968981, respectively for k = 14, 22, 26, 34, 38 (I conjecture that there are 

infinite Poulet numbers of this form). 

 

I then noticed that the third Poulet number, 645, can be written as (2^4*11^2 – 1)/3 and after that 

I found other Poulet numbers that can be written as (2^k*q^2 – 1)/3, where q is prime: 2465, 

2821, 8321, respectively for q = 43, 23, 79 (I conjecture that there are infinite Poulet numbers of 

this form too). 

 

From the first 23 Poulet numbers, 19 can be written as (2^k*q – 1)/3, where q is prime or square 

of prime! 

 

So the formula to generate numbers q that are primes, squares of primes and products of few 

primes or squares of primes is simply q = (3*P + 1)/2^k, where P is a Poulet number and k is the 

biggest natural number for that q is an integer. 

 

I list below few values of N = 3*P + 1, for 9 consecutive Poulet numbers with 12 digits taken 

randomly (I note generically with s the squarefree semiprimes and with r the products of 3 

distinct prime factors):  

 

for P = 994738556701 we get N = 2^3*s; 

for P = 994738580641 we get N = 2^2*746053935481; 

for P = 994750702441 we get N = 2^2*r; 

for P = 994767925201 we get N = 2^2*746075943901; 

for P = 994788345601 we get N = 2^2*746091259201; 

for P = 994818048445 we get N = 2^3*s; 

for P = 994830588181 we get N = 2^6*46632683821; 

for P = 994853432581 we get N = 2^4*29^2*53^2*281^2; 

for P = 994868271001 we get N = 2^2*r. 
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We obtained, from 9 consecutive values of P, four primes, two semiprimes and two products of 3 

distinct primes. It can easily be seen the potential of this formula as a generator of primes. I 

didn’t forget the product of 3 squares; here’s something interesting; we got through this formula 

primes, squarefree products of primes, squares of primes and squares of products of primes, but 

we didn’t find a product to contain primes to a bigger power than two or both primes and squares 

of primes together, therefore we conjecture that there are no such numbers q, where q = (3*P + 

1)/2^k (and P is a Poulet number and k is the biggest n natural for that q is an integer). 

 

We know take the four primes randomly generated, i.e. 746053935481, 746075943901, 

746091259201 and 46632683821, and we see that they have also the property to generate 

primes; if we put them in a recurrent formula (Cunningham’s chain type), we obtain for M = 3*t 

+ 1 the following values:  

 

for t = 746053935481 we get M = 2^2*559540451611; 

for t = 746075943901 we get M = 2^3*1381*202591223; 

for t = 746091259201 we get M = 2^2*47*11905711583; 

for t = 46632683821 we get M = 2^3*174872256433. 

 

We now take a prime newly generated, 559540451611. We have:  

 

3*559540451611 + 1 = 2*839310677417. 

 

I believe these results are encouraging in the study of recurrent sequences of the type Pn = (3*Pn–

1 + 1)/2^k, where k is the biggest natural number for that Pn is an integer and P0 is a Fermat 

pseudoprime to base 2. 

 

A possible infinite series of Poulet numbers 

 

We saw above that Poulet numbers 341, 5461, 1398101, 22369621, 5726623061, 91625968981 

can be written as (4^k – 1)/3 for k = 5, 7, 11, 13, 17, 19. We did’n obtain a Poulet number for 

any other value of k from 1 to 19 beside those. We calculate now (4^k – 1)/3 for k = 23, 29, 31, 

37, 41 and we get respectively: 

 

: 23456248059221 = 47*178481*2796203; 

: 96076792050570581 = 59*233*1103*2089*3033169; 

: 1537228672809129301 = 715827883*2147483647; 

: 6296488643826193618261 = 223*1777*25781083*616318177; 

: 1611901092819505566274901 = 83*13367*164511353*8831418697. 

 

Unfortunatelly I have just Mr. Richard Pinch’s tables to verify if a number is a Poulet number or 

not (tables that are just up to 10^12) and there is no such a simple test to verify this as it is the 

Korselt criterion at Carmichael numbers. But the premises that the numbers we calculated are 

Poulet numbers are good: they are squarefree products of few primes. I don’t have enough data 

to conjecture that a number of the form (4^k – 1)/3 is a Poulet number if and only if k is prime, k 

≥ 5 (which would be a tremendously result, to put prime numbers in a bijection with a subset of 

Poulet numbers!), but I do make two conjectures: 

 

Conjecture 1: There are infinite many Poulet numbers of the form (4^k – 1)/3, where k is 

positive integer.  
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Conjecture 2: Any number of the form (4^k – 1)/3, where k is prime, k ≥ 5, is a Poulet number.  

 

The second conjecture, if true, would be, as I know, the first generic formula for an infinite series 

of Poulet numbers (of type “for any possible value of this we obtain necessarily that”, cause 

formulas that generates Poulet numbers, but not only Poulet numbers I submitted myself a few to 

OEIS). Besides this, the conjecture has yet another major implication: from the first million 

natural numbers, about 80 thousand are primes and just about 250 are Poulet numbers, which 

lead to the conclusion that Poulet numbers are far more rare than prime numbers. The conjecture, 

if true, would show that, in fact, for the first about 7 consecutive prime numbers, we have 7 

corresponding Poulet numbers spread in the first about 40 thousand Poulet numbers and, 

consequently, the set of prime numbers is so just a mean set beside the set of Poulet numbers! 

 

 

 

2. A new class of Fermat pseudoprimes and few remarks about Cipolla 

pseudoprimes  
 

 

Abstract. I wrote an article entitled “A formula for generating primes and a possible 

infinite series of Poulet numbers”; the sequence I was talking about not only that is, 

indeed, infinite, but is also already known as the sequence of Cipolla pseudoprimes to 

base 2. Starting from comparing Cipolla pseudoprimes and some of my notes I 

discovered a new class of pseudoprimes. 

 

 

Introduction 

 

The article I was talking about in Abstract was my second encounter with Cipolla pseudoprimes. 

I first submitted a sequence to OEIS (A217853) to define a subset of Fermat pseudoprimes to 

base 3, i.e. numbers of the form (3^(4*k + 2) – 1)/8. I just later saw the note of Mr. Bruno 

Berselli on this sequence, that for p prime, p = 2*k + 1, is obtained the generating formula for 

Cipolla pseudoprimes to base 3, namely (9^p – 1)/8, and I made the connection with my further 

article, in which I was talking about the numbers of the form (4^p – 1)/3, namely Cipolla 

pseudoprimes to base 2.  

 

The formula (3^(4*k + 2) – 1)/8 generates Fermat pseudoprimes to base 3 not only for k = (p – 

1)/2, where p prime (which gives the formula for Cipolla pseudoprimes to base 3), but for other 

values of k too. 

 

The first few Cipolla pseudoprimes to base 3 are 91, 7381, 597871, 3922632451, 317733228541, 

2084647712458321, 168856464709124011 (for more of them, see the sequence A210454 in 

OEIS).  

 

The first few terms generated by the formula above are 91, 7381, 597871, 48427561, 

3922632451, 317733228541, 25736391511831, 2084647712458321, 168856464709124011 (for 

more of them, see the sequence A217853 in OEIS).  

 

It can be seen that the formula generates until the number 168856464709124011 three more 

Fermat pseudoprimes to base 3: 48427561, 3922632451 and 25736391511831. 
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It seemed logic to try to generalize the formula (3^(4*k + 2) – 1)/8, hoping that it can be 

obtained a class of pseudoprimes that would contain the set of Cipolla pseudoprimes, but instead 

of this I obtained something even more interesting, an entirely different class of Fermat 

pseudoprimes (containing pseudoprimes which are not in the Cipolla sequence and, vice versa, 

not containing pseudoprimes that are in Cipolla sequence).  

 

A formula that generates Fermat pseudoprimes 

 

Conjecture: The formula (n^(n*k + k + n – 1) – 1)/(n^2 – 1) generates an infinity of Fermat 

pseudoprimes to base n for any integer n, n > 1. 

 

Verifying the conjecture 
 

For n = 2 the formula becomes (2^(3*k + 1) – 1)/3 and generates the following Fermat 

pseudoprimes to base 2, for k = 3, 7, 11: 341, 1398101, 5726623061. 

 

For n = 3 the formula becomes (3^(4*k + 2) – 1)/8 and generates Fermat pseudoprimes to base 3 

for 14 values of k from 1 to 20. 

 

For n = 4 the formula becomes (4^(5*k + 3) – 1)/15 and generates the following Fermat 

pseudoprime to base 4, for k = 1 : 4369.  

 

For n = 5 the formula becomes (5^(6*k + 4) – 1)/24 and generates the following Fermat 

pseudoprime to base 5, for k = 1 : 406901.  

 

Unfortunatelly the first term of the sequence (corresponding to k = 1) for n = 7 is larger than 

10^10 and I do not have the possibility to extend the verifying, but seems there is enough data to 

justify the conjecture. 

 

Conclusion 
 

It can easily be seen that, for n = 2, the sequence of Cipolla pseudoprimes to base 2 contains until 

the pseudoprime 5726623061 two more pseudoprimes than the pseudoprimes I defined above 

(5461 and 22369621 – for the sequence of Cipolla pseudoprimes to base 2 see the sequence 

A210454 in OEIS) and I have shown above that Cipolla pseudoprimes to base 3 contains until 

the pseudoprime 168856464709124011 three less pseudoprimes than the pseudoprimes I defined 

above so it’s no need for a further proof that neither one of the two classes is not a subset of the 

other. 

 

Reference 

Cipolla Pseudoprimes, Y. Hamahata and Y. Kokobun 
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3. Formulas that generate subsets of 3-Poulet numbers and few types of chains 

of primes 
 

 

Abstract. A simple list of sequences of products of three numbers, many of them, if not 

all of them, having probably an infinity of terms that are Fermat pseudoprimes to base 2 

with three prime factors. 

 

 

Note: I named with “3-Poulet numbers” the Fermat pseudoprimes to base 2 with 3 prime factors, 

obviously by similarity with the name “3-Carmichael numbers” for absolute Fermat 

pseudoprimes. For a list with 3-Poulet numbers see the sequence A215672 in OEIS. 

 

I. 

Poulet numbers with three prime factors of the form p*((n+1)*p–n*p)*((m+1)*p–m*p), where p 

prime, m, n natural: 

 

10585 = 5*29*73 = 5*(5*7 – 6)*(5*18 – 17);  

13741 = 7*13*151 = 7*(7*2 – 1)*(7*25 – 24);  

13981 = 11*31*41 = 11*(11*3 – 2)*(11*4 – 3);  

29341 = 13*37*61 = 13*(13*3 – 2)*(13*5 – 4);  

137149 = 23*67*89 = 23*(23*3 – 2)*(23*4 – 3).  

 

II. 

Poulet numbers with three prime factors of the form p*((n*p – (n + 1)*p)*(m*p – (m + 

1)*p),where p prime, m, n natural: 

 

6601 = 7*23*41 = 7*(7*4 – 5)*(7*7 – 8).  

 

Conjecture: Any 3-Poulet number which has not a prime factor of the form 30k + 23 can be 

written as p*((n + 1)*p – n*p)*((m + 1)*p – m*p) or as p*((n*p – (n + 1)*p)*(m*p – (m + 1)*p). 

 

III. 

Poulet numbers with three prime factors of the form p*(p + 2*n)*(p + 2^2*n – 2), where p 

prime, n natural: 

 

561 = 3*11*17 

p = 3; p + 2*4 = 11; p + 2^2*4 – 2 = 17, so [p, n] = [3, 4]; 

 

1105 = 5*13*17 

p = 5; p + 2*4 = 13; p + 2^2*4 – 2 = 17, so [p, n] = [5, 4]. 

 

IV. 

Poulet numbers with three prime factors of the form p*(p + 2*n)*(p + 2^k*n), where p prime and 

n, k natural: 

 

1729 = 7*13*19 

p = 7; p + 2*3 = 13; p + 2^2*3 = 19, so [p, n, k] = [7, 3, 2]; 

 

2465 = 5*17*29 
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p = 5; p + 2*6 = 17; p + 2^2*6 = 29, so [p, n, k] = [5, 6, 2]; 

 

2821 = 7*13*31 

p = 7; p + 2*3 = 17; p + 2^3*3 = 31, so [p, n, k] = [5, 6, 3]; 

 

29341 = 13*37*61 

p = 13; p + 2*12 = 37; p + 2^2*12 = 61, so [p, n, k] = [13, 12, 2]. 

 

V. 

Poulet numbers with three prime factors of the form (1 + 2^k*m)*(1 + 2^k*n)*(1 + 2^k*(m + 

n)), where k, m, n natural: 

 

13981 = 11*31*41 

1 + 2^1*5 = 11, 1 + 2^1*15 = 31, 1 + 2^1*(5 + 15) = 41, so [k, m, n] = [1, 5, 15];   

 

252601 = 41*61*101 

1 + 2^2*10 = 41, 1 + 2^2*15 = 61, 1 + 2^2*(10 + 15) = 101, so [k, m, n] = [2, 10, 15].   

 

VI. 

Poulet numbers with three prime factors of the form (1 + 2^k*m)*(1 + 2^k*n)*(1 + 2^k*(m + n 

+ 2)), where k, m, n natural: 

 

561 = 3*11*17 

1 + 2^1*1 = 3, 1 + 2^1*5 = 11, 1 + 2^1*(1 + 5 + 2) = 17, so [k, m, n] = [1, 1, 5].  

 

VII. 

Poulet numbers with three prime factors of the form p*(p + 2*n)*(p + 2*n + 2*(n + 1)), where p 

prime, n natural: 

 

6601 = 7*23*41 

p = 7; p + 2*8 = 31; p + 2*8 + 2*9 = 41, so [p, n] = [7, 8]. 

 

VIII. 

Poulet numbers with three prime factors of the form 3*(3 + 2^k)*(3 + q*2^h), where q prime and 

k, h natural: 

 

645 = 3*5*43 so [q, h, k] = [5, 1, 3]; 

1905 = 3*5*127 so [q, h, k] = [31, 1, 2]; 

8481 = 3*11*257 so [q, h, k] = [127, 3, 1]. 

 

Notes 

 

The chains of primes of the form [p, p + 2*n, ..., p + 2^k*n] seems to be a very interesting object 

of study; such chains are, for instance,  [3, 5, 7, 11, 19] for [p, n, k] = [3, 1, 4] and [3, 13, 23, 43, 

83, 163] for [p, n, k] = [3, 5, 5]. 

 

Also it would be interesting to study the chains of primes formed starting from a prime p and 

adding 2^k*n, where n is an arbitrarily chosen natural number and k the smallest values for 

which p + 2^k*n is prime. Such a chain is, for instance, [7, 13, 19, 31, 103, 199, 1543, 3079] for 

[p, n] = [7, 3] and [k1, k2, k3, k4, k5, k6, k7] = [1, 2, 3, 5, 6, 9, 10].  
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An interesting triplet of primes is [p + 2*m, p + 2*n, p + 2*(m + n)] where p is prime and m,n 

natural; such triplets are [11, 13, 17] for [p, m, n] = [7, 2, 3] or [23, 43, 59] for [p, m, n] = [7, 8, 

18]. Generalizing, the triplet would be [p + 2^k*m, p + 2^k*n, p + 2^k*(m + n)]; such a triplet is 

[11, 19, 23] for [p, k, m, n] = [7, 2, 1, 3]. 

 

 

 

4. A conjecture about 2-Poulet numbers and a question about primes 
 

 

Abstract. To find generic formulas for Poulet numbers (beside, of course, the formula that 

defines them) was for long time one of my targets; I maybe found such a formula for Poulet 

numbers with two prime factors, involving the multiples of the number 30, that also is rising 

an interesting question about primes. 

 

 

Conjecture:  

Any Poulet number with two prime factors can be written as P = (q – 30*n)*(r + 30*n), where q 

and r are primes or are equal to 1 and n is positive integer, n >= 1. 

 

Note: For a list of 2-Poulet numbers see the sequence A214305 that I submitted to OEIS. 

 

Verifying the conjecture for the first few 2–Poulet numbers: 

 

: P = 341 = 11*31 = (41 – 30*1)*(1 + 30*1) = (31 – 30*1)*(311 + 30*1); 

 

: P = 1387 = 19*73  = (61 – 30*2)*(1327 + 30*2) = (79 – 30*2)*(13 + 30*2); 

 

: P = 2047 = 23*89  = (31 – 30*1)*(2017 + 30*1) = (53 – 30*1)*(59 + 30*1) = (61 – 

30*2)*(1987 + 30*2) = (83 – 30*2)*(29 + 30*2); 

 

: P = 2701 = 37*73  = (31 – 30*1)*(2671 + 30*1) = (67 – 30*1)*(43 + 30*1) = (103 – 30*1)*(7 

+ 30*1) = (97 – 30*2)*(13 + 30*2) = (151 – 30*5)*(2551 + 30*5); 

 

: P = 3277 = 29*113  = (59 – 30*1)*(83 + 30*1) = (89 – 30*2)*(53 + 30*2) = (211 – 

30*7)*(3067 + 30*7) = (241 – 30*8)*(3037 + 30*8) = (421 – 30*14)*(2857 + 30*14) = (571 – 

30*19)*(2707 + 30*19) = (601 – 30*20)*(2677 + 30*20) = (631 – 30*21)*(2647 + 30*21). 

 

Note: It is remarkable in how many ways a 2-Poulet number can be written this way. 

 

Note: The conjecture might probably be extended for all Poulet numbers not divisible by 3 or 5, 

not only with two prime factors.  

 

Verifying the extended conjecture for first few Poulet numbers with more than two prime factors 

not divisible by 3 or 5: 

 

: P = 1729 = 7*13*19 = (31 – 30*1)*(1699 + 30*1) = (43 – 30*1)*(103 + 30*1); 
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: P = 2821 = 7*13*31 = (31 – 30*1)*(2791 + 30*1) = (37 – 30*1)*(373 + 30*1) = (61 – 

30*1)*(61 + 30*1); 

 

: P = 6601 = 7*23*41 = (31 – 30*1)*(6571 + 30*1) = (53 – 30*1)*(257 + 30*1) = (71 – 

30*1)*(131 + 30*1) = (191 – 30*1)*(11 + 30*1). 

 

Note: This conjecture is rising the following question: which pairs of primes (x, y), at least one 

of them bigger than 30, have the property that can be written as (p – 30*n, q + 30*n), where p 

and q are primes or are equal to 1 and n is positive integer, n >= 1.  

 

 

 

5. A formula that generates a type of pairs of Poulet numbers 
 

 

Abstract. Starting from the observation that the number 13^2 + 81*13 + 3*13*41 is a 

Poulet number (2821), and the number 41^2 + 81*41 + 3*13*41 is a Poulet number too 

(6601), and following my interest for the number 30, I found a formula that generates 

such pairs of Poulet numbers like (2821, 6601). 

 

 

Observation: The formula p^2 + 81*p + 3*p*q, where p is a prime of the form 30*k + 13 and q 

is a prime of the form 30*k + 41 (case I), or, vice versa, p is a prime of the form 30*k + 41 and q 

is a prime of the form 30*k + 13 (case II), generates Poulet numbers.  

 

Examples:  

 

: for (p, q) = (13, 41), we got 2821, a Poulet number; 

: for (p, q) = (41, 13), we got 6601, a Poulet number; 

 

: for (p, q) = (43, 71), we got 14491, a Poulet number; 

: for (p, q) = (71, 43), we got 19951, a Poulet number. 

 

Conjecture 1: There is an infinity of Poulet numbers of the form p^2 + 81*p + 3*p*q, where p is 

a prime of the form 30*k + 13 and q is a prime of the form 30*k + 41, where k is an integer, k 

>= 0. 

 

Conjecture 2: There is an infinity of Poulet numbers of the form p^2 + 81*p + 3*p*q, where p is 

a prime of the form 30*k + 41 and q is a prime of the form 30*k + 13, where k is an integer, k 

>= 0. 

 

Conjecture 3: If the number p^2 + 81*p + 3*p*q, where p is a prime of the form 30*k + 13 and 

q is a prime of the form 30*k + 41, is a Poulet number, then the number p^2 + 81*p + 3*p*q, 

where p is a prime of the form 30*k + 41 and q is a prime of the form 30*k + 13 is a Poulet 

number too (k is an integer, k >= 0). 

 

Note: The differences between the two numbers that form such a pair might also have interesting 

properties; in the examples above, we have 6601 – 2821 = 3780 and 19951 – 14491 = 5460. 

Note that 5460 – 3780 = 1680 = 41^2 – 1. 
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Note: There are many Poulet numbers that can be written as p^2 + 81*p + 3*p*q, where p, q 

primes, but it’s not satisfied the reciprocity from the formula above. 

 

 

 

6. A method of finding subsequences of Poulet numbers 
 

 

Abstract. I was studying the Fermat pseudoprimes in function of the remainder of the 

division by different numbers, when I noticed that the study of the remainders of the 

division by 28 seems to be very interesting. Starting from this, I discovered a method to 

easily find subsequences of Poulet numbers. I understand through “finding subsequences 

of Poulet numbers” finding such numbers that share a non-trivial property, i.e. not a 

sequence defined like: “Poulet numbers divisible by 7”. 

 

 

Introduction 

 

The way of finding such subsequences is simply to calculate the remainder of the division of a 

Poulet number P by the number 4*q, where q is a prime which does not divide P; surprisingly, 

few values of these remainders seems to occur more often than others. 

 

Few subsequences of Poulet numbers 

 

For q = 7, we found out that, from the first 40 Poulet numbers not divisible by 7, 14 numbers can 

be written as P = 28*n + 1, where n is obviously a natural number; these numbers are: 

: 561, 645, 1905, 2465, 3277, 4033, 4369, 5461, 10585, 18705, 25761, 31417, 33153, 34945. 

 

For q = 11, we found out that, from the first 40 Poulet numbers not divisible by 11, 6 numbers 

can be written as P = 44*n + 1; these numbers are: 

: 2465, 6601, 15709, 15841, 30889, 31417. 

 

Also for q = 11 and the first 40 Poulet numbers not divisible by 11, we found out that 6 numbers 

can be written as P = 44*n + 5; these numbers are: 

: 1105, 2821, 4681, 5461, 8321, 18705. 

 

For q = 13, we found out that, from the first 40 Poulet numbers not divisible by 13, 9 numbers 

can be written as P = 52*n + 1; these numbers are: 

: 3277, 4369, 4681, 5461, 7957, 8321, 18721, 30889, 34945. 

 

Also for q = 13 and the first 40 Poulet numbers not divisible by 13, we found out that 5 numbers 

can be written as P = 52*n + 29; these numbers are: 

: 341, 4033, 10585, 23377, 33153. 

 

 

For q = 17, we found out that, from the first 50 Poulet numbers not divisible by 17, 8 numbers 

can be written as P = 68*n + 1; these numbers are: 

: 341, 1905, 7957, 15709, 31417, 31621, 49981, 52633. 
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Also for q = 17 and the first 50 Poulet numbers not divisible by 17, we found out that 4 numbers 

can be written as P = 68*n + 45; these numbers are: 

: 10585, 16705, 49141, 60701. 

 

For q = 19, we found out that, from the first 50 Poulet numbers not divisible by 19, 4 numbers 

can be written as P = 76*n + 5; these numbers are: 

: 1905, 4033, 29341, 31621. 

 

Also for q = 19 and the first 50 Poulet numbers not divisible by 19, we found out that 4 numbers 

can be written as P = 76*n + 37; these numbers are: 

: 341, 645, 4369, 8321. 

 

Also for q = 19 and the first 50 Poulet numbers not divisible by 19, we found out that 4 numbers 

can be written as P = 76*n + 45; these numbers are: 

: 4681, 8481, 23377, 49141. 

 

For q = 23, we found out that, from the first 40 Poulet numbers not divisible by 23, 4 numbers 

can be written as P = 92*n + 1; these numbers are: 

: 645, 1105, 23001, 25761. 

 

Also for q = 23 and the first 40 Poulet numbers not divisible by 23, we found out that 4 numbers 

can be written as P = 92*n + 45; these numbers are: 

: 4369, 7957, 18721, 31417. 

 

Note: Yet is interesting to study the quotients n obtained through the method above, i.e. the 

numbers n = (P – r)/4*q, where r is the remainder, e.g. the numbers n = (561 – 1)/4*7 = 2^2*5, n 

= (33153 – 1)/4*7 = 2^5*37, n = (2465 – 1)/4*11 = 2^3*7, n = (2821 – 5)/4*11 = 2^6 and so on. 

 

 

 

7. A possible infinite subset of Poulet numbers generated by a formula based 

on Wieferich primes 
 

 

Abstract. I was studying the Poulet numbers of the form n*p – n + 1, where p is prime, 

numbers which appear often related to Fermat pseudoprimes (see the sequence A217835 

that I submitted to OEIS) when I discovered a possible infinite subset of Poulet numbers 

generated by a formula based on Wieferich primes (I pointed out 4 such Poulet numbers). 

 

 

It is known the following relation between the Fermat pseudoprimes to base 2 (Poulet numbers) 

and the Wieferich primes: the squares of the two known Wieferich primes, respectively 1194649 

= 1093^2 and 12327121 = 3511^2, are Poulet numbers. I discovered yet another relation 

between these two classes of numbers: 

 

Conjecture 1: For every Wieferich prime p there is an infinity of Poulet numbers which are 

equal to n*p – n + 1, where n is integer, n > 1. 
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Note: Because there are just two Wieferich primes known (it’s not even known if there are other 

Wieferich primes beside these two), we verify the conjecture for these two and few values of n 

(until n < 31). 

 

: 1093*3 – 2 = 3277, a Poulet number; 

: 1093*4 – 3 = 4369, a Poulet number; 

: 1093*5 – 4 = 5461, a Poulet number; 

: 3511*14 – 13 = 49141, a Poulet number. 

 

Observation 1: The formula n*p – n + 1, where p is Wieferich prime and n is integer, n > 1, 

leads often to semiprimes of the form q*(m*q – m + 1) or of the form q*(m*q + m – 1): 

 

: 1093*11 – 10 = 5*2621 and 2621 = 5*655 – 654; 

: 3511*4 – 3 = 19*739 and 739 = 19*41 – 40; 

: 3511*9 – 8 = 7*4593 and 4593 = 7*752 – 751;  

: 3511*10 – 9 = 11*3191 and 3191 = 11*319 – 318;  

: 3511*12 – 11 = 73*577 and 577 = 73*8 – 7;  

: 3511*14 – 13 = 157*313 and 313 = 157*2 – 1; 

: 3511*21 – 20 = 11*6701 and 6701 = 11*670 – 669;   

: 3511*24 – 23 = 61*1381 and 1381 = 61*23 – 22;   

: 3511*28 – 27 = 29*3389 and 3389 = 29*121 – 120;   

 

: 1093*11 – 10 = 41*293 and 293 = 41*7 + 6; 

: 1093*18 – 17 = 11*1787 and 1787 = 11*149 + 148;   

: 1093*29 – 28 = 11*2879 and 2879 = 11*240 + 239;   

: 3511*4 – 3 = 19*739 and 739 = 19*37 + 36; 

: 3511*19 – 18 = 17*3923 and 3923 = 17*218 + 217;   

: 3511*31 – 30 = 233*467 and 467 = 233*2 + 1;   

: 3511*28 – 27 = 29*3389 and 3389 = 29*113 + 112.   

 

Note: Every Poulet number obtained so far through the formula above (until n < 31) is 

semiprime, in other words a 2–Poulet number. 

 

Note: The class of primes p that can be written in both ways, like p = n*q – n + 1 and like m*q + 

m – 1, where q is prime and m and n are integers larger than 1, seems to be interesting to study. 

Such primes p are, for instance, 739 = 19*41 – 40 = 19*37 + 36 and 3389 = 29*121 – 120 = 

29*113 + 112. Maybe is not a coincidence that both pairs of primes (p, q) are of the form (10*k 

+ 9, 10*h + 9). 

 

Observation 2: Most of the 2-Poulet numbers (for a list with Fermat pseudoprimes to base 2 

with two prime factors see the sequence A214305 in OEIS) can be written as d*(d*n – n + 1) or 

as d*(d*n + n – 1), where d is obviously one of the two prime factors and n is integer, n > 1: for 

instance 341 = 11*31 = 11*(11*3 – 2) and 1387 = 19*73 = 19*(19*4 – 3). But not all 2-Poulet 

numbers can be written in one of these two ways: for instance 23377 = 97*241, the 18th 2-Poulet 

number, can’t be written this way. 

 

Observation 3: I also noticed that two semiprimes obtained from the Wieferich primes through 

the formula above can be written as q*(q*38 + 17): 

 

: 14041 = 19*739 = 19*(19*38 + 17); 52651 = 37*1423 = 37*(37*38 + 17). 
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Note: That would be also interesting to study the pairs of primes (p, 38*p + 17); such pairs of 

primes are, for instance, (7, 283), (19, 739), (37, 1423), (73, 2791), (79, 3019), (103, 3931). 

 

 

 

8. Four sequences of integers regarding balanced primes and Poulet numbers 
 

 

Abstract. A simple list of sequences of integers that reveal interesting properties of few 

subsets of balanced primes. 

 

 

I. 

Balanced primes B that can be written as B = P ± 24, where P is a Fermat pseudoprime to base 

two (a Poulet number): 

1747, 2677, 4657, 41017, 188437, 195997 (...). 

 

Comments: 

B that can be written as P + 24: 1747; 

B that can be written as P – 24: 2677, 4657, 41017, 188437, 195997. 

Note that all these balanced primes are of the form 10*k + 7! 

 

Note:  For a list of Poulet numbers see the sequence A001567 in OEIS. For a list of balanced 

primes see the sequence A006562 in OEIS. 

 

II. 

Balanced primes B2 that can be written as B1 + 330*n – 6, where B1 is also a balanced prime 

and n is non–negative integer: 

257, 977, 1367, 1511, 1747, 1907, 2417, 2677 (...). 

 

Comments: 

B1 corresponding to the least n for that B2 can be written this way and the least n: (263, 0), (653, 

1), (53, 4), (1187, 1), (1753, 0), (593, 4), (1103, 4), (373, 7). 

Note that 7 from the first 12 balanced primes of the form 10*k + 7 can be written this way! 

 

Note: Seems that the formula p + 330*n produces many primes when p is a balanced prime of 

the form 10*k + 3 or 10*k + 7; for instance the number 257 + 330*n is prime for n = 0, 1, 5, 6, 8, 

10, 12, 13, 14, 17, 18, 20, 21, 22, 26, 28, 31, 35, 39, 40, 43, 45, 47, 48, 49, 52, 53, 54, 59, 62, 64, 

66, 67, 68, 69, 70, 71, 74, 77, 78, 81, 83, 85, 88, 94, 95, that means for 46 values of n from the 

first 99. I also noticed that the same formula produces many primes and squares of primes when 

p is a square of prime; for instance the number 361 + 330*n is prime or square of prime for n = 

0, 1, 2, 4, 5, 6, 7, 8, 9, 13, 16, 18, 20, 22, 23, 26, 28, 29, 33, 37, 42, 43, 46, 51, 53, 54, 58, 60, 64, 

68, 69, 74, 75, 77, 79, 81, 83, 84, 85, 88, 90, 91, 93, 96, 97, that means for the first 45 values of n 

from the first 99. 

 

III. 

Balanced primes B2 that can be written as B1 + 330*n + 6, where B1 is also a balanced prime 

and n is non–negative integer: 

263, 593, 1753, 2903, 2963, 4013 (...). 
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Comments: 

B1 corresponding to the least n for that B2 can be written this way and the least n: (257, 0), (257, 

1), (1747, 0), (257, 8), (977, 6), (1367, 8). 

Note that 5 from the first 14 balanced primes of the form 10*k + 3 can be written this way! 

 

IV. 

Balanced primes B2 that can be written as B1 + 1980*n, where B1 is also a balanced prime and 

n is positive integer: 

3733, 4013, 4657, 6863, 11411, 11807, 11933, 13463, 15193, 15767, 16097, 16787, 16987, 

17483, 19463, 19477, 20107, 20123, 22447, 23333, 23893,  24413, 25621, 26177, 26393, 

26693, 26723, 27067 (...). 

 

Comments: 

The corresponding (B1, n): (1753, 1), (53, 2), (2677, 1), (2903, 2), (1511, 5), (1907, 5),  (4013, 

4), (7523, 3), (3313, 6), (11807, 2), (257, 8), (947, 8), (5107, 6), (7583, 5), (7583, 6), (3637, 8), 

(2287, 9), (6263, 7), (12547, 5), (9473, 6), (6073, 9), (653, 12), (21661, 2), (2417, 12), (24413, 

1), (10853, 8), (2963, 12), (3307, 12). 

 

Comments:  

B2 may sometimes be written this way for more than one set of values of B1 and n (for instance 

11933 = 4013 + 4*1980 = 53 + 6*1980); we refered through the corresponding (B1, n) to the 

least value of n. 

Note that 32 from the first 171 balanced primes can be written as B + 1980*n, where B is a 

smaller balanced prime. 

 

Conjecture: Any balanced prime B beside the first one, 5, generates an infinity of balanced 

primes of the form B + 1980*n (e.g. the second balanced prime, 53, generates for n = 2, 6, 14, 56 

the balanced primes 4013, 11933, 27773, 110933). 

 

Conjecture: Any balanced prime B beside the first one, 5, generates through the formula B – 

1980*n an infinity of balanced primes in absolute value (e.g. 5807 – 6*1980 = – 6073, where 

5807 and 6073 are balanced primes). 

 

 

 

9. Six polynomials in one and two variables that generate Poulet numbers 
 

 

Abstract. Fermat pseudoprimes were for me, and they still are, a class of numbers as 

fascinating as that of prime numbers; over time I discovered few polynomials that 

generate Poulet numbers (but not only Poulet numbers). I submitted all of them on OEIS; 

in this paper I get them together. 

 

  

(1) Poulet numbers of the form 7200*n^2 + 8820*n + 2701. 

 

 First 8 terms: 2701, 18721, 49141, 93961, 226801, 314821, 534061, 665281 (sequence 

A214016 in OEIS). 
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Note: The Poulet numbers above were obtained for the following values of n: 0, 1, 2, 3, 

5, 6, 8, 9. 

 

(2) Poulet numbers of the form 144*n^2 + 222*n + 85. 

 

 First 8 terms: 1105, 2047, 3277, 6601, 13747, 16705, 19951, 31417 (sequence A214017 

in OEIS). 

Note: The Poulet numbers above were obtained for the following values of n: 2, 3, 4, 6, 

9, 10, 11, 14. 

  

(3) Poulet numbers of the form 3*(2*n + 1)*(18*n + 11)*(36*n + 17). 

 

 First 4 terms: 561, 62745, 656601, 11921001 (sequence A213071 in OEIS). 

Note: The Poulet numbers above were obtained for the following values of n: 0, 2, 5, 14. 

Note: All 4 terms from above are Carmichael numbers. 

 

(4) Poulet numbers of the form  (6*m – 1)*((6*m – 2)*n + 1). 

 

 First 11 terms: 341, 561, 645, 1105, 1905, 2047, 2465, 3277, 4369, 4371, 6601 (sequence 

A210993 in OEIS). 

 Notes: 

For m = 1 the formula becomes 20*n + 5 and generates all the Poulet numbers divisible 

by 5 from the sequence above (beside 645, all of them have another solutions beside n = 

1).  

For m = 2 the formula becomes 110*n + 11 and generates the Poulet numbers: 341, 561 

etc.  

For m = 3 the formula becomes 272*n + 17 and generates the Poulet numbers: 561, 1105, 

2465, 4369 etc.  

For m = 4 the formula becomes 506*n + 23 and generates the Poulet numbers: 2047, 

6601 etc.  

 

For n = 1 the formula generates a perfect square.  

For n = 2 the formula becomes 3*(6*m – 1)*(4*m – 1) and were found the following 

Poulet numbers: 561 etc.  

For n = 3 the formula becomes (6*m – 1)*(18*m – 5) and were found the following 

Poulet numbers: 341, 2465 etc.  

For n = 4 the formula becomes (6*m – 1)*(24*m – 7) and were found the following 

Poulet numbers: 1105, 2047, 3277, 6601 etc.  

 

Note: The formula is equivalent to Poulet numbers of the form p*(n*p – n + 1), where p 

is of the form 6*m – 1. From the first 68 Poulet numbers just 26 of them (1387, 2701, 

2821, 4033, 4681, 5461, 7957, 8911, 10261, 13741, 14491, 18721, 23377, 29341, 31609, 

31621, 33153, 35333, 42799, 46657, 49141, 49981, 57421, 60787, 63973, 65281) can’t 

be written as p*(n*p – n + 1), where p is of the form 6*m – 1.  

 

(5) Poulet numbers of the form  (6*m + 1)*(6*m*n + 1). 

 

 First 10 terms: 1105, 1387, 1729, 2701, 2821, 4033, 4681, 5461, 6601, 8911 (sequence 

A214607 in OEIS). 

 Notes: 
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For m = 1 the formula becomes 42*n + 7.  

For m = 2 the formula becomes 156*n + 13.  

For m = 3 the formula becomes 342*n + 19.  

For m = 4 the formula becomes 600*n + 25.  

 

For n = 1 the formula generates a perfect square.  

For n = 2 the formula becomes (6*m + 1)*(12*m + 1) and were found the following 

Poulet numbers: 2701, 8911 etc.  

For n = 3 the formula becomes (6*m + 1)*(18*m + 1) and were found the following 

Poulet numbers: 2821, 4033, 5461 etc.  

For n = 4 the formula becomes (6*m + 1)*(24*m + 1) and were found the following 

Poulet numbers: 1387, 83665 etc. (see the sequence A182123 in OEIS). 

  

Note: The formula is equivalent to Poulet numbers of the form p*(n*p – n + 1), where p 

is of the form 6*m + 1. From the first 68 Poulet numbers just 7 of them (7957, 23377, 

33153, 35333, 42799, 49981, 60787) can’t be written as p*(n*p – n + 1), where p is of 

the form 6*m ± 1.  

 

(6) Poulet numbers of the form m*n^2 + (11*m – 23)*n + 19*m – 49. 

 

 First 10 terms: 341, 645, 1105, 1387, 2047, 2465, 2821, 3277, 4033, 5461 (sequence 

A215326 in OEIS). 

 Note: The solutions (m, n) for the Poulet numbers from the sequence above are: (3, 9); (3, 

13); (4, 14); (4, 16); (9, 11) and (4, 20); (3, 27); (3, 29); (4, 26); (3, 35); (290, 0). 

 

 

 

10. A conjecture about a large subset of Carmichael numbers related to 

concatenation   
 

 

Abstract. Though the method of concatenation has it’s recognised place in number 

theory, is rarely leading to the determination of characteristics of an entire class of 

numbers, which is not defined only through concatenation. We present here a property 

related to concatenation that appears to be shared by a large subset of Carmichael 

numbers 

 

 

Introduction: I was studying the primes of the form 12*k + 5 (i.e. the primes 5, 17, 29, 41, 53, 

89, 101, 113, 137, 149, 173 and so on) when I noticed that the primes obtained through the 

concatenation of two of them are easily to find, especially the ones that end in the digits 29: 

4129, 6529, 8929, 11329, 13729, 14929 and so on. When I looked on a certain subset of 

Carmichael numbers I observed an interesting property that appear to be common to the numbers 

from this subset (Observation) then I saw that the property is in fact common to a much larger 

subset of Carmichael numbers (Conjecture). 

 

Observation: The numbers obtained through deconcatenation (I understand through this word 

the operation which is the reverse of concatenation) of the digits of the Carmichael numbers that 

have 29 as the last two digits and the respective two digits appear to be congruent to 5 (mod 6) or 

to 2 (mod 6). 
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I checked this property to the first 21 Carmichael numbers of the form 100*k + 29: 

: for 1729   we have  (17 – 5)/6 = 2; 

: for 23382529  we have  (233825 – 5)/6 = 38970; 

: for 146843929  we have  (1468439 – 5)/6 = 244739; 

: for 172947529  we have  (1729475 – 5)/6 = 288245; 

: for 188516329 we have  (1885163 – 5)/6 = 314193; 

: for 246446929  we have  (2464469 – 5)/6 = 410744; 

: for 271481329  we have  (2714813 – 5)/6 = 452468; 

: for 484662529  we have  (4846625 – 5)/6 = 807770; 

: for 593234929  we have  (5932349 – 5)/6 = 988724; 

: for 934784929  we have  (9347849 – 5)/6 = 1557974; 

: for 958762729 we have  (9587627 – 5)/6 = 1597937; 

: for 1055384929  we have  (10553849 – 5)/6 = 1758974; 

: for 1688214529  we have  (16882145 – 5)/6 = 2813690; 

: for 1858395529  we have  (18583955 – 5)/6 = 3097325; 

: for 1942608529  we have  (19426085 – 5)/6 = 3237680; 

: for 6218177329  we have  (62181773 – 5)/6 = 10363628; 

: for 7044493729  we have (70444937 – 5)/6 = 11740822; 

: for 10128932929  we have  (101289329 – 5)/6 = 101289329; 

: for 10387489729  we have  (103874897 – 5)/6 = 17312482; 

: for 11477658529  we have  (114776585 – 5)/6 = 19129430. 

: for 12299638429  we have  (122996384 – 2)/6 = 20499397. 

 

Note: I expressed this property in the way above so we can see yet another interesting pattern: 

many of the integers obtained through this operation have the sum of the digits equal to 29: 

244739, 288245, 452468, 807770, 2813690, 3097325, 3237680, 10363628, 19129430.  

 

Note: It would be interesting to see what kind of numbers we obtain if we reverse the operations 

above: let be x a number with the sum of the digits equal to 29, x*6 + 5 = y and z the number 

obtained through concatenation of y and 29: 

: for x = 2999, y = 17999 and z = 1799929 prime; 

: for x = 9299, y = 55799 and z = 1553*3593 semiprime; 

: for x = 9929, y = 59579 and z = 373*15973 semiprime; 

: for x = 9992, y = 59957 and z = 5995729 prime; 

: for x = 3899, y = 23399 and z = 2339929 prime; 

: for x = 3989, y = 23939 and z = 2393929 prime. 

If we take x a number with the sum of the digits equal to another prime of the form 6*k – 1 

instead 29, i.e. 41, and repeat the same operations from above, we obtain: 

: for x = 59999, y = 359999 and z = 35999941 prime; 

: for x = 99599, y = 597599 and z = 59759941 semiprime; 

: for x = 99959, y = 599759 and z = 59975941 prime; 

: for x = 99995, y = 599975 and z = 59997541 prime. 

Even more than that, if we take x a number with the sum of the digits equal to 41, but we 

calculate z as the concatenation of y not cu 41 but with 29, we obtain: 

: for x = 59999, y = 359999 and z = 35999929 semiprime; 

: for x = 95999, y = 575999 and z = 57599929 prime; 

: for x = 99599, y = 597599 and z = 59759929 prime; 

: for x = 99959, y = 599759 and z = 59975929 semiprime; 

: for x = 99995, y = 599975 and z = 59997599 semiprime. 
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We saw that, taking randomly 15 numbers with the property that sum of their digits is equal to a 

prime of the form 6*k – 1 (in fact not entirely random, because 2999 and 59999 are the smaller 

primes for which the sum of the digits is equal to 29, respectively 41), we obtained 9 primes and 

6 semiprimes, so this direction of study seems to be prolific. 

It is also interesting to see which are the smaller numbers with the property that the sum of their 

digits equals a prime p of the form 6*k – 1: these numbers are: 29 (for p = 11), 89 (for p = 17), 

599 (for p = 23), 2999 (for p = 29), 59999 (for p = 41), 299999 (for p = 47), 899999 (for p = 53), 

5999999 (for p = 59), 89999999 (for p = 71), 2999999999 (for p = 83), 8999999999 (for p = 89), 

29999999999 (for p = 101) and so on. If we concatenate, for instance, the number 

6*29999999999 + 5  with these numbers we obtain 17999999999929, 17999999999989, 

179999999999599 (which are all semiprimes) and so on. 

 

Conjecture: The numbers formed through deconcatanation of Carmichael numbers not divisible 

by 5 that ends in the digits that form a number of the form 6*k – 1 and the respective number are 

congruent to 2 (mod 6) or to 5 (mod 6). 

 

I checked this property to the first few Carmichael numbers that ends in digits of this form 

(beside the cases that I already considered above): 

 

: for 2821, where 821 ≡ 5 (mod 6), we have 2 ≡ 2 (mod 6); 

: for 8911, where 11 = 5 (mod 6), we have 89 ≡ 5 (mod 6); but also 911 ≡ 5 (mod 6), and we 

have 8 ≡ 2 (mod 6); 

: for 15841, where 41 ≡ 5 (mod 6), we have 158 ≡ 2 (mod 6); 

: for 29341, where 41 ≡ 5 (mod 6), we have 293 ≡ 5 (mod 6); but also 341 ≡ 5 (mod 6), and we 

have 29 ≡ 5 (mod 6) and also 9341 ≡ 5 (mod 6), and we have 2 ≡ 2 (mod 6); 

: for 41041, where 41 ≡ 5 (mod 6), we have 410 ≡ 2 (mod 6); 

: for 52633, where 2633 ≡ 5 (mod 6), we have 5 ≡ 5 (mod 6); 

: for 101101, where 101 ≡ 5 (mod 6), we have 101 ≡ 5 (mod 6); 

: for 115921, where 5921 ≡ 5 (mod 6), we have 11 ≡ 5 (mod 6); 

: for 126217, where 17 ≡ 5 (mod 6), we have 1262 ≡ 2 (mod 6); 

: for 172081, where 2081 ≡ 5 (mod 6), we have 17 ≡ 2 (mod 6); 

: for 188461, where 461 ≡ 5 (mod 6), we have 188 ≡ 2 (mod 6); 

: for 252601, where 52601 ≡ 5 (mod 6), we have 2 ≡ 2 (mod 6); 

: for 294409, where 4409 ≡ 5 (mod 6), we have 29 ≡ 5 (mod 6); but also 94409 ≡ 5 (mod 6), and 

we have 2 ≡ 2 (mod 6); 

: for 314821, where 821 ≡ 5 (mod 6), we have 314 ≡ 2 (mod 6); 

: for 334153, where 53 ≡ 5 (mod 6), we have 3341 ≡ 5 (mod 6); 

: for 410041, where 41 ≡ 5 (mod 6), we have 4100 ≡ 2 (mod 6); 

: for 488881, where 881 ≡ 5 (mod 6), we have 488 ≡ 2 (mod 6); 

: for 512461, where 461 ≡ 5 (mod 6), we have 512 ≡ 2 (mod 6); 

: for 530881, where 881 ≡ 5 (mod 6), we have 530 ≡ 2 (mod 6); but also 30881 ≡ 5 (mod 6), and 

we have 5 ≡ 5 (mod 6); 

: for 658801, where 8801 ≡ 5 (mod 6), we have 65 ≡ 2 (mod 6); 

: for 748657, where 8657 ≡ 5 (mod 6), we have 74 ≡ 2 (mod 6); 

: for 838201, where 8201 ≡ 5 (mod 6), we have 83 ≡ 2 (mod 6); 

: for 852841, where 41 ≡ 5 (mod 6), we have 8528 ≡ 2 (mod 6); 

: for 1082809, where 809 ≡ 5 (mod 6), we have 1082 ≡ 2 (mod 6); 

: for 1152271, where 71 ≡ 5 (mod 6), we have 11522 ≡ 2 (mod 6); 

: for 1193221, where 221 ≡ 5 (mod 6), we have 1193 ≡ 5 (mod 6); but also 93221 ≡ 5 (mod 6), 

and we have 11 ≡ 5 (mod 6); 
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: for 1461241, where 41 ≡ 5 (mod 6), we have 14612 ≡ 2 (mod 6); but also 1241 ≡ 5 (mod 6), 

and we have 146 ≡ 2 (mod 6) and 61241 ≡ 5 (mod 6), and we have 14 ≡ 2 (mod 6); 

: for 1615681, where 5681 ≡ 5 (mod 6), we have 161 ≡ 5 (mod 6); 

: for 1773289, where 89 ≡ 5 (mod 6), we have 17732 ≡ 2 (mod 6); but also 73289 ≡ 5 (mod 6), 

and we have 17 ≡ 2 (mod 6). 

 

We take now few bigger Carmichael numbers: 

 

: for 998324255809, where 809 ≡ 5 (mod 6), we have 998324255 ≡ 5 (mod 6); but also 255809 ≡ 

5 (mod 6), and we have 998324 ≡ 2 (mod 6) and 24255809 ≡ 5 (mod 6), and we have 9983 ≡ 5 

(mod 6) and 324255809 ≡ 5 (mod 6), and we have 998 ≡ 2 (mod 6); 

: for 998667686017, where 17 ≡ 5 (mod 6), we have 9986676860 ≡ 2 (mod 6); but also 6017 ≡ 5 

(mod 6), and we have 99866768 ≡ 2 (mod 6) and 7686017 ≡ 5 (mod 6), and we have 99866 ≡ 2 

(mod 6) and 67686017 ≡ 5 (mod 6), and we have 9986 ≡ 2 (mod 6) and 667686017 ≡ 5 (mod 6), 

and we have 998 ≡ 2 (mod 6); 

: for 999607982113, where 113 ≡ 5 (mod 6), we have 999607982 ≡ 2 (mod 6); 

: for 999629786233, where 233 ≡ 5 (mod 6), we have 999629786 ≡ 2 (mod 6); but also 6233 ≡ 5 

(mod 6), and we have 99962978 ≡ 2 (mod 6) and 786233 ≡ 5 (mod 6), and we have 999629 ≡ 5 

(mod 6) and 9786233 ≡ 5 (mod 6), and we have 99962 ≡ 2 (mod 6). 

 

Note: From all the cases which appear until the Carmichael number 1773289 (we saw that for a 

single Carmichael number we can meet the conditions from hypothesis more than once), I only 

met one exception: for 162401, where 401 ≡ 5 (mod 6), we have 162 ≡ 0 (mod 6); I didn’t 

change yet the statement from conjecture, waiting for at least one more counterexemple to set a 

pattern. 

 

Conclusion: The results obtained for Carmichael numbers may have theoretical value, but for a 

more practical value, for instance to be helpful in a PRP test, let’s see if these results can be 

extended for the class of Fermat pseudoprimes to base 2: 

: for 341, where 41 ≡ 5 (mod 6), we have 3 ≡ 3 (mod 6); 

: for 2047, where 47 = 5 (mod 6), we have 20 ≡ 2 (mod 6); 

: for 2701, where 701 = 5 (mod 6), we have 2 ≡ 2 (mod 6); 

: for 3277, where 77 = 5 (mod 6), we have 32 ≡ 2 (mod 6); 

: for 4371, where 71 = 5 (mod 6), we have 43 ≡ 1 (mod 6). 

Unfortunatelly, from the first 5 cases that we considered it becomes clear that the conjecture 

can’t be extended on Poulet numbers. A resembling pattern seems not to exist in the case of 

prime numbers also, so this is a feature strictly of absolute Fermat pseudoprimes. 

 

 

 

11. A conjecture about primes based on heuristic arguments involving 

Carmichael numbers 
 

 

Abstract. The number 30 is important to me because I always believed in the utility of 

classification of primes in primes of the form 30*k + 1, 30*k + 7, 30*k + 11, 30*k + 13, 

30*k + 17, 30*k + 19, 30*k + 23 and 30*k + 29 (which may be interpreted as well as 

primes of the form 30*h – 29, 30*h – 23, 30*h – 19, 30*h – 17, 30*h – 13, 30*h – 11, 

30*h – 7 and 30*h – 1). The following conjecture involves the multiples of the number 

30 and is based on the study of Carmichael numbers. 
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Conjecture: For any three distinct primes p, q, r there exist a positive integer n so that the 

numbers x = 30*n – p, y = 30*n – q and z = 30*n – r are all three primes. 

 

Comments 
 

I already showed in the article “A list of 13 sequences of Carmichael numbers based on the 

multiples of the number 30”, posted on VIXRA, the importance of the multiples of 30 in the 

study of Carmichael numbers.  

 

I shall list randomly a number of ways in which a Carmichael number with three prime factors 

can be written in function of the multiples of the number 30 (we note with C a Carmichael 

number): 

 

C = (30*n – p)*(60*n – q)*(90*n – r), where n is a positive integer and p, q, r are primes. 

Examples: 

 

C = 8911 = 7*19*67 = (30 – 23)*(60 – 41)*(90 – 23); 

C = 15841 = 7*31*73 = (30 – 23)*(60 – 29)*(90 – 17); 

C = 29341 = 13*37*61 = (30 – 17)*(60 – 23)*(90 – 29). 

 

C = (30*n – p)*(90*n – q)*(120*n – r), where n is a positive integer and p, q, r are primes. 

Example: 

 

C = 52633 = 7*73*103 = (30 – 23)*(90 – 17)*(120 – 17). 

 

But the most appealing form is the following one: C = (30*n – p)*(30*n – q)*(30*n – r), where 

n is a positive integer and p, q, r are primes.  

 

Examples: 

C = 1729 = 7*13*19 = (30*1 – 23)(30*1 – 17)(30*1 – 11); 

C = 1729 = 7*13*19 = (30*9 – 263)(30*9 – 257)(30*9 – 251); 

C = 2821 = 7*13*31 = (30*9 – 263)(30*9 – 257)(30*9 – 239); 

C = 6601 = 7*23*41 = (30*6 – 173)(30*6 – 157)(30*6 – 139); 

C = 8911 = 7*19*67 = (30*3 – 83)(30*3 – 71)(30*3 – 23); 

C = 15841 = 7*31*73 = (30*3 – 83)(30*3 – 59)(30*3 – 17). 

 

In fact, my initial intention was to conjecture that any Carmichael number can be written in this 

form, in other words that for any three prime factors p, q, r of a 3-Carmichael number there exist 

a positive integer n so that the numbers x = 30*n – p, y = 30*n – q and z = 30*n – r are all three 

primes. 

 

Note: The reason for which I chose 3 primes for the conjecture instead of 2 or 4 is that 3 is the 

minimum number of prime factors of a Carmichael number but also because I would relate this 

conjecture with the study of Fermat’s last theorem. 

 

Note: The conjecture implies of course that for any pair of twin primes (p, q) there exist a pair of 

primes (30*n –   p, 30*n – q) so that there are infinitely many pairs of primes. 

 



 33 

12. A conjecture regarding the relation between  Carmichael numbers and the 

sum of their digits 
 

 

Abstract. Though they are a fascinating class of numbers, there are very many properties 

of Carmichael numbers still unstudied enough. I have always thought there is a 

connection between these numbers and the sum of their digits (few of them are also 

Harshad numbers). I try here to highlight such a possible connection. 

 

 

Conjecture: For any Carmichael number C that has only prime factors of the form 6*k + 1 is 

true at least one of the following five relations: 

(1) C is a Harshad number; 

(2) If we note with s(m) the sum of the digits of the integer m then C is divisible by 

n*s(C) – n + 1, where n is integer; 

(3) C is divisible by s((C + 1)/2); 

(4) C is divisible by n*s((C + 1)/2) – n + 1, where n is integer; 

(5) s(C) = s((C + 1)/2). 

 

I verified below the conjecture for the first 23 Carmichael numbers of this type: 1729, 2821, 

8911, 15841, 29341, 46657, 52633, 63973, 115921, 126217, 172081, 188461, 294409, 314821, 

334153, 399001, 488881, 512461, 530881, 670033, 748657, 838201, 997633. 

 

: 1729 is divisible by 19, where 19 = s(1729); so 1729 satisfies relation (1); also s((1729 + 1)/2) 

= s(865) = 19 so 1729 satisfies the relations (3) and (5) either; 

: 2821 is divisible by 13, where 13 = s(2821); so 2821 satisfies relation (1); also s((2821 + 1)/2) 

= s(1411) = 7 and 2821 is divisible by 7 so 2821 satisfies the relation (3) either; 

: 8911 is divisible by 19, where 19 = s(8911); so 8911 satisfies relation (1); also s((8911 + 1)/2) 

= s(4456) = 19 so 8911 satisfies the relations (3) and (5) either; 

: s(15841) = s((15841 + 1)/2) = 19 and 15841 is divisible by 73 which is equal to 4*19 – 3; so 

15841 satisfies relations (2), (4) and (5); 

: s(29341) = s((29341 + 1)/2) = 19 and 29341 is divisible by 37 which is equal to 2*19 – 1; so 

29341 satisfies relations (2), (4) and (5); 

: s((46657 + 1)/2) = 19 and 46657 is divisible by 37, which is equal to 2*19 – 1; so 46657 

satisfies relation (4); 

: s(52633) = s((52633 + 1)/2) = 19 and 52633 is divisible by 73 which is equal to 4*19 – 3; so 

52633 satisfies relations (2), (4) and (5); 

: s(63973) = s((63973 + 1)/2) = s(31987) = 28; so 52633 satisfies relation (5); 

: s(115921) = 19 and 115921 is divisible by 37 which is equal to 2*19 – 1; 

: 126217 is divisible by 19, where 19 = s(126217); so 126217 satisfies relation (1); also 

s((126217 + 1)/2) = s(63109) = 19 so 126217 satisfies relations (3) and (5) either; 

: s(172081) = s((172081 + 1)/2) = s(86041) = 19; so 172081 satisfies relation (5); 

: s((188461 + 1)/2) = s(94231) = 19 and 188461 is divisible by 19; so 188461 satisfies relation 

(3); also s(188461) = 28 and 188461 is divisible by 109 which is equal to 4*28 – 3 so satisfies 

relation (2) either; 

: s(294409) = 28 and 294409 is divisible by 109 which is equal to 4*28 – 3; so 294409 satisfies 

relation (2);  s((294409 + 1)/2) = s(147205) = 19 and 294409 is divisible by 37, 73 and 109 

which are equal to 19*2 – 1, 19*4 – 3 and 19*6 – 5 so 294409 satisfies relation (4) either; 

: s(314821) = s((314821 + 1)/2) = s(157411) = 19; so 314821 satisfies relation(5); 

: 334153 is divisible by 19, where 19 = s(334153); so 334153 satisfies relation (1); 
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: s(399001) = 22 and 399001 is divisible by 211 which is equal to 22*10 – 9; so 399001 satisfies 

relation(2); 

: 488881 is divisible by 37, where 37 = s(488881); so 488881 satisfies relation (1); 

: s(512461) = s((512461 + 1)/2) = s(256231) = 19; so 512461 satisfies relation(5); 

: s(530881) = 22 and 530881 is divisible by 421 which is equal to 22*20 – 19; so 530881 

satisfies relation(2); 

: s(670033) = s((670033 + 1)/2) = s(335017) = 19; so 512461 satisfies relation(5); 

: s(748657) = 37 and 748657 is divisible by 433 which is equal to 37*12 – 11; so 748657 

satisfies relation(2); 

: s((838201 + 1)/2) = s(419101) = 16 and 838201 is divisible by 61 and 151 which are equal to 

16*4 – 3 and 16*10 – 5; so 748657 satisfies relation(4); 

: s(997633) = s((997633 + 1)/2) = s(498817) = 37; so 997633 satisfies relation(5). 

 

Note: We observed a subset a Carmichael numbers: the numbers 399001 = 31*61*211 and 

530881 = 13*97*421 have both the sum of their digits s(C) = 22 and s((C + 1)/2) = 25; also, C is 

divisible by n*s(C) – n + 1, where n is their greatest prime factor. 

 

Note: Many other Carmichael numbers have resembling properties, the ones that have only 

prime factors of the form 6*k – 1 for instance, but I didn’t find yet another category of 

Carmichel numbers that could be set in such a closed form.  

 

Note: For many Carmichael number C that are also Harshad number is true that s(C) = s((C + 

1)/2).  

 

Note: For the odd Harshad numbers H that I checked, the first one that satisfy the relation s(H) = 

s((H + 1)/2) is the number 1387, the fifth Poulet number, which yet again connect this property 

with Fermat pseudoprimes. 

 

Observation: I also noticed few relations based on the sum of the digits that are satisfied by a 

Poulet number P that has only two prime factors, both of the form 6*k + 1: 

 

(1) s(P) = s((P + 1)/2); 

(2) Both prime factors of P can be written as n*s((P + 1)/2) + 1, where n is integer; 

(3) Both prime factors of P can be written as n*s((P + 1)/2) + n + 1, where n is integer; 

(4) Both prime factors of P can be written as n*s((P + 1)/2) – n + 1, where n is integer; 

(5) Both prime factors of P can be written as n*s(P) – n + 1, where n is integer. 

 

I considered the first 15 Poulet numbers of this type: 1387, 2071, 4033, 4681, 5461, 7957, 

10261, 14491, 18721, 23377, 31609, 31621, 42799, 49141, 49981  (for a list of Poulet numbers 

with two prime factors see the sequence A214305 in OEIS). 

 

: s(1387) = s((1387 + 1)/2) = s(694) = 19, so 1387 satisfies relation (1); 

: s(2071) = s((2071 + 1)/2) = s(1351) = 10, so 2071 satisfies relation (1); 

: s(4033) = s((4033 + 1)/2) = s(2017) = 10, so 4033 satisfies relation (1); 

: s(4681) = 19 and s((4681 + 1)/2) = s(2341) = 10 and 4681 is divisible with 31 which is equal to 

3*10 + 1 also with 151 which is equal to 15*10 + 1, so 4681 satisfies relation (2); 

: s(5461) = 16 and s((5461 + 1)/2) = s(2731) = 13 and 4681 is divisible with 43 which is equal to 

3*13 + 4 also with 127 which is equal to 9*13 + 10, so 1387 satisfies relation (3); 

: s(7957) = s((7957 + 1)/2) = s(3979) = 28, so 7957 satisfies relation (1); 
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: s(10261) = 10 and s((10261 + 1)/2) = s(5131) = 10 and 10261 is divisible with 31 which is 

equal to 3*10 + 1 also with 331 which is equal to 33*10 + 1, so 10261 satisfies relation (2); 

: s(14491) = s((14491 + 1)/2) = s(7246) = 19, so 14491 satisfies relation (1); 

: s(18721) = s((18721 + 1)/2) = s(9361) = 19, so 18721 satisfies relation (1); 

: s(23377) = 22 and s((23377 + 1)/2) = s(11689) = 25 and 23377 is divisible with 97 which is 

equal to 4*25 – 3 also with 241 which is equal to 10*25 – 9, so 23377 satisfies relation (4); 

: s(31609) = s((31609 + 1)/2) = s(15805) = 19, so 31609 satisfies relation (1); 

: s(31621) = 13 and s((31621 + 1)/2) = s(15811) = 16 and 31621 is divisible with 103 which is 

equal to 6*16 + 7 also with 307 which is equal to 18*16 + 19, so 31621 satisfies relation (3); 

: s(42799) = 31 and s((42799 + 1)/2) = s(21400) = 7 and 42799 is divisible with 127 which is 

equal to 18*7 + 1 also with 337 which is equal to 48*7 + 1, so 42799 satisfies relation (2); 

: s(49141) = s((49141 + 1)/2) = s(24571) = 19, so 49141 satisfies relation (1); 

: s(49981) = 31 and 49981 is divisible with 151 which is equal to 31*5 – 4 also with 331 which 

is equal to 31*11 – 10, so 49981 satisfies relation (1). 

 

Conclusion: The relation between the Fermat pseudoprimes and the sum of their digits seems to 

be obvious even that there are probably better ways to express this relation (I actually only 

wanted to highlight few such possible ways). The property of a composite odd integer n to be 

divisible with s((n + 1)/2) deserves further study, also the property of a Harshad odd number n to 

have s(n) = s((n + 1)/2): we saw that the smallest such number with this property is a Fermat 

pseudoprime to base 2, the number 1387. It would also be interesting to see what numbers that 

are products of more than three prime factors of the form 6*k + 1 and are not Carmichael 

numbers satisfy the relations from the conjecture. 

 

 

 

13. A list of 13 sequences of Carmichael numbers based on the multiples of the 

number 30 
 

 

Abstract. The applications of the multiples of the number 30 in the study of Fermat 

pseudoprimes was for a long time one of my favourite subject of study; in this paper I 

shall list 13 sequences that I discovered, many of them, if not all of them, having 

probably an infinity of terms that are Carmichael numbers. I posted many of them on 

OEIS, where I analized more of their attributes; here I’ll just list them, enumerate their 

first few terms and present few conjectures. 

 

  

(1) Carmichael numbers of the form C = (30*n + 7)*(60*n + 13)*(150*n + 31). 

 

 First 6 terms: 2821, 488881, 288120421, 492559141, 776176261, 1632785701 (sequence 

A182085 in OEIS). 

 

Conjecture: The number (30*n + 7)*(60*n + 13)*(150*n + 31) is a Carmichael number 

if (but not only if) 30*n + 7, 60*n + 13 and 150*n + 31 are all three prime numbers.  

 

(2) Carmichael numbers of the form C = (30*n – p)*(60*n – (2*p + 1))*(90*n – (3*p + 2)),  

where p, 2*p + 1, 3*p + 2 are all three prime numbers. 
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 First 6 terms: 1729, 172081, 294409, 1773289, 4463641, 56052361 (sequence A182087 

in OEIS). 

 

Comment: These numbers can be reduced to only two possible forms: C = (30*n – 

23)*(60*n – 47)*(90*n – 71) or C = (30*n – 29)*(60*n – 59)*(90*n – 89).  

 

(3) Carmichael numbers of the form C = (30*n – 29)*(60*n – 59)*(90*n –89)*(180*n – 

179). 

 

 First 4 terms: 31146661, 2414829781, 192739365541, 197531244744661 (sequence 

A182088 in OEIS). 

 

Conjecture: The number (30*n – 29)*(60*n – 59)*(90*n – 89)*(180*n – 179) is a 

Carmichael number if (but not only if) 30*n – 29, 60*n – 59, 90*n – 89 and 180*n – 179 

are all four prime numbers.  

 

(4) Carmichael numbers of the form  C = (330*n + 7)*(660*n + 13)*(990*n + 19)*(1980*n 

+ 37). 

 

 First 2 terms: 63973, 461574735553 (sequence A182089 in OEIS). 

 

Conjecture: The number (330*n + 7)*(660*n + 13)*(990*n + 19)*(1980*n + 37) is a 

Carmichael number if 330*n + 7, 660*n + 13, 990*n + 19 and 1980*n + 37 are all four 

prime numbers. 

 

(5) Carmichael numbers of the form C = (30*n – 7)*(90*n – 23)*(300*n – 79). 

 

 First 5 terms: 340561, 4335241, 153927961, 542497201, 1678569121 (sequence 

A182132 in OEIS). 

 

Conjecture: The number (30*n – 7)*(90*n – 23)*(300*n – 79) is a Carmichael number 

if (but not only if) 30*n – 7, 90*n – 23 and 300*n – 79 are all three prime numbers. 

 

(6) Carmichael numbers of the form C = (30*n – 17)*(90*n – 53)*(150*n – 89). 

 

 First 5 terms: 29341, 1152271, 34901461, 64377991, 775368901 (sequence A182133 in 

OEIS). 

 

Conjecture: The number (30*n + 13)*(90*n + 37)*(150*n + 61) is a Carmichael number 

if (but not only if) 30*n + 13, 90*n + 37 and 150*n + 61 are all three prime numbers. 

 

(7) Carmichael numbers of the form C = (60*n + 13)*(180*n + 37)*(300*n + 61). 

 

 First 5 terms: 29341, 34901461, 775368901, 1213619761, 4562359201 (sequence 

A182416 in OEIS). 

 

Conjecture: The number (60*n + 13)*(180*n + 37)*(300*n + 61) is a Carmichael 

number if (but not only if) 60*n + 13, 180*n + 37 and 300*n + 61 are all three prime 

numbers.  
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(8) Carmichael numbers of the form C = (90*n + 1)*(180*n + 1)*(270*n + 1)*(540*n + 1). 

 

 First 2 terms: 2414829781, 192739365541. 

  

Comment:  

For n = n/15 the formula becomes (6*n + 1)*(12*n + 1)*(18*n + 1)*(36*n + 1). 

 

(9) Carmichael numbers of the form C = (p + 30)*(q + 60)*(p*q + 90), where p and q are 

primes. 

 

 First 2 terms: 488881, 1033669. 

  

Comment: We obtained Carmichael numbers for [p, q] = [7, 13] and [p, q] = [7, 31]. 

 

(10) Carmichael numbers of the form C = (30*p + 1)*(60*p + 1)*(90*p + 1), where p is 

prime. 

 

 First 4 terms: 56052361, 216821881, 798770161, 1976295241. 

  

Comment: We obtained Carmichael numbers for the following values of p: 7, 11, 17, 23. 

 

(11) Carmichael numbers of the form C = 1710*3^m + 60*n + 451. 

 

 First 3 terms: 2821, 6601, 15841. 

  

Comment: We obtained Carmichael numbers for the following values of [m, n]: [0, 11], 

[1, 17], [2, 0]. 

 

(12) Carmichael numbers of the form C = 1710*m + 30*n + 1. 

 

 First 7 terms: 2821, 6601, 8911, 15841, 29341, 41041, 75361. 

  

Comment: We obtained Carmichael numbers for the following values of [m, n]: [1, 37], 

[3, 49], [5, 12], [9, 15], [17, 9], [24, 0], [44, 4]. 

 

(13) Carmichael numbers of the form C = 60*n + 2281. 

 

 First 17 terms: 2821, 6601, 15841, 29341, 41041, 101101, 115921, 172081, 188461, 

252601, 314821, 340561, 399001, 410041, 488881, 512461, 530881. 

  

Comment: We obtained Carmichael numbers for the following values of n: 9, 72, 226, 

451, 646, 1647, 1894, 2830, 3103, 4172, 5209, 5638, 6612, 6796, 8110, 8503, 8810. 

 

Conjecture: All Carmichael numbers C of the form 10*k + 1 that have digital root equal 

to 1, 4 or 7 can be written as C = 60*n + 2281. 
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14. A possible generic formula for Carmichael numbers  

 

 

Abstract. To find generic formulas for Carmichael numbers (beside, of course, the 

formula that defines them) was for long time one of my targets; I already found such a 

formula, based on Korselt’s criterion; I possible found now another such a formula. 

 

 

Conjecture: Any Carmichael number can be written as (n^2*p^2 – q^2)/(n^2 – 1), where p and 

q are primes or power of primes or are equal to 1 and n is positive integer, n > 1. 

 

The first Carmichael number, 561,  

can be written as (4*p^2 – q^2)/3 for [p, q] = [29, 41], [41, 71], [7^2, 89], [421, 29^2]; it can also 

be written as (16*p^2 – q^2)/15 for [p, q] = [23, 7], [29, 71] etc. 

 

The second Carmichael number, 1105,  

can be written as (4*p^2 – q^2)/3 for [p, q] = [29, 7], [31, 23], [53, 89], [59, 103], [67, 11^2], 

[829, 1657]; it can also be written as (9*p^2 – q^2)/8 for [p, q] = [37, 59], [7^2, 113], [61, 157] 

etc. 

 

The third Carmichael number, 1729,  

can be written as (4*p^2 – q^2)/3 for [p, q] = [37, 17], [43, 47], [67, 113], [73, 127], [103, 193], 

[433, 863], [1297, 2593]; it can also be written as (9*p^2 – q^2)/8 for [p, q] = [43, 53], [53, 107], 

[67, 163], [167, 487], [1153, 3457]; it can also be written as (16*p^2 – q^2)/15 for [p, q] = [41, 

31], [47, 97], [97, 353], [157, 657], [173, 673], [251, 991]; it can also be written as (25*p^2 – 

q^2)/24 for [p, q] = [41, 23], [61, 227], [151, 727], [347, 1723] etc. (seems that the famous 

Hardy–Ramanujan number can set a record for how many ways can be written this way). 

 

Few subsets of Carmichael numbers:  
A subset of Carmichael numbers C has the following property:  C = (4*p^2 – q^2)/3, where q is 

the smaller prime that verify the relation q > sqrt (3*C/4), and p is prime or a power of prime; 

few such numbers are: 

1105, 1729, 6601, 41041, 75361, 340561, for corresponding [p, q] = [7, 29], [17, 37], [19, 71], 

[71, 179], [239, 7^2], [509, 11^4].  

 

Another subset of Carmichael numbers C has the following property:  C = (n^2*p^2 – 1)/(n^2 – 

1), where p is the smaller prime that verify the relation p > sqrt (3*C/4); few such numbers are: 

2465, 8911, 10585, 15841, 162401, for corresponding [n, p] = [2, 43], [3, 89], [3, 97], [2, 109], 

[2, 349]. 

 

Another subset of Carmichael numbers C (but this time only related to the formula above) has 

the following property:  C = (4*p^2 – 7153)/3, where p is prime; such numbers are: 561, 488881, 

for corresponding p = 47, 607 (interesting that 607 – 47 = 560 and 561 is the first Carmichael 

number). 

 

Another subset of Carmichael numbers C (this time too only related to the formula above) has 

the following property:  C = (p*q^2 – 1723^2)/(p – 1), where p and q are primes or power of 

primes; few such numbers are: 1105 for [p, q] = [1249, 59], 1729 for [p, q] = [5^2, 347], 2465 

for [p, q] = [7^2, 251]. 
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Note: The formula based on Korselt’s criterion that I was talking about in Abstract is: C = p^k + 

n*p^2 – n*p (if C > p^k) or C = p^k – n*p^2 + n*p (if p^k > C) for any p prime divisor of C and 

any k natural number. See the sequence A213812 that I submitted to OEIS. 

 

 

 

15. An interesting and unexpected property of Carmichael numbers and a 

question 
 

 

Abstract. I was researching a kind of generalized Cunningham chains that generate, 

instead of primes,  Fermat pseudoprimes to some base when purely by chance I noticed a 

property of absolute Fermat pseudoprimes, equally interesting and unexpected. By a 

childish simple operation, a new class of numbers is obtained from Carmichael numbers. 

 

 

Like anyone that learned in school that digits are just a way to designate a number and to operate 

with it, I always looked with reluctance on the arbitrary play with digits. I personally gave credit 

to the method of concatenation when I saw the relation between it and Fermat pseudoprimes (see 

my articles,  A conjecture about a large subset of Carmichael numbers related to concatenation 

and Formulas for generating primes involving emirps, Carmichael numbers and concatenation, 

posted on viXra).  

 

The property of Carmichael numbers that I discovered now proves the extreme versatility of 

these numbers: by a childish simple operation, insertion of the digit 0 among the digits of these 

numbers, we obtain an entirely new class of numbers. 

 

Thus we have the following numbers obtained from Carmichael numbers through the operation 

that I mentioned: 

 

: 5601 (from 561) 

We can see that n^5601 mod 5601 = n^3 for n from 2 to 17 (not for n = 18); 

 

: 28021 (from 2821) 

We can see that n^28021 mod 28021 = n^7 for n from 2 to 4 (not for n = 5); 

 

: 24065 (from 2465) 

We can see that n^24065 mod 24065 = n^5 for n from 2 to 7 (not for n = 8). 

 

Note: For the number 1729, which is the known Hardy–Ramanujan number, we have p = 10729, 

p = 17029 and p = 17209 all three primes! (so, of course, n^p mod p = n for any value of n). 

 

Note: For the relative Fermat pseudoprimes, to base 2 and respectivelly to base 3, we don’t 

obtain resembling results through this operation. 

 

Observation:By adding the digit 0 to Carmichael numbers, operation which itself it’s not at all 

special, it’s equivalent to a simple formula, the multiplication of a Carmichael number with the 

number 10, we obtain: n^5610 mod 5610 = n^10 for n = 2 (not for n = 3) and the same result for 

the numbers 1105 and 1729. Through multiplication of the first Carmichael number, 561, with 

the number 8, we obtain the number 4488 and also n^4488 mod 4488 = n^8 for n = 2 (not for n = 
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3). Through multiplication of the first Poulet number, 341, with the number 10, we obtain the 

number 3410 and also n^3410 mod 3410 = n^10 for n = 2 (not for n = 3). Through multiplication 

of the first Fermat pseudoprime to base three, 91, with the number 10 we don’t obtain 

resembling results. Seems that this property, that 2^(P*k) mod (P*k) = 2^k, it’s a property of 

Poulet numbers P (it can’t be extended for Fermat pseudoprimes to base 3) while the property 

that I showed above it’a a property of Carmichael numbers (it cant’ be extended for relative 

Fermat pseudoprimes). 

 

Comment: The numbers m that satisfy the relation n^m mod m = n^k, where k > 1, for any 

consecutive integer value of n from 2 to some larger integer, numbers obtained from Carmichael 

numbers through this operation or not, seems to deserve further study. 

 

Question: Are there any numbers m to satisfy the relation n^m mod m = n^k, where k > 1, for 

any value of n? 

 

 

 

16. Connections between the three prime factors of 3-Carmichael numbers 
 

 

Abstract. It was always obvious to me that, beside Korselt’s criterion, that gives a 

relation between any prime factor of a Carmichael number and the number itself, there 

must be a relation between the prime factors themselves; here I present a conjecture on 

the Carmichael numbers with three prime factors expressing the larger two prime factors 

as a function of the smallest one and few particular cases of connections between all three 

prime factors. 

 

 

Introduction:  
 

In the sequence A213812 that I posted in OEIS I showed a formula, derived from Korselt’s 

criterion, to express a Carmichael number as a function of any of its prime factors and an integer. 

In the sequence A215672 that I posted in OEIS I extended this formula for a Poulet number with 

three or more prime factors, expressing such a number as a function of at least one of its prime 

factors and an integer. This formula relates a Fermat pseudoprime to one (in the case of Poulet 

numbers) or to any (in the case of Carmichael numbers) of its prime factors, but says nothing 

about the relation between the prime factors themselves. 

 

In the sequence A215672 I showed that most of Fermat pseudoprimes to base 2 with three prime 

factors (so, implicitly, most of Carmichael numbers with three prime factors) can be written in 

one of the following two ways: 

(1) p*((n + 1)*p – n)*((m + 1)*p – m); 

(2) p*((n*p – (n + 1))*(m*p – (m + 1)),  

where p is the smallest of the three prime factors and n, m are natural numbers. 

 

Exempli gratia for Poulet numbers from first category:  

10585 = 5*29*73 = 5*(5*7 – 6)*(5*18 – 17). 

Exempli gratia for Poulet numbers from second category:  

6601 = 7*23*41 = 7*(7*4 – 5)*(7*7 – 8).  
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From the first 37 Poulet numbers with three prime factors, just three (30889, 88561 and 91001) 

can’t be written in one of this two ways. 

 

Conjecture: For any Carmichael numbers with three prime factors, C = d1*d2*d3, where d1 < d2 

< d3, is true one of the following two statements: 

(1) d2 can be written as d1*(n + 1) – n and d3 can be written as d1*(m + 1) – m; 

(2)  d2 can be written as d1*n – (n + 1) and d3 can be written as d1*m – (m + 1),  

where m and n are natural numbers. 

 

As I showed, this conjecture holds for the first 13 Carmichael numbers with three prime factors 

checked. In this article I present few connections that express not the larger two prime factors as 

a function of the smallest one, as above, but connects all the three prime factors. 

 

Observation: For most of the Carmichael numbers with three prime factors, C = d1*d2*d3, 

where d1 < d2 < d3, is true one of the following seventh statements: 

(1) d3 can be written as d1*(m + 1) – n and as well as d2*(n + 1) – m; 

(2) d3 can be written as d1*(m – 1) + n and as well as d2*(n – 1) + m;  

(3) d3 can be written as d1 + (m + 1)*n and as well as d2 + m*n;  

(4) d3 can be written as d1*m – 2*n and as well as d2*n + 2*m; 

(5) d3 can be written as d1*m + 2*n and as well as d2*n – 2*m; 

(6) d3 can be written as d1*m – 2*n and as well as d2*n + m; 

(7) d3 can be written as d1*m + n and as well as d2*n – 2*m, 

where m and n are natural numbers. 

 

Carmichael numbers which verify the first statement:  

 

For C = 561 = 3*11*17 we have [m, n] = [5, 1]: 

Indeed, 3*(5 + 1) – 1 = 17 and 11*(1 + 1) – 5 = 17. 

 

For C = 162401 = 17*41*233 we have [m, n] = [13, 5]: 

Indeed, 17*(13 + 1) – 5 = 233 and 41*(5 + 1) – 13 = 233. 

 

For C = 314821 = 13*61*397 we have [m, n] = [30, 6]: 

Indeed, 13*(30 + 1) – 6 = 397 and 61*(6 + 1) – 30 = 397. 

 

Carmichael numbers which verify the second statement:  

 

For C = 1105 = 5*13*17 we have [m, n] = [4, 2]: 

Indeed, 5*(4 – 1) + 2 = 17 and 13*(2 – 1) + 4 = 17. 

 

For C = 2821 = 7*13*31 we have [m, n] = [5, 3]: 

Indeed, 7*(5 – 1) + 3 = 31 and 13*(3 – 1) + 5 = 31. 

 

For C = 8911 = 7*19*67 we have [m, n] = [10, 4]: 

Indeed, 7*(10 – 1) + 4 = 67 and 19*(4 – 1) + 10 = 67. 

 

For C = 10585 = 5*29*73 we have [m, n] = [15, 3]: 

Indeed, 5*(15 – 1) + 3 = 73 and 29*(3 – 1) + 15 = 73. 

 

For C = 15841 = 7*31*73 we have [m, n] = [11, 3]: 
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Indeed, 7*(11 – 1) + 3 = 73 and 31*(3 – 1) + 11 = 73. 

 

For C = 115921 = 13*37*241 we have [m, n] = [19, 7]: 

Indeed, 13*(19 – 1) + 7 = 241 and 37*(7 – 1) + 19 = 241. 

 

For C = 314821 = 13*61*397 we have [m, n] = [31, 7]: 

Indeed, 13*(31 – 1) + 7 = 397 and 61*(7 – 1) + 31 = 397. 

 

For C = 334153 = 19*43*409 we have [m, n] = [22, 10]: 

Indeed, 19*(22 – 1) + 10 = 409 and 43*(10 – 1) + 22 = 409. 

 

Carmichael numbers which verify the third statement:  

 

For C = 1729 = 7*13*19 we have [m, n] = [1, 6]: 

Indeed, 7 + 2*6 = 19 and 13 + 6 = 19. 

 

For C = 2465 = 5*17*29 we have [m, n] = [1, 12]: 

Indeed, 5 + 2*12 = 29 and 17 + 12 = 29. 

 

For C = 29341 = 13*37*61 we have [m, n] = [1, 24]: 

Indeed, 13 + 2*24 = 61 and 37 + 24 = 61. 

 

For C = 252601 = 41*61*101 we have [m, n] = [2, 32]: 

Indeed, 41 + 3*20 = 101 and 61 + 2*20 = 101. 

 

For C = 294409 = 37*73*109 we have [m, n] = [1, 36]: 

Indeed, 37 + 2*36 = 109 and 73 + 36 = 109. 

 

For C = 399001 = 31*61*211 we have [m, n] = [5, 36]: 

Indeed, 31 + 6*30 = 211 and 61 + 5*30 = 211. 

 

For C = 410041 = 41*73*137 we have [m, n] = [2, 32]: 

Indeed, 41 + 3*32 = 137 and 73 + 2*32 = 137. 

 

For C = 488881 = 37*73*181 we have [m, n] = [3, 36]: 

Indeed, 37 + 4*36 = 181 and 73 + 3*36 = 181. 

 

For C = 512461 = 31*61*271 we have [m, n] = [7, 30]: 

Indeed, 31 + 8*30 = 271 and 61 + 7*30 = 271. 

 

For C = 1152271 = 43*127*211 we have [m, n] = [1, 84]: 

Indeed, 43 + 2*84 = 211 and 127 + 84 = 211. 

 

For C = 1152271 = 43*127*211 we have [m, n] = [1, 84]: 

Indeed, 43 + 2*84 = 211 and 127 + 84 = 211. 

 

For C = 1857241 = 31*181*331 we have [m, n] = [1, 150]: 

Indeed, 31 + 2*150 = 331 and 181 + 150 = 331. 
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Carmichael numbers which verify the fourth statement:  

 

For C = 52633 = 7*73*103 we have [m, n] = [15, 1]: 

Indeed, 7*15 – 2*1 = 103 and 73*1 + 2*15 = 103. 

 

For C = 1461241 = 37*73*541 we have [m, n] = [15, 7]: 

Indeed, 37*15 – 2*7 = 541 and 73*7 + 2*15 = 541. 

 

Carmichael numbers which verify the fifth statement:  

 

For C = 46657 = 13*37*97 we have [m, n] = [7, 3]: 

Indeed, 13*7 + 2*3 = 97 and 37*3 – 2*7 = 97. 

 

Carmichael numbers which verify the sixth statement:  

 

For C = 1193221 = 31*61*631 we have [m, n] = [21, 10]: 

Indeed, 31*21 – 2*10 = 631 and 61*10 + 21 = 631. 

 

Carmichael numbers which verify the seventh statement:  

 

For C = 530881 = 13*97*421 we have [m, n] = [32, 5]: 

Indeed, 13*32 + 5 = 421 and 97*5 – 2*32 = 421. 

 

Note: From the first 31 Carmichael numbers with three prime factors checked, only four of them 

(6601 = 7*23*41, 1024651 = 19*199*271, 1615681 = 23*199*353 and 1909001 = 41*101*461) 

don’t satisfy any of the seventh statements. 

 

Note: Obviously the prime factors of Chernick’s Carmichael numbers satisfy the third statement. 

 

Note: There are Carmichael numbers, like 314821 = 13*61*397, that satisfy both the first and 

the second statement. The triplets of primes like [p1, p2, p3] = [13, 61, 397], for which p3 = p1*(m 

+ 1) – n = p2*(n + 1) – m = p1*m + n + 1 = p2*n + m + 1, deserve further study, also the question 

if and when the products p1*p2*p3 are Carmichael numbers. 

 

Note: The Carmichael number 252601 = 41*61*101 can be written as p*(p*n – m)*(p*(n + 1) – 

(m + 1)), where p is prime and m, n natural numbers (because 61 = 41*2 – 21 and 101 = 41*3 – 

22). Also the triplets of primes of the form [p, p*n – m, p*(n + 1) – (m + 1)] deserve further 

study as well as the question if and when the products of the primes that form such a triplet are 

Carmichael numbers. 

 

Note: For Carmichael numbers with three prime factors, see the sequence A087788 in OEIS. 
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17. Formulas for generating primes involving emirps, Carmichael numbers 

and concatenation 
 

 

Abstract. Observations on generating primes or products of very few primes from 

reversible primes and Carmichael numbers using the method of concatenation. 

 

 

 

I. On the numbers obtained through concatenation from emirps and Carmichael numbers using 

only the digits of the number itself and the digits of its square 

 

Note: First we notice that, if p is a reversible prime and the number q is the number obtained 

through concatenation of the digits of p^2 with the digits of p, then the number q/p is often the 

product of very few primes (for a list of emirps see the sequence A006567 in OEIS). 

 

Observation: If p is a reversible prime and the number q obtained through concatenation of the 

digits of p^2 with the digits of p has the sum of digits equal to 29, then the number q/p is often a 

prime or a semiprime. 

 

16913/13 = 1301 is prime; 

136937/37 = 3701 is prime; 

624179/79 = 7901 is prime; 

564001751/751 = 751001 is prime; 

10180811009/1009 = 101*99901 is semiprime; 

17450411321/1321 = 7*1887143 is semiprime. 

 

Note that the first digits of the resulted primes are the same with the digits of p. The pairs of 

primes [13, 1301], [37, 3701], [79, 7901], [751, 751001] and so on deserve further study. 

 

Conjecture: There is an infinity of reversible primes p with the property that the number 

obtained through concatenation of the digits of p with a number of n digits of 0, where n is equal 

to one less than the digits of p, and finally with the digit 1 is a prime. 

 

Note: We also notice that, if C is a Carmichael number and the number s is the number obtained 

through concatenation of the digits of C^2 with the digits of C, then the number C/s is often the 

product of very few primes (for a list of Carmichael numbers see the sequence A002997 in 

OEIS): 

 

Few examples: 

 

314721561/561 = 7^2*107^2; 

79405921/8911 = 59*1510339; 

79580412821/2821 = 28210001; 

435732016601/6601 = 2593*25457; 

711501714101472184350561/84350561 = 3*2811685366666667. 

 

Note the interesting value of C/s for C = 2821. 
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II. On the numbers obtained through concatenation from emirps and Carmichael numbers using 

the digits of the number itself, the digits of its square and the digits 0001 

 

Observation: If C is a Carmichael number then the number obtained through the concatenation 

of the digits of C with the digits 0001 is often a product of very few primes. 

 

Few examples: 

5610001 = 1129*4969; 17290001 = 1051*16451; 28210001 is prime; 66010001 = 2593*25457; 

89110001 = 59*1510339; 105850001 = 911*116191; 158410001 is prime. 

 

Note the values obtained for 2821 and 15841, both divisible with 31. 

 

Observation: If C is a Carmichael number divisible by 31 then the number obtained through the 

concatenation of the digits of C with the digits 0001 is often a product of very few primes. 

 

28210001 is prime; 158410001 is prime; 753610001 is prime; 1720810001 is prime; 

21009010001 = 7*3001287143; 9912830875210001 is prime. 

 

Observation: If C is a Carmichael number having 561 (a Carmichael number, also) as the last 

digits then the following numbers are often a product of very few primes: 

 

: M, obtained through the concatenation of the digits of C with the digits 0001; 

: N, obtained through the concatenation of the digits of C^2 with the digits 0001. 

 

Few examples: 

 

C = 340561; C^2 = 115981794721 

 

M = 3405610001 is semiprime; N = 1159817947210001 is semiprime; 

 

C = 8134561; C^2 = 66171082662721 

 

M = 81345610001 is prime; N = 661710826627210001 is prime; 

 

C = 10024561; C^2 = 100491823242721 

 

M = 100245610001 is prime; N = 1004918232427210001 is semiprime; 

 

C = 10402561; C^2 = 108213275358721 

 

M = 1104025610001 is semiprime; N = 1082132753587210001 is semiprime; 

 

C = 45318561; C^2 = 2053771971110721 

 

M = 453185610001 is semiprime; N = 20537719711107210001 is semiprime. 

 

C = 84350561; C^2 = 7115017141014721 

 

M = 843505610001 is semiprime; N = 71150171410147210001 is semiprime. 
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Note: Probably the formulas could be extrapolated for Carmichael numbers having as the last 

digits not 561 but another Carmichael number but the results that we obtained, exempli gratia, 

with Carmichael numbers 1729 and 6601 were not encouraging. 

 

III. On the numbers obtained through concatenation from emirps using only the digits of the 

number itself 

 

Observation: We noticed that, through succesive concatenation of the digits of a reversible 

prime with the digits of its reversal, is obtained an interesting sequence of primes. 

 

Primes obtained through concatenation of the digits of the numbers p, q, p, q and p, where p is an 

emirp and q is its reversal (this formula also conducts to products of very few primes): 

 

1331133113, 9779977997, 769967769967769, 15111151151111511511  

 

Observation: There is an infinity of primes formed this way. 

 

IV. On the extension of few of these observations from the set of emirps to set of all primes 

 

Note: We observed three interesting series of primes. 

 

(1)  Primes q of the form n/p, where p is prime and n is formed through concatenation this 

way: first digits of n are the digits of the square of p and last digits of n are the digits of p 

itself: 

 

First few such primes: 

 

31, 71, 1301, 1901, 3701, 6101, 6701, 7901, 103001, 109001, 181001 (...). 

  

(the corresponding p: 3, 7, 13, 19, 37, 61, 67, 79, 103, 109, 181) 

 

(2)  Primes formed through succesive concatenation of the digits of the prime p with the 

digits of its reversal, not necessarily prime, q (this formula also conducts to products of 

very few primes). 

 

First few such primes: 

 

1331133113, 2992299229, 4334433443, 9779977997, 127721127721127 (...). 

 

Note that, from the primes obtained this way, we can also obtain interesting primes from 

adding numbers of the form 18*10^k. 

 

Few examples: 

 

: 1331133113 + 18*10^8 = 3131133113 prime(which is the concatenation of q, q, 

p, q, p); 

: 9779977997 + 18*10^7 = 9959977997 prime; 

: 9779977997 + 18*10^9 = 27779977997 prime; 

: 769967769967769 + 18*10^9 = 769985769967769 prime; 

: 769967769967769 + 18*10^11 = 771767769967769 prime. 
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(3)  Primes q formed through concatenation of the digits of the squares of the primes p with 

the digits 0001. 

 

First few such primes: 

 

90001, 490001, 2890001, 8410001, 18490001, 22090001 

 

(the corresponding p: 3, 7, 17, 29, 43, 47). 

 

 

 

18. Four conjectures regarding Fermat pseudoprimes and few known types of 

pairs of primes 
 

 

Abstract. There are already known some relations between Fermat pseudoprimes and the 

pairs of primes [p, 2*p – 1]. We will here show few relations between Fermat 

pseudoprimes and the pairs of primes of the type [p, 2*p – 1], [p, 2*p + 1], [p, sqrt(2*p – 

1)], respectivelly [p, k*p – k + 1]. 

 

 

Introduction 

Due to mathematician Farideh Firoozbakht, we have in OEIS few interesting observations about 

the relation between Fermat pseudoprimes and the pairs of primes [p, 2*p – 1]. We will list only 

few of them (see the sequences A005935 - A005937): 

: if p and 2*p – 1 are both primes, and p > 3, then p*(2*p – 1) is pseudoprime to base 3; 

: if p and 2p – 1 are both primes, then p*(2*p – 1) is pseudoprime to base 5 iff p is of the form 

10*k + 1; 

: if p and 2*p – 1 are both primes, then p*(2*p – 1) is pseudoprime to base 6 iff p is of the form 

12*k + 1. 

 

Now that the relation between Fermat pseudoprimes and the pairs of primes [p, 2*p – 1] appears 

to be clear, we will make four conjectures regarding the relation between Fermat pseudoprimes 

and the pairs of primes of the type [p, 2*p + 1], [p, 2*p – 1], [p, sqrt(2*p – 1)], respectivelly [p, 

k*p – k + 1]. 

 

Conjecture 1: If p and 2*p + 1 are both primes, then the number n = p*(2*p + 1) – 2*k*p is 

Fermat pseudoprime to base p + 1 for at least one natural value of k. 

 

Verifying the conjecture:  
(for the first 8 such pairs of primes) 

 

For [p, 2*p + 1] = [3, 7] we have, for k = 1, n = 15, which is, indeed, pseudoprime to base p + 1 

= 4. 

For [p, 2*p + 1] = [5, 11] we have, for k = 2, n = 35, which is, indeed, pseudoprime to base p + 1 

= 6. 

For [p, 2*p + 1] = [11, 23] we have, for k = 5, n = 143, which is, indeed, pseudoprime to base p 

+ 1 = 12. 

For [p, 2*p + 1] = [23, 47] we have, for k = 6, n = 805, which is, indeed, pseudoprime to base p 

+ 1 = 24. 
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For [p, 2*p + 1] = [29, 59] we have, for k = 3, n = 1537, which is, indeed, pseudoprime to base p 

+ 1 = 30. 

For [p, 2*p + 1] = [41, 83] we have, for k = 9, n = 2665, which is, indeed, pseudoprime to base p 

+ 1 = 42. 

For [p, 2*p + 1] = [53, 107] we have, for k = 4, n = 5247, which is, indeed, pseudoprime to base 

p + 1 = 54. 

For [p, 2*p + 1] = [83, 167] we have, for k = 24, n = 9877, which is, indeed, pseudoprime to base 

p + 1 = 84. 

 

Note: For the list of Sophie Germain primes, see the sequence A005384 in OEIS. 

 

Conjecture 2: If p and 2*p – 1 are both primes, p > 3, then the number n = p*(2*p – 1) – 2*k*p 

is Fermat pseudoprime to base p – 1 for at least one natural value of k. 

 

Verifying the conjecture:  
(for the first 6 such pairs of primes) 

 

For [p, 2*p – 1] = [7, 13] we have, for k = 4, n = 21, which is, indeed, pseudoprime to base p – 1 

= 6. 

For [p, 2*p – 1] = [19, 37] we have, for k = 10, n = 323, which is, indeed, pseudoprime to base p 

– 1 = 18. 

For [p, 2*p – 1] = [31, 61] we have, for k = 5, n = 1581, which is, indeed, pseudoprime to base p 

– 1 = 30. 

For [p, 2*p – 1] = [37, 73] we have, for k = 2, n = 2553, which is, indeed, pseudoprime to base p 

– 1 = 36. 

For [p, 2*p – 1] = [79, 157] we have, for k = 7, n = 11297, which is, indeed, pseudoprime to base 

p – 1 = 78. 

For [p, 2*p – 1] = [97, 193] we have, for k = 8, n = 17169, which is, indeed, pseudoprime to base 

p – 1 = 96. 

 

Note: For the list of primes p for which 2*p – 1 is also prime, see the sequence A005382 in 

OEIS. 

 

Conjecture 3: If p and q are primes, where q = sqrt(2*p – 1), then the number p*q is Fermat 

pseudoprime to base p + 1. 

 

Verifying the conjecture:  
(for the first 8 such pairs of primes) 

 

For [p, q] = [13, 5] we have p*q = 65 which is, indeed, pseudoprime to base 14. 

For [p, q] = [61, 11] we have p*q = 671 which is, indeed, pseudoprime to base 62. 

For [p, q] = [181, 19] we have p*q = 3439 which is, indeed, pseudoprime to base 182. 

For [p, q] = [421, 29] we have p*q = 12209 which is, indeed, pseudoprime to base 422. 

For [p, q] = [1741, 59] we have p*q = 102719 which is, indeed, pseudoprime to base 1742. 

For [p, q] = [1861, 61] we have p*q = 113521 which is, indeed, pseudoprime to base 1862. 

For [p, q] = [2521, 71] we have p*q = 178991 which is, indeed, pseudoprime to base 2522. 

For [p, q] = [3121, 79] we have p*q = 246559 which is, indeed, pseudoprime to base 3122. 

 

Note: For the list of primes p for wich sqrt(2*p – 1) is also prime, see the sequence A067756 in 

OEIS. 
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Conjecture 4: If p is prime, p > 3, and k integer, k > 1, then the number n = p*(k*p – k + 1) is 

Fermat pseudoprime to base k*p – k and to base k*p – k + 2.  

 

Verifying the conjecture:  
 

For the first 4 such pairs of primes, when p = 5: 

 

For [p, 2*p – 1] = [5, 9] we have p*(2*p – 1) = 45 which is, indeed, pseudoprime to bases 8 and 

10. 

For [p, 3*p – 2] = [5, 13] we have p*(3*p – 2) = 65 which is, indeed, pseudoprime to bases 12 

and 14. 

For [p, 4*p – 3] = [5, 17] we have p*(4*p – 3) = 85 which is, indeed, pseudoprime to bases 16 

and 18. 

For [p, 5*p – 4] = [5, 21] we have p*(5*p – 4) = 105 which is, indeed, pseudoprime to bases 20 

and 22. 

 

For the first 4 such pairs of primes, when p = 7: 

 

For [p, 2*p – 1] = [7, 13] we have p*(2*p – 1) = 91 which is, indeed, pseudoprime to bases 12 

and 14. 

For [p, 3*p – 2] = [7, 19] we have p*(3*p – 2) = 133 which is, indeed, pseudoprime to bases 18 

and 20. 

For [p, 4*p – 3] = [7, 25] we have p*(4*p – 3) = 175 which is, indeed, pseudoprime to bases 26 

and 28. 

For [p, 5*p – 4] = [7, 31] we have p*(5p – 4) = 217 which is, indeed, pseudoprime to bases 30 

and 32. 

 

For the next 4 such pairs of primes, when k = 3: 

 

For [p, 3*p – 2] = [11, 31] we have p*(3*p – 2) = 341 which is, indeed, pseudoprime to bases 30 

and 32. 

For [p, 3*p – 2] = [13, 37] we have p*(3*p – 2) = 481 which is, indeed, pseudoprime to bases 36 

and 38. 

For [p, 3*p – 2] = [23, 67] we have p*(3*p – 2) = 1541 which is, indeed, pseudoprime to bases 

66 and 68. 

For [p, 3*p – 2] = [37, 109] we have p*(3*p – 2) = 4033 which is, indeed, pseudoprime to bases 

108 and 110. 

 

Note: The formula p*(k*p – k + 1), where p is prime and k integer, seems to appear often related 

to Fermat pseudoprimes (see the sequence A217835 that I submitted to OEIS). 
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19. Special properties of the first absolute Fermat pseudoprime, the number 

561 
 

 

Abstract. Though is the first Carmichael number, the number 561 doesn’t have the same 

fame as the third absolute Fermat pseudoprime, the Hardy–Ramanujan number, 1729. I 

try here to repair this injustice showing few special properties of the number 561. 

 

 

I will just list (not in the order that I value them, because there is not such an order, I value them 

all equally as a result of my more or less inspired work, though they may or not “open a path”) 

the interesting properties that I found regarding the number 561, in relation with other 

Carmichael numbers, other Fermat pseudoprimes to base 2, with primes or other integers. 

 

1. The number 2*(3 + 1)*(11 + 1)*(17 + 1) + 1, where 3, 11 and 17 are the prime factors of the 

number 561, is equal to 1729. On the other side, the number 2*lcm((7 + 1), (13 + 1), (19 + 1)) + 

1, where 7, 13 and 19 are the prime factors of the number 1729, is equal to 561. We have so a 

function on the prime factors of 561 from which we obtain 1729 and a function on the prime 

factors of 1729 from which we obtain 561.   

 

Note: The formula N = 2*(d1 + 1)*...*(dn + 1) + 1, where d1, d2, ...,dn are the prime divisors of a 

Carmichael number, leads to interesting results (see the sequence A216646 in OEIS); the 

formula M = 2*lcm((d1 + 1), ...,(dn + 1)) + 1 also leads to interesting results (see the sequence 

A216404 in OEIS). But we didn’t obtained anymore through one of these two formulas a 

Carmichael number from another, so this bivalent realtion might only exist between the numbers 

561 and 1729.  

 

2. The number 561 can be expressed as C = a*b + b – a, where b is prime and a can be any prime 

factor of the number 1729: 561 = 7*71 + 71 – 7 = 13*41 + 41 – 13 = 19*29 + 29 = 19 (even 

more than that, for those that consider that 1 is a prime number, so a prime factor of 1729, 561 = 

1*281 + 281 – 1). 

 

Note: The formula (a + 1)*(b + 1)*(b – a + 1) + 1 seems to lead to interesting results: for 

instance, (19 + 1)*(29 + 1)*(29 – 19 + 1) = 6601, also a Carmichael number and for the pairs 

[a, b] = [7, 71] and [a, b] = [13, 41] we obtain through this formula primes, which make us 

think that this formula deserves further study. Also the triplets [a, b, a*b + b – a], where a, b and 

a*b + b – a are all three primes might lead to interesting results.  

 

Note: I can’t, unfortunately, to state that 561 is the first integer that can be written in three (or 

even four, if we consider that 1 is prime) distinct ways as a*b + b – a, where a and b are primes, 

because there is a smaller number that has this property: 505 = 3*127 + 124 = 11*43 + 32 = 

13*37 + 24 = 17*29 + 12. I yet assert that Carmichael numbers (probably the Fermat 

pseudoprimes to base 2 also) and the squares of primes can be written in many ways as such.  

 

3. Another interesting formula inspired by the number 561: we have the expression (2*3 + 

3)*(2*11 + 3)*(2*17 + 3) – 4, where 3, 11 and 17 are the prime factors of 561, egual to 8321, a 

Fermat pseudoprime to base 2.  

 

Note: If we apply this formula to the prime factors of another Carmichael number, 2821 = 

7*13*31, we obtain 32041 = 179^2, an interesting result.  
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4. We consider the triplets of primes of the form [p, p + 560, p + 1728]. The first triplet of such 

primes, [59, 619, 1787], we notice that has the following property: 59 + 619 + 1787 = 2465, a 

Carmichael number.  

 

Note: For the next two such triplets, [83, 643, 1811] and [149, 709, 1877] we didn’t obtain 

convincing results. 

 

5. The number 561 is the first term in the sequence of Fermat pseudoprimes to base 2 of the form 

3*(4*n – 1)*(6*n – 2), where n is integer different from 0.  

 

Note: See the sequence A210993 in OEIS.  

 

6. The number 561 is the first term in the sequence of Fermat pseudoprimes to base 2 of the form 

3*n*(9*n + 2)*(18*n – 1), where n is an odd number.  

 

Note: See the sequence A213071 in OEIS.  

 

7. The number 561 is the first term in the sequence of Fermat pseudoprimes to base 2 of the form 

8*p*n + p^2, where p is prime and n is integer (for n = 0 we include in this sequence the squares 

of the only two Wieferich primes known).  

 

Note: See the sequence A218483 in OEIS.  

 

8. The number 561 is the first term in the sequence of Fermat pseudoprimes to base 2 of the form 

5*p^2 – 4*p, where p is prime.  

 

Note: See the sequence A213812 in OEIS.  

 

9. The numbers obtained through the method of concatenation from reversible primes and the 

number 561 are often primes. 

 

Note: We obtain 11 primes from the first 20 reversible primes concatenated with the number 

561; these primes are: 37561, 73561, 79561, 97561, 149561, 157561, 311561, 337561, 347561, 

359561, 389561.  

 

10. The numbers obtained through the method of concatenation from palindromic primes and the 

number 561 are often primes. 

 

Note: We obtain 9 primes from the first 20 palindromic primes concatenated with the number 

561; these primes are: 101561, 131561, 151561, 191561, 313561, 373561, 727561, 797561, 

929561.  

 

11. The numbers obtained through the method of concatenation from the powers of 2 and the 

number 561 are often primes or products of few primes. 

 

Note: The numbers 4561, 16561, 32561, 256561 are primes.  
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12. Yet another relation between the numbers 561 and 1729: the numbers obtained through the 

method of concatenation from the prime factors of 1729 raised to the third power and the number 

561 are primes.  

 

Note: These are the numbers: 343561 (where 7^3 = 343); 2197561 (where 13^3 = 2197) and 

6859561 (where 19^3 = 6859).  

 

13. The number (561*n – 1)/(n – 1), where n is integer different from 1, is often integer; more 

than that, is often prime.  

 

Note: We obtained the following primes (in the brackets is the corresponding value of n): 

701(5), 673(6), 641(8), 631(9), 617(11), 601(14), 421(–3), 449(–4), 491(–7), 521(–13) etc. I 

assert that for a Carmichael number C the number (C*n – 1)/(n – 1), where n is integer different 

from 1, is often an integer (comparing to other integers beside C). In fact the primes appear so 

often that I will risk a conjecture. 

 

Conjecture: Any prime number p can be written as p = (C*q – 1)/(q – 1), where C is a 

Carmichael number and q is a prime.   

 

14. The number 561 is the first term in the sequence of Fermat pseudoprimes to base 2 of the 

form (n*109^2 – n)/360, where n is integer (561 is obtained for n = 17).  

 

Note: Another term of this sequence, obtained for n = 19897, is the Carmichael number 656601.  

 

Note: The number 1729 is the first term in the sequence of Fermat pseudoprimes to base 2 of the 

form (n*181^2 – n)/360, where n is integer (1729 is obtained for n = 19). The next terms of the 

sequence, obtained for n = 31, is the Carmichael number 2821. 

 

Note: Because the numbers 561 and 1729 have both three prime factors, the sequences from 

above can be eventually translated into the property of the numbers of the form 360*(a*b) + 1, 

where a and b are primes, to generate squares of primes. Corresponding to the sequences above, 

for [a, b] = [3, 11] we obtain 109^2 and for [a, b] = [7, 13] we obtain 181^2. 

 

Conjecture: If the number 360*(a*b) + 1, where a and b are primes, is equal to c^2, where c is 

prime, then exists an infinite series of Carmichael numbers of the form a*b*d, where d is a 

natural number (obviously odd, but not necessarily prime). 

 

Note: The numbers of the form 360*(a*b) + c, where a, b and c are primes, seems to have also 

the property to generate primes. Indeed, if we take for instance [a, c] = [3, 7], we obtain primes 

for b = 5, 11, 17, 23, 29, 31, 43, 47, 59, 67 etc. (note the chain of 5 consecutive primes of the 

form 6*k – 1). 

 

15. The number 561 is the first term of the sequence of Carmichael numbers that can be written 

as 2^m + n^2, where m and n are integers (561 is obtained for m = 5 and n = 23). 

 

Note: The next few terms of this sequence are: 1105 = sqrt(2^4 + 33^2), 2465 = sqrt(2^6 + 

49^2) etc.  

 

16. Some Carmichael numbers are also Harshad numbers but the most of them aren’t. The 

number 561 has yet another interesting related property; if we note with s(n) the iterated sum of 
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the digits of a number n that not goes until the digital root but stops to the last odd prime 

obtained before this, than 561 is divisible by s((561 + 1)/2) equivalent to s(281) equivalent to 11. 

Also other Carmichael numbers have this property: 1105 is divisible by s(1105) = 13 and 6601 is 

divisible by s(6601) = 7. 

 

17. For the randomly chosen, but consecutive, 7 primes (129689, 1299709, 1299721, 1299743, 

1299763, 1299791 and 1299811) we obtained 3 primes and 3 semiprimes when introduced them 

in the formula 2*561 + p^2 – 360. 

 

18. Another relation between 561 and Hardy Ramanujan number: (62745 + 24) mod 1728 = 561 

(where 24 is, e.g., the sum of the digits of the Carmichael number 62745 or a constant and 1728 

is, obviously, one less than Hardy–Ramanujan number). 

 

19. Yet another relation between 561 and Hardy Ramanujan number: 561 mod 73 = 1729 mod 

73 = 50. The formula 73*n + 50, from which we obtain 561 and 1729 for n = 7 and n = 23, leads 

to other interesting results for n of the form 7 + 16*k: we obtain primes for n = 39, 71, 119, 167 

etc. 

 

20. A formula that generating primes: 561^2 – 561 – 1 = 314159 is prime; 561^4 – 561^3 – 

561^2 – 561 – 1 = 98872434077 is prime. Also for other Carmichael number the formula C^2 – 

C – 1 conducts to: 1105^2 – 1105 – 1 = 1219919 prime, 6601^2 – 6601 – 1 = 43566599 prime 

(semiprimes were obtained for the numbers 1729, 2465, 2821 and so on). Yet the number 

2465^4 – 2465^3 – 1 = 36905532355999 is prime and the number 15841^4 – 15841^3 – 1 = 

62965543898204639 is prime. 

 

21. The formula N = d1^2 + d2^2 + d3^2 – 560, where d1, d2 and d3 are the only prime factors of a 

Carmichael number, and they are all three of the form 6*k + 1, seems to generate an interesting 

class of primes: 

: for C = 1729 = 7*13*19 we have N = 19 prime; 

: for C = 2821 = 7*13*31 we have N = 619 prime; 

: for C = 8911 = 7*19*67 we have N = 4339 prime; 

: for C = 15841 = 7*31*73 we have N = 5779 prime.  

 

22. The number 544, obtained as the difference between the first two Carmichael numbers, 1105 

and 561, has also a notable property: the relation n^C mod 544 = n seems to be verified for a lot 

of natural numbers n and a lot of Carmichael numbers C, especially when C is also an Euler 

pseudoprime.  

 

Conjecture: The expression n^E mod 544 = n, where n is any natural number, is true if E is an 

Euler pseudoprime. 

 

23. The difference between the squares of the first two Carmichael numbers, 1105 and 561, has 

also the notable property that results in a square of an integer: 952^2 = 1105^2 – 561^2. 

 

Conclusion: I am aware of the excessive use of the word “interesting” in this article, but this was 

the purpose of it: to show how many “interesting” paths can be opened just studying the number 

561, not to follow until the last consequences one of these paths. I didn’t succed to show that the 

properties of the number 561 eclipses the ones of the number 1729 (very present in this article) 

but hopefully I succeded to show that they are both a pair of extraordinary numbers (and that the 

number 561 deserves his place on the license plate of a taxi-cab).   
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20. Six conjectures and the generic formulas for two subsets of Poulet 

numbers 
 

 

Abstract. I was following an interesting “track”, i.e. the pairs of primes [p, q] that apparently 

can form strictly Carmichael numbers of the form p*q*(n*(q – 1) + p), like for instance [23, 67] 

and [41, 241], when I observed that also all the Poulet numbers P which have the numbers p = 

30*k + 23 and q = 90*k + 67 respectively p = 30*k + 11 and q = 180*k + 61 as prime factors can 

be written as P = p*q*(n*(q – 1) + p) and I made few conjectures. 

 

 

I.  The generic formula for Poulet numbers which have two prime factors of the form 

30*k + 23 and 90*k + 67 

 

Conjecture 1:  

Any Poulet numbers P which have the numbers p = 23 and q = 67 as prime factors can be 

written as P = p*q*(n*(q – 1) + p) = 3*p^3*(3*n + 1) – p^2*(15*n + 2) + 6*p*n, where n 

non-null positive integer (we took q = 3*p – 2). 

 

Verifying the conjecture (for the first few such Poulet numbers): 

 

: For n = 1 we have the Poulet number P = 137149 = 23*67*89; 

: For n = 3 we have the Poulet number (also Carmichael number) P = 340561 = 

13*17*23*67; 

: For n = 9 we have the Poulet number P = 950797 = 23*67*617; 

: For n = 10 we have the Poulet number P = 1052503 = 23*67*683; 

: For n = 13 we have the Poulet number P = 1357621 = 23*67*881. 

 

Comment:  

This formula is important for determining sequences of Poulet numbers; in their case 

there is not an instrument for obtaining such formulas as there is the Korselt’s criterion in 

the case of Carmichael numbers. See also the sequence A182515 that I submitted to 

OEIS. 

 

Note:  

The formula P = p*q*(n*(q – 1) + p) is not a pattern for any Poulet numbers which have 

two prime factors of the form p and q = 3*p – 2; for instance, for [p, q] = [7, 19] and 

Carmichael numbers 1729 and 63973 the formula doesn’t apply. 

 

Conjecture 2:  

Any Poulet numbers P which have the numbers p = 30*k + 23 and q = 90*k + 67, where 

k non-negative integer, as prime factors can be written as P = 3*p^3*(3*n + 1) – 

p^2*(15*n + 2) + 6*p*n, where n non-null positive integer. 

 

Note:  

As it can be seen, the formula from above it is not anymore derived from and equivalent 

to the formula P = p*q*(n*(q – 1) + p), equivalence that exists only in the case of the 

Conjecture 1. 
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Verifying the conjecture for p = 53 and q = 157 (for the first few such Poulet numbers):  

 

: For n = 3 we have the Poulet number (also Carmichael number) P = 4335241 = 

53*157*521; 

: For n = 10 we have the Poulet number P = 13421773 = 53*157*1613; 

: For n = 13 we have the Poulet number (also Carmichael number) P = 17316001 = 

53*157*2081. 

 

Verifying the conjecture for p = 113 and q = 337 (for the first few such Poulet numbers): 

 

: For n = 1 we have the Poulet number (also Carmichael number) P = 17098369 = 

113*337*449; 

: For n = 7 we have the Poulet number (also Carmichael number) P = 93869665 = 

5*17*29*113*337; 

: For n = 13 we have the Poulet number P = 170640961 = 113*337*4481. 

 

Note:  

It is notable how easily we found Poulet numbers with this formula, for at least three 

values of n from n = 1 to n = 13, for any of the three pairs of primes considered: [23, 67], 

[53, 157], [113, 337]. 

 

Conjecture 3:  

There is an infinity of Poulet numbers which have the numbers p = 30*k + 23 and q = 

90*k + 67, where k non-negative integer, as prime factors (implicitly there is an infinity 

of pairs of primes of the form [30*k + 23, 90*k + 67]). 

 

 

II. The generic formula for Poulet numbers which have two prime factors of the form 

30*k + 11 and 180*k + 61 

 

 

Conjecture 4:  

Any Poulet numbers P which have the numbers p = 11 and q = 61 as prime factors can be 

written as P = p*q*(n*(q – 1) + p) = 6*p^3*(6*n + 1) – p^2*(66*n + 5) + 30*p*n, where 

n non-null positive integer (we took q = 6*p – 5). 

 

Verifying the conjecture (for the first such Poulet number): 

 

: For n = 21 we have the Poulet number (also Carmichael number) P = 852841 = 

11*31*41*61. 

 

Note:  

The formula P = p*q*(n*(q – 1) + p) is not a pattern for any Poulet numbers which have 

two prime factors of the form p and q = 6*p – 5; for instance, for [p,q] = [7,37] and 

Carmichael number 63973 = 7*13*19*37 the formula doesn’t apply. 

 

Conjecture 5:  

Any Poulet numbers P which have the numbers p = 30*k + 11 and q = 180*k + 61, where 

k non-negative integer, as prime factors can be written as P = 6*p^3*(6*n + 1) – 

p^2*(66*n + 5) + 30*p*n, where n non-null positive integer. 



 56 

 

Verifying the conjecture for p = 41 and q = 241 (for the first few such Poulet numbers): 

 

: For n = 2 we have the Poulet number (also Carmichael number) P = 5148001 = 

41*241*521; 

: For n = 3 we have the Poulet number (also Carmichael number) P = 7519441 = 

41*241*761; 

: For n = 4 we have the Poulet number (also Carmichael number) P = 9890881 = 

7*11*13*41*241; 

: For n = 5 we have the Poulet number (also Carmichael number) P = 12262321 = 

17*41*73*241. 

 

Conjecture 6:  

There is an infinity of Poulet numbers which have the numbers p = 30*k + 11 and q = 

180*k + 61, where k non-negative integer, as prime factors (implicitly there is an infinity 

of pairs of primes of the form [30*k + 11, 180*k + 61]). 

 

 

 

21. A pattern that relates Carmichael numbers to the number 66  
 

 

Abstract. The length of the period of the rational number which is the sum, from n = 1 to 

n = ∞, of the numbers 1/(Cn – 1), where {C1, C2, ..., Cn} is the ordered set of Carmichael 

numbers, i.e. {561, 1105, 1729, 2465, ...}, seems to be always multiple of 66. This 

property doesn’t apply always when C1, C2, ..., Cn are not consecutive, so this pattern 

could be a way to determinate if between two known Carmichael numbers there exist 

other unknown Carmichael numbers.  

 

 

Conjecture:  

 

The length of the period of the rational number which is the sum, from n = 1 to n = ∞, of 

the numbers 1/(Cn – 1), where {C1, C2, ..., Cn} is the ordered set of Carmichael numbers, 

is always multiple of 66. 

 

Verifying the conjecture (for n ≤ 12):  

 

:  the sum 1/560 + 1/1104 is equal to a rational number with the length of the period 66; 

: the sum 1/560 + 1/1104 + 1/1728 is equal to a rational number with the length of the 

period 66; 

: the sum 1/560 + 1/1104 + 1/1728 + 1/2464 is equal to a rational number with the length 

of the period 66; 

: the sum 1/560 +...+ 1/2464 + 1/2820 is equal to a rational number with the length of the 

period 1518 = 66*23; 

: the sum 1/560 +...+ 1/2820 + 1/6600 is equal to a rational number with the length of the 

period 1518 = 66*23; 

: the sum 1/560 +...+ 1/6600 + 1/8910 is equal to a rational number with the length of the 

period 4554 = 66*69; 
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: the sum 1/560 +...+ 1/8910 + 1/10584 is equal to a rational number with the length of the 

period 31878 = 66*483; 

: the sum 1/560 +...+ 1/10584 + 1/15840 is equal to a rational number with the length of 

the period 31878 = 66*483; 

: the sum 1/560 +...+ 1/15840 + 1/29340 is equal to a rational number with the length of 

the period 286902 = 66*4347; 

: the sum 1/560 +...+ 1/29340 + 1/41040 is equal to a rational number with the length of 

the period 286902 = 66*4347; 

: the sum 1/560 +...+ 1/41040 + 1/46656 is equal to a rational number with the length of 

the period 286902 = 66*4347. 

 

Note:  

 

This is a characteristc only of absolute Fermat pseudoprimes; in the case of relative 

Fermat pseudoprimes, Poulet numbers for instance, this pattern doesn’t apply: for the 

first two Poulet numbers, 341 and 561, we have the sum 1/340 + 1/560 equal to a rational 

number with the length of the period 48. 

 

Note:  

 

This is a characteristc only of the sum of ordered Carmichael numbers, for instance, for 

the first and the third Carmichael numbers, 561 and 1729, we have the sum 1/560 + 

1/1728 equal to a rational number with the length of the period 6. 

 

Comment:  

 

This property could be a way to determinate if between two known Carmichael numbers 

there exist other unknown Carmichael numbers.  

 

 

 

22. A generic formula of 2-Poulet numbers and also a method to obtain 

sequences of n-Poulet numbers 
 

 

Abstract. In this paper I present a formula based on 2-Poulet numbers which seems to 

conduct always to a prime, a square of prime or a semiprime, a conjecture that this 

formula is generic for 2-Poulet numbers, and, in case that the conjecture doesn’t hold, I 

present another utility for this formula, namely to generate sequences of n-Poulet 

numbers.  

 

 

Conjecture:  

 

Any 2-Poulet number P can be written at least in one way as P = (q*2^a*3^b*5^c ± 1)*2^n + 1, 

where q is a prime, a square of prime or a semiprime, a, b, c are non-negative integers and n is 

non-null positive integer. 
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In other words, there always exist a number q = ((P – 1)/2^n ± 1)/(2^a*3*b*5^c), where P is a 2-

Poulet number, a, b, c are non-negative integers and n is non-null positive integer, such that q is 

a prime, a square of prime or a semiprime. 

 

Note: In this paper I will consider the number 1 to be a prime (not to repeat the formulation: q is 

prime, square of prime, semiprime or is equal to number 1). 

 

Verifying the conjecture: 

[for the first ten 2-Poulet numbers, only for a restrictive version of the conjecture, considering 

just the formula P = (q*2^a*3^b*5^c + 1)*2^n + 1] 

 

For P = 341, we have: 

q = ((341 – 1)/2^1 – 1)/(2^0*3^0*5^0) = 13^2; 

 q = ((341 – 1)/2^2 – 1)/(2^2*3^1*5^0) = 7. 

For P = 1387, we have: 

 q = ((1387 – 1)/2^1 – 1)/(2^2*3^0*5^0) = 173. 

For P = 2047, we have: 

 q = ((2047 – 1)/2^1 – 1)/(2^1*3^0*5^0) = 7*73. 

For P = 2701, we have: 

q = ((2701 – 1)/2^1 – 1)/(2^0*3^0*5^0) = 19*71; 

 q = ((2701 – 1)/2^2 – 1)/(2^1*3^0*5^0) = 337. 

For P = 3277, we have: 

 q = ((3277 – 1)/2^1 – 1)/(2^0*3^0*5^0) = 1637; 

 q = ((3277 – 1)/2^2 – 1)/(2^1*3^0*5^0) = 409. 

For P = 4033, we have: 

q = ((4033 – 1)/2^1 – 1)/(2^0*3^0*5^1) = 13*31; 

 q = ((4033 – 1)/2^2 – 1)/(2^0*3^0*5^0) = 19*53; 

q = ((4033 – 1)/2^3 – 1)/(2^0*3^0*5^0) = 503; 

q = ((4033 – 1)/2^4 – 1)/(2^0*3^0*5^0) = 251; 

q = ((4033 – 1)/2^5 – 1)/(2^0*3^0*5^3) = 1; 

q = ((4033 – 1)/2^6 – 1)/(2^1*3^0*5^0) = 31. 

For P = 4369, we have: 

 q = ((4369 – 1)/2^1 – 1)/(2^0*3^0*5^0) = 37*59; 

 q = ((4369 – 1)/2^2 – 1)/(2^0*3^0*5^0) = 1091; 

q = ((4369 – 1)/2^3 – 1)/(2^0*3^0*5^1) = 109; 

((4369 – 1)/2^4 – 1)/(2^0*3^0*5^0) = 251; 

For P = 4681, we have: 

 q = ((4681 – 1)/2^1 – 1)/(2^0*3^0*5^0) = 2339; 

 q = ((4681 – 1)/2^2 – 1)/(2^0*3^0*5^0) = 7*167; 

q = ((4681 – 1)/2^3 – 1)/(2^3*3^0*5^0) = 73; 

For P = 5461, we have: 

 q = ((2701 – 1)/2^1 – 1)/(2^0*3^0*5^0) = 2729; 

 q = ((2701 – 1)/2^2 – 1)/(2^2*3^0*5^0) = 11*31. 

For P = 7957, we have: 

 q = ((7957 – 1)/2^1 – 1)/(2^0*3^0*5^1) = 37*43; 

 q = ((7957 – 1)/2^2 – 1)/(2^2*3^0*5^0) = 7*71. 

 

Verifying the conjecture: 

(for seven greater consecutive 2-Poulet numbers) 
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For P = 27657600833, we have: 

 q = ((27657600833 – 1)/2^4 – 1)/(2^0*3^1*5^0) = 653*882389; 

q = ((27657600833 – 1)/2^1 + 1)/(2^0*3^1*5^0) = 22433*205483; 

 q = ((27657600833 – 1)/2^2 + 1)/(2^0*3^0*5^0) = 6914400209. 

q = ((27657600833 – 1)/2^4 + 1)/(2^0*3^0*5^0) = 6911*250123. 

q = ((27657600833 – 1)/2^6 + 1)/(2^1*3^0*5^0) = 8093*26699. 

For P = 27667059281, we have: 

 q = ((27667059281 – 1)/2^1 – 1)/(2^0*3^0*5^0) = 103*134306113; 

q = ((27667059281 – 1)/2^4 + 1)/(2^1*3^0*5^0) = 864595603. 

For P = 27675991081, we have: 

 q = ((27675991081 – 1)/2^1 – 1)/(2^0*3^0*5^0) = 10169*680401; 

 q = ((27675991081 – 1)/2^2 – 1)/(2^2*3^0*5^0) = 1109*779869. 

For P = 27681232903, we have: 

 q = ((27681232903 – 1)/2^1 – 1)/(2^1*3^0*5^2) = 276812329; 

 q = ((27681232903 – 1)/2^2 + 1)/(2^4*3^0*5^0) = 67*807083. 

For P = 27685810639, we have: 

 q = ((27685810639 – 1)/2^1 + 1)/(2^3*3^0*5^1) = 4740721. 

For P = 27686175193, we have: 

 q = ((27686175193 – 1)/2^1 - 1)/(2^0*3^0*5^1) = 20208887; 

q = ((27686175193 – 1)/2^1 + 1)/(2^0*3^0*5^0) = 2837*4879481; 

q = ((27686175193 – 1)/2^3 + 1)/(2^2*3^0*5^2) = 113*306263. 

For P = 27702689701, we have: 

 q = ((27702689701 – 1)/2^2 - 1)/(2^3*3^0*5^0) = 11*78700823; 

 q = ((27702689701 – 1)/2^1 + 1)/(2^0*3^0*5^0) = 15971*867281; 

q = ((27702689701 – 1)/2^2 + 1)/(2^1*3^0*5^0) = 199*17401187. 

 

Comment: 

 

If the Conjecture doesn’t hold, it may be considered a more premissive version: Any 2-Poulet 

number P can be written at least in one way as P = (q*2^a*3^b*5^c ± 1)*2^n + 1, where q is a 

prime, a square of prime or a semiprime and a, b, c, n are non-negative integers. 

In this case we have, for instance for P = 27686175193, q = ((27686175193 – 1)/2^0 - 

1)/(2^0*3^0*5^0) = 27686175191 which is prime. 

 

Comment: 

 

If the Conjecture doesn’t hold, it has anyhow at least one utility: it’s a method for finding 

sequences of Poulet numbers (not only 2-Poulet numbers).  

 

Taking, for instance, q = 223*r, where r is prime, we have the sequence of Poulet numbers P 

defined as P = (223*r + 1)*2^n + 1, with the first three terms {41041, 10261, 52633}, obtained 

for the following values of (r, n): {23, 1), (23, 3), (59, 2)}. 

Taking, for instance, q = 29*r, where r is prime, we have the sequence of Poulet numbers P 

defined as P = (29*r + 1)*3^n + 1, with the first term 2701, obtained for the following value of 

(r, n): (31, 1). 

Taking, for instance, q = 37*r, where r is prime, we have the sequence of Poulet numbers P 

defined as P = (37*r + 1)*5^n + 1, with the first term 561, obtained for the following value of (r, 

n): (3, 5). 

Taking, for instance, q = 13^2, we have the sequence of Poulet numbers P defined as P = (13^2 + 

1)*2^n + 1, with the first term 341, obtained for the following value of n: 1. 
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23. Few interesting results regarding Poulet numbers and Egyptian fraction 

expansion 
 

 

Abstract. Considering r being equal to the positive rational number 1/(d1 – 1) + 1/(d2 – 

1) +...+ 1/(dn – 1), where d1,..., dn are the prime factors of a Poulet number, the Egyptian 

fraction expansion applied to r leads to interesting results. 

 

 

Note:  

 

An Egyptian fraction is a sum of distinct unit fractions, such as 1/a + 1/b + 1/c +...+/m, where the 

denominators a, b, c, ..., m are positive, distinct, integers. Every positive rational number can be 

represented by an Egyptian fraction. 

 

The Egyptian fraction expansion is an algorithm due to Fibonacci for computing Egyptian 

fractions: the number x/y, where x, y are positive, distinct, integers, is written as follows: 

 

x/y = 1/ceiling(y/x) + ((-1)mod x)/y*ceiling(y/x), where the function ceiling(z) represents the 

smaller integer equal to or greater than z. 

 

This algorithm is repetead to the second term of the summation above and so on until is obtained 

an egyptian fraction. 

 

Conjecture 1:  

 

If r is equal to the positive rational number 1/(d1 – 1) + 1/(d2 – 1) +...+ 1/(dn – 1), where d1,..., dn 

are the prime factors of a Poulet number P, and m is equal to the last denominator obtained 

applying the Egyptian fraction expansion to r, then the number m + 1 is a prime or a power of 

prime for an infinity of Poulet numbers. 

 

Examples:  

 

:  For P = 341 = 11*31, we have r = 1/10 + 1/30 = 2/15 = 1/8 + 1/120; the number m + 1 = 

120 + 1 = 121 = 11^2, a square of prime. 

:  For P = 561 = 3*11*17, we have r = 1/2 + 1/10 + 1/16 = 53/80 = 1/2 + 1/7 + 1/51 + 

1/28560; the number m + 1 = 28560 + 1 = 28561 = 13^4, a power of prime. 

:  For P = 645 = 3*5*43, we have r = 1/2 + 1/4 + 1/42 = 65/84 = 1/2 + 1/4 + 1/42; the 

number m + 1 = 42 + 1 = 43, a prime number. 

:  For P = 1105 = 5*13*17, we have r = 1/4 + 1/12 + 1/16 = 19/48 = 1/3 + 1/16; the number 

m + 1 = 16 + 1 = 17, a prime number. 

:  For P = 1387 = 19*73, we have r = 1/18 + 1/72 = 5/72 = 1/15 + 1/360; the number m + 1 

= 360 + 1 = 361 = 19^2, a square of prime. 

:  For P = 1729 = 7*13*19, we have r = 1/6 + 1/12 + 1/18 = 11/36 = 1/4 + 1/18; the number 

m + 1 = 18 + 1 = 19, a prime number. 

:  For P = 1905 = 3*5*127, we have r = 1/2 + 1/4 + 1/126 = 191/252 = 1/2 + 1/4 + 1/126; 

the number m + 1 = 126 + 1 = 127, a prime number. 

: For P = 6601 = 7*23*41, we have r = 1/6 + 1/22 + 1/40 = 313/1320 = 1/5 + 1/27 + 

1/11880; the number m + 1 = 11880 + 1 = 11881 = 109^2, a square of prime. 
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:  For P = 8911 = 7*19*67, we have r = 1/6 + 1/18 + 1/66 = 47/198 = 1/5 + 1/27 + 1/2970; 

the number m + 1 = 2970 + 1 = 2971, a prime number. 

:  For P = 52633 = 7*73*103, we have r = 1/6 + 1/72 + 1/102 = 233/1224 = 1/6 + 1/43 + 

1/2289 + 1/8031644 + 1/80634123646776; the number m + 1 = 80634123646776 + 1 = 

80634123646777, a prime number. 

 

Note:  

For the first ten Carmichael numbers C divisible by 7 and 19 (we don’t have a comprehensive 

list of Poulet numbers indexed together with their prime factors) we always obtain for the 

number m + 1 a prime or a square of prime; we have the following values for (C, m + 1): (1729, 

19), (8911, 2971), (63973, 2^2), (126217, 19^2), (188461, 433), (748657, 433), (825265, 1009), 

(997633, 577), (1050985, 23), (1773289, 1321).  

 

Conjecture 2:  

 

If r is equal to the positive rational number 1/(d1 – 1) + 1/(d2 – 1) +...+ 1/(dn – 1), where d1,..., dn 

are the prime factors of a Poulet number P, and r is represented by the irreducible fraction x/y, 

where x, y positive integers, then the number y + 1 is a prime or a power of prime for an infinity 

of Poulet numbers. 

 

Examples:  

(as it can be seen above) 

 

:  For P = 341, we have r = x/y = 2/15; the number y + 1 = 15 + 1 = 16 = 2^4, a power of 

prime. 

:  For P = 561, we have r = x/y = 53/80; the number y + 1 = 80 + 1 = 81 = 3^4, a power of 

prime. 

:  For P = 1105, we have r = x/y = 19/48; the number y + 1 = 48 + 1 = 49, a square of 

prime. 

:  For P = 1387, we have r = x/y = 5/72; the number y + 1 = 72 + 1 = 73, a prime number. 

:  For P = 1729, we have r = x/y = 11/36; the number y + 1 = 36 + 1 = 37, a prime number. 

: For P = 6601, we have r = x/y = 313/1320; the number y + 1 = 1320 + 1 = 1321, a prime 

number. 

: For P = 8911, we have r = x/y = 47/198; the number y + 1 = 198 + 1 = 199, a prime 

number. 

 

Note:  

As it can be seen above, the number y is sometimes equal to lcm((d1 – 1), (d2 – 1), ..., (dn – 1)), 

which is, for instance, the case of the Poulet number 1387 = 19*73, where y = 72 = lcm(18,72), 

but this is not always true: this is, for instance, the case of Poulet number 341, where y = 15 and 

lcm(10,30) = 30.  

 

Conjecture 3:  

 

If d1,..., dn are the prime factors of a Poulet number P, then the number lcm((d1 – 1), (d2 – 1), ..., 

(dn – 1)) is a prime or a power of prime for an infinity of Poulet numbers. 

 

 

 

 



 62 

24. The Smarandache-Coman divisors of order k of a composite integer n 

with m prime factors 
 

 

Abstract. We will define in this paper the Smarandache-Coman divisors of order k of a 

composite integer n with m prime factors, a notion that seems to have promising 

applications, at a first glance at least in the study of absolute and relative Fermat 

pseudoprimes, Carmichael numbers and Poulet numbers. 

 

 

Definition 1: 

We call the set of Smarandache-Coman divisors of order 1 of a composite positive 

integer n with m prime factors, n = d1*d2*...*dm, where the least prime factor of n, d1, is 

greater than or equal to 2, the set of numbers defined in the following way: 

SCD1(n) = {S(d1 – 1), S(d2 – 1), ..., S(dm – 1)}, where S is the Smarandache function. 

 

Examples:  

1. The set of SC divisors of order 1 of the number 6 is {S(2 – 1), S(3 – 1)} = {S(1), 

S(2)} = {1, 2}, because 6 = 2*3; 

2. SCD1(429) = {S(3 – 1), S(11 – 1), S(13 – 1)} = {S(2), S(10), S(12)} = {2, 5, 4}, 

because 429 = 3*11*13. 

 

Definition 2: 

We call the set of Smarandache-Coman divisors of order 2 of a composite positive 

integer n with m prime factors, n = d1*d2*...*dm, where the least prime factor of n, d1, is 

greater than or equal to 3, the set of numbers defined in the following way: 

SCD2(n) = {S(d1 – 2), S(d2 – 2), ..., S(dm – 2)}, where S is the Smarandache function. 

 

Examples:  

1. The set of SC divisors of order 2 of the number 21 is {S(3 – 2), S(7 – 2)} = {S(1), 

S(5)} = {1, 5}, because 21 = 3*7; 

2. SCD2(2429) = {S(7 – 2), S(347 – 2)} = {S(5), S(345)} = {5, 23}, because 2429 = 

7*347. 

 

Definition 3: 

We call the set of Smarandache-Coman divisors of order k of a composite positive 

integer n with m prime factors, n = d1*d2*…*dm, where the least prime factor of n, d1, is 

greater than or equal to k + 1, the set of numbers defined in the following way: 

SCDk(n) = {S(d1 – k), S(d2 – k), …, S(dm – k)}, where S is the Smarandache function. 

 

Examples:  

1. The set of SC divisors of order 5 of the number 539 is {S(7 – 5), S(11 – 5)} = 

{S(2), S(6)} = {2, 3}, because 539 = 7^2*11; 

2. SCD6(221) = {S(13 – 6), S(17 – 6)} = {S(7), S(11)} = {7, 11}, because 221 = 

13*17. 

 

Comment: 

We obviously defined the sets of numbers above because we believe that they can have 

interesting applications, in fact we believe that they can even make us re-think and re-

consider the Smarandache function as an instrument to operate in the world of number 
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theory: while at the beginning its value was considered to consist essentially in that to be 

a criterion for primality, afterwards the Smarandache function crossed a normal process 

of substantiation, so it was constrained to evolve in a relatively closed (even large) circle 

of equalities, inequalities, conjectures and theorems concerning, most of them, more or 

less related concepts. We strongly believe that some of the most important applications of 

the Smarandache function are still undiscovered. We were inspired in defining the 

Smarandache-Coman divisors by the passion for Fermat pseudoprimes, especially for 

Carmichael numbers and Poulet numbers, by the Korselt’s criterion, one of the very few 

(and the most important from them) instruments that allow us to comprehend Carmichael 

numbers, and by the encouraging results we easily obtained, even from the first attempts 

to relate these two types of numbers, Fermat pseudoprimes and Smarandache numbers. 

 

Smarandache-Coman divisors of order 1 of the 2-Poulet numbers: 

(See the sequence A214305 in OEIS, posted by us, for a list with Poulet numbers with 

two prime factors) 

 

SCD1(341)  = {S(11 – 1), S(31 – 1)} = {S(10), S(30)} = {5, 5}; 

SCD1(1387)  = {S(19 – 1), S(73 – 1)} = {S(18), S(72)}  = {6, 6}; 

SCD1(2047) = {S(23 – 1), S(89 – 1)} = {S(22), S(88)}  ={11, 11}; 

SCD1(2701)  = {S(37 – 1), S(73 – 1)} = {S(36), S(72)}  = {6, 6}; 

SCD1(3277)  = {S(29 – 1), S(113 – 1)} = {S(28), S(112)}  = {7, 7}; 

SCD1(4033)  = {S(37 – 1), S(109 – 1)} = {S(36), S(108)}  = {6, 9}; 

SCD1(4369)  = {S(17 – 1), S(257 – 1)} = {S(16), S(256)}  = {6, 10}; 

SCD1(4681)  = {S(31 – 1), S(151 – 1)} = {S(30), S(150)}  = {5, 10}; 

SCD1(5461)  = {S(43 – 1), S(127 – 1)} = {S(42), S(126)}  = {7, 7}; 

SCD1(7957)  = {S(73 – 1), S(109 – 1)} = {S(72), S(108)}  = {6, 9}; 

SCD1(8321)  = {S(53 – 1), S(157 – 1)} = {S(52), S(156)}  = {13, 13}. 

 

Comment: 

It is notable how easily are obtained interesting results: from the first 11 terms of the 2-

Poulet numbers sequence checked there are already foreseen few patterns. 

 

Open problems:  

1. Is for the majority of the 2-Poulet numbers the case that the two Smarandache-

Coman divisors of order 1 are equal, as for the seven from the eleven numbers 

checked above? 

2. Is there an infinity of 2-Poulet numbers for which the set of SCD of order 1 is 

equal to {6, 6}, the case of Poulet numbers 1387 and 2701, or with {6, 9}, the 

case of Poulet numbers 4033 and 7957? 

 

Smarandache-Coman divisors of order 2 of the 2-Poulet numbers: 

 

SCD2(341)  = {S(11 – 2), S(31 – 2)} = {S(9), S(29)}  = {6, 29}; 

SCD2(1387)  = {S(19 – 2), S(73 – 2)} = {S(17), S(71)}  ={17, 71}; 

SCD2(2047)  = {S(23 – 2), S(89 – 2)} = {S(21), S(87)}  = {7, 29}; 

SCD2(2701) = {S(37 – 2), S(73 – 2)} = {S(35), S(71)}  = {7, 71}; 

SCD2(3277)  = {S(29 – 2), S(113 – 2)} = {S(27), S(111)}  = {9, 37}; 

SCD2(4033)  = {S(37 – 2), S(109 – 2)} = {S(35), S(107)}  = {7, 107}; 

SCD2(4369)  = {S(17 – 2), S(257 – 2)} = {S(15), S(255)}  = {5, 17}; 

SCD2(4681)  = {S(31 – 2), S(151 – 2)} ={S(29), S(149)}  = {29, 149}; 
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SCD2(5461)  = {S(43 – 2), S(127 – 2)} = {S(41), S(125)}  = {41, 15}; 

SCD2(7957)  = {S(73 – 2), S(109 – 2)} ={S(71), S(107)}  = {71, 107}; 

SCD2(8321)  = {S(53 – 2), S(157 – 2)} = {S(52), S(156)}  = {17, 31}. 

 

Comment: 

In the case of SCD of order 2 of the 2-Poulet numbers there are too foreseen few patterns. 

 

Open problems:  

1. Is for the majority of the 2-Poulet numbers the case that the two Smarandache-

Coman divisors of order 2 are both primes, as for the eight from the eleven 

numbers checked above? 

2. Is there an infinity of 2-Poulet numbers for which the set of SCD of order 2 is 

equal to {p, p + 20*k}, where p prime and k positive integer, the case of Poulet 

numbers 4033 and 4681? 

 

Smarandache-Coman divisors of order 1 of the 3-Poulet numbers: 

(See the sequence A215672 in OEIS, posted by us, for a list with Poulet numbers with 

two prime factors) 

 

SCD1(561)  = SCD1(3*11*17) = {S(2), S(10), S(16)} = {2, 5, 6}; 

SCD1(645)  = SCD1(3*5*43) = {S(2), S(4), S(42)}  = {2, 4, 7}; 

SCD1(1105)  = SCD1(5*13*17) = {S(4), S(12), S(16)}  = {4, 4, 6}; 

SCD1(1729)  = SCD1(7*13*19) = {S(6), S(12), S(18)}  = {3, 4, 6}; 

SCD1(1905)  = SCD1(3*5*127) = {S(2), S(4), S(126)}  = {2, 4, 7}; 

SCD1(2465)  = SCD1(5*17*29) = {S(4), S(16), S(28)}  = {4, 6, 7}; 

SCD1(2821)  = SCD1(7*13*31) = {S(6), S(12), S(30)}  = {3, 4, 5}; 

SCD1(4371)  = SCD1(3*31*47) = {S(2), S(30), S(46)}  = {2, 5, 23}; 

SCD1(6601)  = SCD1(7*23*41) = {S(6), S(22), S(40)}  = {3, 11, 5}; 

SCD1(8481)  = SCD1(3*11*257) = {S(2), S(10), S(256)}  = {2, 5, 10}; 

SCD1(8911)  = SCD1(7*19*67) = {S(6), S(18), S(66)}  = {3, 19, 67}. 

 

Open problems:  

1. Is there an infinity of 3-Poulet numbers for which the set of SCD of order 1 is 

equal to {2, 4, 7}, the case of Poulet numbers 645 and 1905? 

2. Is there an infinity of 3-Poulet numbers for which the sum of SCD of order 1 is 

equal to 13, the case of Poulet numbers 561 (2 + 5 + 6 = 13), 645 (2 + 4 + 7 = 13), 

1729 (3 + 4 + 6 = 13), 1905 (2 + 4 + 7 = 13) or is equal to 17, the case of Poulet 

numbers 2465 (4 + 6 + 7 = 17) and 8481 (2 + 5 + 10 = 17)? 

3. Is there an infinity of Poulet numbers for which the sum of SCD of order 1 is 

prime, which is the case of the eight from the eleven numbers checked above? 

What about the sum of SCD of order 1 plus 1, the case of Poulet numbers 2821 (3 

+ 4 + 5 + 1 = 13) and 4371 (2 + 5 + 23 + 1 = 31) or the sum of SCD of order 1 

minus 1, the case of Poulet numbers 1105 (4 + 4 + 6 – 1 = 13), 2821 (3 + 4 + 5 – 

1 = 11) and 4371 (2 + 5 + 23 – 1 = 29)? 
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25. Seventeen sequences of Poulet numbers characterized by a certain set of 

Smarandache-Coman divisors 
 

 

Abstract. In a previous article I defined the Smarandache-Coman divisors of order k of a 

composite integer n with m prime factors and I sketched some possible applications of 

this concept in the study of Fermat pseudoprimes. In this paper I make few conjectures 

about few possible infinite sequences of Poulet numbers, characterized by a certain set of 

Smarandache-Coman divisors. 

 

 

Conjecture 1:  

 

There is an infinity of 2-Poulet numbers which have the set of SC divisors of order 1 equal to {p, 

p}, where p is prime. 

 

The sequence of this 2-Poulet numbers is: 341, 2047, 3277, 5461, 8321, 13747, 14491, 19951, 

31417, ... (see the lists below). 

 

Conjecture 2:  

 

There is an infinity of 2-Poulet numbers which have the set of SC divisors of order 2 equal to {p, 

p + 20*k}, where p is prime and k is non-null integer. 

 

The sequence of this 2-Poulet numbers is: 4033, 4681, 10261, 15709, 23377, 31609, ... (see the 

lists below). 

 

Conjecture 3:  

 

There is an infinity of 2-Poulet numbers which have the set of SC divisors of order 2 equal to {a, 

b}, where a + b + 1 is prime. 

 

The sequence of this 2-Poulet numbers is: 1387, 2047, 2701, 3277, 4369, 4681, 8321, 13747, 

14491, 18721, 31417, 31609, ... (see the lists below). 

Note: This is the case of twelve from the first twenty 2-Poulet numbers. 

 

Conjecture 4:  

 

There is an infinity of 2-Poulet numbers which have the set of SC divisors of order 2 equal to {a, 

b}, where a + b – 1 is prime. 

 

The sequence of this 2-Poulet numbers is: 4033, 8321, 10261, 13747, 14491, 15709, 19951, 

23377, 31417, ... (see the lists below). 

 

Conjecture 5:  

 

There is an infinity of 2-Poulet numbers which have the set of SC divisors of order 2 equal to {a, 

b}, where a + b – 1 and a + b + 1 are twin primes. 

 

The sequence of this 2-Poulet numbers is: 13747, 14491, 23377, 31417, ... (see the lists below). 
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Conjecture 6:  

 

There is an infinity of pairs of 2-Poulet numbers which have the set of SC divisors of order 2 

equal to {a, b}, respectively to {c, d}, where a + b = c + d and a, b, c, d are primes. 

 

Such pair of 2-Poulet numbers is: (4681, 7957), because 29 + 149 = 71 + 107 = 178. 

 

Conjecture 7:  

 

There is an infinity of pairs of 2-Poulet numbers which have the set of SC divisors of order 2 

equal to {a, b}, respectively to {c, d}, where a + b + 1 = c + d – 1. 

 

Such pairs of 2-Poulet numbers are: 

(3277, 8321), because 9 + 37 + 1 = 17 + 31 - 1 = 47; 

(19951, 5461), because 23 + 31 + 1 = 41 + 15 – 1 = 55. 

 

Conjecture 8:  

 

There is an infinity of 2-Poulet numbers which have the set of SC divisors of order 6 equal to {p, 

q}, where abs{p – q} = 6*k, where p and q are primes and k is non-null positive integer. 

 

The sequence of this 2-Poulet numbers is: 

1387, 2047, 2701, 3277, 4033, 4369, 7957, 13747, 14491, 15709, 23377, 31417, 31609, ...  (see 

the lists below). 

 

Note: This is the case of thirteen from the first twenty 2-Poulet numbers. 

 

Conjecture 9:  

 

There is an infinity of 2-Poulet numbers which have the set of SC divisors of order 6 equal to {a, 

b}, where abs{a – b} = p and p is prime. 

 

The sequence of this 2-Poulet numbers is: 341, 4681, 10261, ... (see the lists below). 

 

Conjecture 10:  

 

There is an infinity of 2-Poulet numbers which have the set of SC divisors of order 6 equal to {p, 

q}, where one from the numbers p and q is prime and the other one is twice a prime. 

 

The sequence of this 2-Poulet numbers is: 341, 4681, 5461, 10261, ... (see the lists below). 

 

Conjecture 11:  

 

There is an infinity of 3-Poulet numbers which have the set of SC divisors of order 1 equal to {a, 

b, c}, where a + b + c is prime and a, b, c are primes. 

 

The sequence of this 2-Poulet numbers is: 561, 645, 1729, 1905, 2465, 6601, 8481, 8911, 10585, 

12801, 13741, ... (see the lists below). 

 

Note: This is the case of eleven from the first twenty 2-Poulet numbers. 
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Conjecture 12:  

 

There is an infinity of 3-Poulet numbers which have the set of SC divisors of order 1 equal to {a, 

b, c}, where a + b + c - 1 and a + b + c + 1 are twin primes. 

 

The sequence of this 3-Poulet numbers is: 2821, 4371, 16705, 25761, 30121, ... (see the lists 

below) 

 

Conjecture 13:  

 

There is an infinity of 3-Poulet numbers which have the set of SC divisors of order 1 equal to {n, 

n, n}. 

 

Such 3-Poulet number is 13981. 

 

Conjecture 14:  

 

There is an infinity of 3-Poulet numbers which have the set of SC divisors of order 2 equal to {5, 

p, q}, where p and q are primes and q = p + 6*k, where k is non-null positive integer. 

 

Such 3-Poulet numbers are: 

1729, because SCD2(1729) = {5, 11, 17} and 17 = 11 + 6*1;  

2821, because SCD2(2821) = {5, 11, 29} and 29 = 11 + 6*3; 

6601, because SCD2(6601) = {5, 7, 13} and 13 = 7 + 6*1; 

13741, because SCD2(13741) = {5, 11, 149} and 149 = 11 + 6*23; 

15841, because SCD2(15841) = {5, 29, 71} and 71 = 29 + 6*7; 

30121, because SCD2(30121) = {5, 11, 329} and 329 = 11 + 6*53. 

 

Conjecture 15:  

 

There is an infinity of Poulet numbers divisible by 15 which have the set of SC divisors of order 

1 equal to {2, 4, 7, n1, ..., ni}, where n1, ..., ni are non-null positive integers and i > 0.  

 

The sequence of this 3-Poulet numbers is: 18705, 55245, 72855, 215265, 831405, 1246785, ...  

(see the lists below) 

 

Conjecture 16:  

 

There is an infinity of Poulet numbers divisible by 15 which have the set of SC divisors of order 

1 equal to {2, 4, 23, n1, ..., ni}, where n1, ..., ni are non-null positive integers and i > 0.  

 

The sequence of this 3-Poulet numbers is: 62745, 451905, ...  (see the lists below) 

 

Conjecture 17:  

 

There is an infinity of Poulet numbers which are multiples of any Poulet number divisible by 15 

which has the set of SC divisors of order 1 equal to {2, 4, n1, ..., ni}, where n1 = n2 =...= ni = 7 

and i > 0.  

 

Examples: 
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The Poulet number 645 = 3*5*43, having SCD1(645) = {2, 4, 7}, has the multiples the Poulet 

numbers 18705, 72885, which have SCD1 = {2, 4, 7, 7}. 

 

The Poulet number 1905 = 3*5*127, having SCD1(1905) = {2, 4, 7}, has the multiples 55245, 

215265 which have SCD1 = {2, 4, 7, 7}. 

 

(see the sequence A215150 in OEIS for a list of Poulet numbers divisible by smaller Poulet 

numbers) 

 

 

List of SC divisors of order 1 of the first twenty 2-Poulet numbers: 

(see the sequence A214305 that I submitted to OEIS for a list of 2-Poulet numbers) 

 

SCD1(341) = {S(11 – 1), S(31 – 1)} = {S(10), S(30)}  = {5, 5}; 

SCD1(1387)  = {S(19 – 1), S(73 – 1)} = {S(18), S(72)}  = {6, 6}; 

SCD1(2047)  = {S(23 – 1), S(89 – 1)} = {S(22), S(88)}  = {11, 11}; 

SCD1(2701)  = {S(37 – 1), S(73 – 1)} = {S(36), S(72)}  = {6, 6}; 

SCD1(3277)  = {S(29 – 1), S(113 – 1)} = {S(28), S(112)}  = {7, 7}; 

SCD1(4033) = {S(37 – 1), S(109 – 1)} = {S(36), S(108)}  = {6, 9}; 

SCD1(4369)  = {S(17 – 1), S(257 – 1)} = {S(16), S(256)}  = {6, 10}; 

SCD1(4681)  = {S(31 – 1), S(151 – 1)} = {S(30), S(150)}  = {5, 10}; 

SCD1(5461)  = {S(43 – 1), S(127 – 1)} = {S(42), S(126)}  = {7, 7}; 

SCD1(7957)  = {S(73 – 1), S(109 – 1)} = {S(72), S(108)}  = {6, 9}; 

SCD1(8321)  = {S(53 – 1), S(157 – 1)} = {S(52), S(156)}  = {13, 13}; 

SCD1(10261)  = {S(31 – 1), S(331 – 1)} = {S(30), S(330)}  = {5, 11}; 

SCD1(13747)  = {S(59 – 1), S(233 – 1)} = {S(58), S(232)}  = {29, 29}; 

SCD1(14491)  = {S(43 – 1), S(337 – 1)} = {S(42), S(336)}  = {7, 7}; 

SCD1(15709)  = {S(23 – 1), S(683 – 1)} = {S(22), S(682)}  = {11, 31}; 

SCD1(18721)  = {S(97 – 1), S(193 – 1)} = {S(96), S(192)}  = {8, 8}; 

SCD1(19951)  = {S(71 – 1), S(281 – 1)} = {S(70), S(280)}  = {7, 7}; 

SCD1(23377)  = {S(97 – 1), S(241 – 1)} = {S(96), S(240)}  = {8, 6}; 

SCD1(31417)  = {S(89 – 1), S(353 – 1)} = {S(88), S(352)}  = {11, 11}; 

SCD1(31609)  = {S(73 – 1), S(433 – 1)} = {S(72), S(432)}  = {6, 9}. 

 

 

List of SC divisors of order 2 of the first twenty 2-Poulet numbers: 

(see the sequence A214305 that I submitted to OEIS for a list of 2-Poulet numbers) 

  

SCD2(341)  = {S(11 – 2), S(31 – 2)} = {S(9), S(29)}  = {6, 29}; 

SCD2(1387)  = {S(19 – 2), S(73 – 2)} = {S(17), S(71)}  = {17, 71}; 

SCD2(2047)  = {S(23 – 2), S(89 – 2)} = {S(21), S(87)}  = {7, 29}; 

SCD2(2701)  = {S(37 – 2), S(73 – 2)} = {S(35), S(71)}  = {7, 71}; 

SCD2(3277)  = {S(29 – 2), S(113 – 2)} = {S(27), S(111)}  = {9, 37}; 

SCD2(4033)  = {S(37 – 2), S(109 – 2)} = {S(35), S(107)}  = {7, 107}; 

SCD2(4369)  = {S(17 – 2), S(257 – 2)} = {S(15), S(255)}  = {5, 17}; 

SCD2(4681)  = {S(31 – 2), S(151 – 2)} = {S(29), S(149)}  = {29, 149}; 

SCD2(5461)  = {S(43 – 2), S(127 – 2)} = {S(41), S(125)}  = {41, 15}; 

SCD2(7957)  = {S(73 – 2), S(109 – 2)} = {S(71), S(107)}  = {71, 107}; 

SCD2(8321)  = {S(53 – 2), S(157 – 2)} = {S(51), S(155)}  = {17, 31}; 

SCD2(10261)  = {S(31 – 2), S(331 – 2)} = {S(29), S(329)}  = {29, 47}; 
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SCD2(13747)  = {S(59 – 2), S(233 – 2)} = {S(57), S(231)}  = {19, 11}; 

SCD2(14491)  = {S(43 – 2), S(337 – 2)} = {S(41), S(335)}  = {41, 67}; 

SCD2(15709)  = {S(23 – 2), S(683 – 2)} = {S(21), S(681)}  = {7, 227}; 

SCD2(18721)  = {S(97 – 2), S(193 – 2)} = {S(95), S(191)}  = {19, 191}; 

SCD2(19951)  = {S(71 – 2), S(281 – 2)} = {S(69), S(279)}  = {23, 31}; 

SCD2(23377)  = {S(97 – 2), S(241 – 2)} = {S(95), S(239)}  = {19, 239}; 

SCD2(31417)  = {S(89 – 2), S(353 – 2)} = {S(87), S(351)}  = {29, 13}; 

SCD2(31609)  = {S(73 – 2), S(433 – 2)} = {S(71), S(431)}  = {71, 431}. 

 

 

List of SC divisors of order 6 of the first twenty 2-Poulet numbers: 

(see the sequence A214305 that I submitted to OEIS for a list of 2-Poulet numbers) 

 

SCD6(341)  = {S(11 – 6), S(31 – 6)} = {S(5), S(25)}  = {5, 10}; 

SCD6(1387)  = {S(19 – 6), S(73 – 6)} = {S(13), S(67)}  = {13, 67}; 

SCD6(2047)  = {S(23 – 6), S(89 – 6)} = {S(17), S(83)}  = {17, 83}; 

SCD6(2701)  = {S(37 – 6), S(73 – 6)} = {S(31), S(67)}  = {31, 67}; 

SCD6(3277)  = {S(29 – 6), S(113 – 6)} = {S(23), S(107)}  = {23, 107}; 

SCD6(4033)  = {S(37 – 6), S(109 – 6)} = {S(31), S(103)}  = {31, 103}; 

SCD6(4369)  = {S(17 – 6), S(257 – 6)} = {S(11), S(251)}  = {11, 251}; 

SCD6(4681)  = {S(31 – 6), S(151 – 6)} = {S(25), S(145)}  = {10, 29}; 

SCD6(5461)  = {S(43 – 6), S(127 – 6)} = {S(37), S(121)}  = {37, 22}; 

SCD6(7957)  = {S(73 – 6), S(109 – 6)} = {S(67), S(103)}  = {67, 103}; 

SCD6(8321)  = {S(53 – 6), S(157 – 6)} = {S(47), S(151)}  = {47, 151}; 

SCD6(10261)  = {S(31 – 6), S(331 – 6)} = {S(25), S(325)}  = {10, 13}; 

SCD6(13747)  = {S(59 – 6), S(233 – 6)} = {S(53), S(227)}  = {53, 227}; 

SCD6(14491)  = {S(43 – 6), S(337 – 6)} = {S(37), S(331)}  = {37, 331}; 

SCD6(15709)  = {S(23 – 6), S(683 – 6)} = {S(17), S(677)}  = {17, 677}; 

SCD6(18721)  = {S(97 – 6), S(193 – 6)} = {S(91), S(187)}  = {13, 17}; 

SCD6(19951)  = {S(71 – 6), S(281 – 6)} = {S(65), S(275)}  = {13, 11}; 

SCD6(23377)  = {S(97 – 6), S(241 – 6)} = {S(91), S(235)}  = {13, 47}; 

SCD6(31417)  = {S(89 – 6), S(353 – 6)} = {S(83), S(347)}  = {83, 347}; 

SCD6(31609)  = {S(73 – 6), S(433 – 6)} = {S(67), S(427)}  = {67, 61}. 

 

 

List of SC divisors of order 1 of the first twenty 3-Poulet numbers: 

(see the sequence A215672 that I submitted to OEIS for a list of 3-Poulet numbers) 

 

SCD1(561)  = SCD1(3*11*17) = {S(2), S(10), S(16)}  = {2, 5, 6}; 

SCD1(645)  = SCD1(3*5*43) = {S(2), S(4), S(42)} = {2, 4, 7}; 

SCD1(1105)  = SCD1(5*13*17) = {S(4), S(12), S(16)} = {4, 4, 6}; 

SCD1(1729)  = SCD1(7*13*19) = {S(6), S(12), S(18)}  = {3, 4, 6}; 

SCD1(1905)  = SCD1(3*5*127) = {S(2), S(4), S(126)}  = {2, 4, 7}; 

SCD1(2465)  = SCD1(5*17*29) = {S(4), S(16), S(28)}  = {4, 6, 7}; 

SCD1(2821)  = SCD1(7*13*31) = {S(6), S(12), S(30)}  = {3, 4, 5}; 

SCD1(4371)  = SCD1(3*31*47) = {S(2), S(30), S(46)}  = {2, 5, 23}; 

SCD1(6601)  = SCD1(7*23*41) = {S(6), S(22), S(40)}  = {3, 11, 5}; 

SCD1(8481)  = SCD1(3*11*257) = {S(2), S(10), S(256)}  = {2, 5, 10}; 

SCD1(8911)  = SCD1(7*19*67) = {S(6), S(18), S(66)}  = {3, 19, 67}; 

SCD1(10585)  = SCD1(5*29*73) = {S(4), S(28), S(72)}  = {4, 7, 6}; 
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SCD1(12801)  = SCD1(3*17*251) = {S(2), S(16), S(250)}  = {2, 6, 15}; 

SCD1(13741)  = SCD1(7*13*151) = {S(6), S(12), S(150)}  = {3, 4, 10}; 

SCD1(13981)  = SCD1(11*31*41) = {S(10), S(30), S(40)}  = {5, 5, 5}; 

SCD1(15841)  = SCD1(7*31*73) = {S(6), S(30), S(72)}  = {3, 5, 6}; 

SCD1(16705)  = SCD1(5*13*257) = {S(4), S(12), S(256)}  = {4, 4, 10}; 

SCD1(25761)  = SCD1(3*31*277) = {S(2), S(30), S(276)}  = {2, 5, 23}; 

SCD1(29341)  = SCD1(13*37*61) = {S(12), S(36), S(60)}  = {4, 6, 5}; 

SCD1(30121)  = SCD1(7*13*331) = {S(6), S(12), S(330)}  = {3, 4, 11}. 

 

 

List of SC divisors of order 2 of the first twenty 3-Poulet numbers: 

(see the sequence A215672 that I submitted to OEIS for a list of 3-Poulet numbers) 

 

SCD2(561)  = SCD1(3*11*17) = {S(1), S(9), S(15)}  = {1, 6, 5}; 

SCD2(645)  = SCD1(3*5*43) = {S(1), S(3), S(41)}  = {1, 3, 41}; 

SCD2(1105)  = SCD1(5*13*17) = {S(3), S(11), S(15)} = {3, 11, 5}; 

SCD2(1729)  = SCD1(7*13*19) = {S(5), S(11), S(17)}  = {5, 11, 17}; 

SCD2(1905)  = SCD1(3*5*127) = {S(1), S(3), S(125)}  = {1, 3, 15}; 

SCD2(2465)  = SCD1(5*17*29) = {S(3), S(15), S(27)}  = {3, 5, 9}; 

SCD2(2821)  = SCD1(7*13*31) = {S(5), S(11), S(29)}  = {5, 11, 29}; 

SCD2(4371)  = SCD1(3*31*47) = {S(1), S(29), S(45)}  = {1, 29, 6}; 

SCD2(6601)  = SCD1(7*23*41) = {S(5), S(21), S(29)}  = {5, 7, 13}; 

SCD2(8481)  = SCD1(3*11*257) = {S(1), S(9), S(255)}  = {1, 6, 17}; 

SCD2(8911)  = SCD1(7*19*67) = {S(5), S(17), S(65)}  = {5, 17, 13}; 

SCD2(10585)  = SCD1(5*29*73) = {S(3), S(27), S(71)}  = {3, 9, 71}; 

SCD2(12801)  = SCD1(3*17*251) = {S(1), S(15), S(249)}  = {1, 5, 83}; 

SCD2(13741)  = SCD1(7*13*151) = {S(5), S(11), S(149)}  = {5, 11, 149}; 

SCD2(13981)  = SCD1(11*31*41) = {S(9), S(29), S(39)}  = {6, 29, 13}; 

SCD2(15841)  = SCD1(7*31*73) = {S(5), S(29), S(71)}  = {5, 29, 71}; 

SCD2(16705)  = SCD1(5*13*257) = {S(3), S(111), S(255)} = {3, 11, 17}; 

SCD2(25761)  = SCD1(3*31*277) = {S(1), S(29), S(275)}  = {1, 29, 11}; 

SCD2(29341)  = SCD1(13*37*61) = {S(11), S(35), S(59)}  = {11, 7, 59}; 

SCD2(30121)  = SCD1(7*13*331) = {S(5), S(11), S(329)}  = {5, 11, 329}. 

 

 

List of SC divisors of order 1 of the first ten Poulet numbers divisible by 3 and 5: 

(see the sequence A216364 that I submitted to OEIS for a list of Poulet numbers divisible by 15) 

 

SCD1(645)  = SCD1(3*5*43)  = {2, 4, 7}; 

SCD1(1905)  = SCD1(3*5*127)  = {2, 4, 7}; 

SCD1(18705)  = SCD1(3*5*29*43)  = {2, 4, 7, 7}; 

SCD1(55245)  = SCD1(3*5*29*127) = {2, 4, 7, 7}; 

SCD1(62745)  = SCD1(3*5*47*89)  = {2, 4, 23, 11}; 

SCD1(72855)  = SCD1(3*5*43*113) = {2, 4, 7, 7}; 

SCD1(215265) = SCD1(3*5*113*127) = {2, 4, 7, 7}; 

SCD1(451905) = SCD1(3*5*47*641) = {2, 4, 23, 8}; 

SCD1(831405) = SCD1(3*5*43*1289) = {2, 4, 7, 23}; 

SCD1(1246785) = SCD1(3*5*43*1933) = {2, 4, 7, 23}. 
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26. Few types of chains of primes arising in the study of pseudoprimes 
 

 

Abstract. While studying Fermat pseudoprimes I met few interesting generic forms of 

numbers that have the property to generate chains of primes and pseudoprimes. I list in 

this paper few such types of chains. 

 

 

I. Recurrent chains 

 

I.1. 

Chains of primes of the form P0, P1 = P0*n – n + 1, P2 = P1*n – n + 1, ..., Pk = Pk-1*n – n + 1, 

where P0, P1, ..., Pk are primes and n is a positive integer, n > 1. 

 

Note: For n = 2, we obtain the Cunningham chain of the second kind, i.e. Pi+1 = 2*Pi – 1. 

 

For instance: 

 

A chain of primes of length 6, for n = 3, should have the form: p, 3*p – 2, 9*p – 8, 27*p – 26, 

81*p – 80, 243*p – 242. It can be seen that p must be of the form 10*k + 1 for a chain of length 

bigger than 3. Such a chain, of length 5, is: 61, 181, 541, 1621, 4861. 

 

A chain of primes of length 5, for n = 4, should have the form: p, 4*p – 3, 16*p – 15, 64*p – 63, 

256*p – 255. It can be seen that p can’t be of the form 10k + 7. Such a chain, of length 4, is: 23, 

89, 353, 1409. 

 

Notes:  

The formula Pi+1 = Pi*n – n + 1 can lead to the formation of chains of Fermat pseudoprimes, for 

instance for Carmichael numbers [P0, P1] = [1729, 46657] and n = 27.  

 

The formula Pi+1 = Pi*(Pi*n – n + 1) can also lead to the formation of chains of Fermat 

pseudoprimes; for instance, for n = 2, Pi+1 = Pi*(2*Pi – 1) leads to the formation of the following 

Poulet numbers [P0 ,P1]: [645, 831405], [1729, 5977153] etc.; for n = 3, Pi+1 = Pi*(3*Pi – 2) leads 

to the formation of the following Poulet numbers [P0, P1]: [341, 348161], [645, 1246785] etc. 

(see the sequence A215343 in OEIS). 

 

I.2. 

Chains of primes of the form P0, P1 = P0*n – n – 1, P2 = P1*n – n – 1, ..., Pk = Pk-1*n – n – 1, 

where P0, P1, ..., Pk are primes and n is a positive integer, n > 1. 

 

For instance: 

A chain of primes of length 6, for n = 2, should have the form: p, 2*p – 3, 4*p – 9, 8*p – 21, 

16*p – 45, 32*p – 93. It can be seen that p must be of the form 10k + 3 for a chain of length 

bigger than 3. Such a chain, of length 4, is: 113, 223, 443, 883. 

 

A chain of primes of length 5, for n = 3, should have the form: p, 3*p – 4, 9*p – 16, 27*p – 52, 

81*p – 160. It can be seen that p must be of the form 10*k + 7 for a chain of length bigger than 

3. Such a chain, of length 4, is: 7, 17, 47, 137. 
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Note: I met this type of numbers in the study of Fermat pseudoprimes to base 2 with three prime 

factors (see the sequence A215672 in OEIS). Most of them can be written as p*(p*n – n + 

1)*(p*m – m + 1) or as p*(p*n – n – 1)*(p*m – m – 1). 

 

I.3. 

Chains of primes of the form P0, P1 = P0*n + n – 1, P2 = P1*n + n – 1, ..., Pk = Pk-1*n + n – 1, 

where P0, P1, ..., Pk are primes and n is a positive integer, n > 1. 

 

Note: For n = 2, we obtain the Cunningham chain of the first kind, i.e. Pi+1 = 2*Pi + 1. 

 

For instance: 

A chain of primes of length 6, for n = 3, should have the form: p, 3*p + 2, 9*p + 8, 27*p + 26, 

81*p + 80, 243*p + 242. It can be seen that p must be of the form 10*k + 9 for a chain of length 

bigger than 3. Such a chain, of length 4, is: 29, 89, 269, 809. 

 

I.4. 

Chains of primes of the form P0, P1 = P0*n + n + 1, P2 = P1*n + n + 1, ..., Pk = Pk-1*n + n + 1, 

where P0, P1, ..., Pk are primes and n is a positive integer, n > 1. 

 

For instance: 

A chain of primes of length 6, for n = 2, should have the form: p, 2*p + 3, 4*p + 9, 8*p + 21, 

16*p + 45, 32*p + 93. It can be seen that p must be of the form 10*k + 7 for a chain of length 

bigger than 3. Such a chain, of length 6, is: 47, 97, 197, 397, 797, 1597. 

 

I.5. 

Chains of primes of the form P0, P1 = P0*n – d*n + d, P2 = P1*n – d*n + d, ..., Pk = Pk-1*n – d*n 

+ d, where P0, P1, ..., Pk are primes, d is also a prime number and n is a positive integer, n > 1. 

 

For instance: 

 

A chain of this type of primes of length 6, for n = 2 and d = 7, should have the form: p, 2*p – 7, 

4*p – 21, 8*p – 49, 16*p – 105, 32*p – 217. It can be seen that p must be of the form 30*k + 7 

for a chain of length bigger than 3.  

 

A chain of this type of primes of length 6, for n = 2 and d = 13, should have the form: p, 2*p – 

13, 4*p – 39, 8*p – 91, 16*p – 195, 32*p – 403. It can be seen that p must be of the form 30*k + 

13 for a chain of length bigger than 3. Such a chain, of length 4, is 163, 313, 613, 1213. 

 

Note: I met this type of numbers in the study of Fermat pseudoprimes to base 2 with two prime 

factors (see the sequence A214305 in OEIS); for instance, for n = 3 and d = 73, Pi+1 = 3*Pi – 

2*73 leads to the formation of the following Poulet numbers [P0, P1]: [2701, 7957] etc.; for n = 4 

and d = 73, Pi+1 = 4*Pi – 3*73 leads to the formation of the following Poulet numbers [P0, P1]: 

[2701, 10585] etc. 

 

 

II. Non-recurrent chains 

 

II.1. 

Chains of primes of the form 30*a*n – (a*p + a – 1), where p and a*p + a – 1 are primes and n 

has succesive values of integers. 
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For instance: 

 

For p = 11, a = 2, n from -1 to 3 we have, in absolute value, the following chain of primes of 

length 5: 83, 23, 37, 97, 157.  

 

For p = 23, a = 2, n from -3 to 2 we have, in absolute value, the following chain of primes of 

length 6: 227, 167, 107, 47, 13, 73.  

 

For p = 7, a = 3, n from -1 to 2 we have, in absolute value, the following chain of primes of 

length 4: 113, 23, 67, 157.  

 

Note: I met this type of numbers in the study of Carmichael numbers of the form C = ((30*a*n  – 

(a*p + a – 1))*((30*b*n  – (b*p + b – 1))*((30*c*n – (c*p + c – 1)), where p, a*p + a – 1, b*p + 

b – 1 and c*p + c – 1 are all primes. Many Carmichael numbers can be written in this form (see 

the sequence A182416 in OEIS). 

 

II.2. 

Chains of primes of the form 30*a*n + (a*p + a – 1), where p and a*p + a – 1 are primes and n 

has succesive values of integers. 

 

For instance: 

 

For p = 19, a = 3, n from -1 to 2 we have, in absolute value, the following chain of primes of 

length 4: 31, 59, 149, 239.  

 

Note: I met this type of numbers in the study of Carmichael numbers of the form C = ((30*a*n + 

(a*p – a + 1))*((30*b*n + (b*p – b + 1))*((30*c*n + (c*p – c + 1)), where p, a*p + a – 1, b*p + 

b – 1 and c*p + c – 1 are all primes. Many Carmichael numbers can be written in this form (see 

the sequence A182416 in OEIS). 

 

II.3. 

Chains of primes of the form 2*p*n – 2*n + p, where p and 2*p – 1 are primes and n has 

succesive values of integers. 

 

For instance: 

 

For p = 7, n from -5 to 3 we have, in absolute value, the following chain of primes of length 9: 

53, 41, 29, 17, 5, 7, 19, 31, 43.  

 

Note: I met this type of numbers in the study of Carmichael numbers of the form C = p*(2*p – 

1)*(2*p*n – 2*n + p). I conjecture that all Carmichael numbers divisible with p and 2*p – 1, 

where p and 2p – 1 are primes, can be written in this form (see the sequence A182207 in OEIS). 
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27. Ten conjectures about certain types of pairs of primes arising in the study 

of 2-Poulet numbers   
 

 

Abstract. There are many interesting, yet not studied enough, properties of Poulet 

numbers. In particular, the study of the 2-Poulet numbers appears to be most seductive 

because in their structure are found together three of the most important concepts in 

number theory: those of primes, semiprimes and pseudoprimes. In this paper we make 

few conjectures about primes or pairs of primes, including twin primes, that could be 

associated to the pairs of primes represented by the two prime factors of a 2-Poulet 

number. 

 

 

Conjecture 1:  

 

There is an infinity of pairs of primes of the form (p, p + 24). 

Note: It is not necessarily for the two primes to be consecutive, as is stipulated in de Polignac’s 

Conjecture. 

 

Conjecture 2:  

 

There is, for any odd prime q, q > 3, an infinity of primes of the form q + p*(p + 24) – 1, where p 

and p + 24 are both primes. 

 

Examples: 

For q = 5, we have: 

 : 5 + 17*41 – 1 = 701, prime; 

 : 5 + 19*43 – 1 = 821, prime. 

For q = 7, we have: 

 : 7 + 5*29 – 1 = 151, prime; 

 : 7 + 19*43 – 1 = 823, prime. 

 

Conjecture 3:  

 

There is, for any pair of twin primes (p, q), (p, q) ≠ (3, 5), an infinity of pairs of twin primes of 

the form (p + m*n – 1, q + m*n – 1), where m and n are both primes and n = m + 24.  

 

Examples: 

For (p, q) = (5, 7) we have: 

 : 5 + 19*43 – 1 = 821 and 7 + 19*43 – 1 = 823, primes. 

For (p, q) = (11, 13) we have: 

 : 11 + 7*31 – 1 = 227 and 13 + 7*31 – 1 = 229, primes. 

 

Conjecture 4:  

 

There is an infinity of 2-Poulet numbers P, P = p1*p2, for which p2 – p1 + 1 = q1*q2, where q1 and 

q2 are primes and q2 – q1 = 24.  

 

Note: In other words, we can associate to an infinity of pairs of primes (p1, p2), where p1 and p2 

are the two prime factors of a 2-Poulet number, another pair of primes (q1, q2). 
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Examples: 

For P = 129889 = 193*673 we have:  

673 – 193 = 13*37 and 37 – 13 = 24. 

For P = 130561 = 137*953 we have:  

953 – 137 = 19*43 and 43 – 19 = 24. 

 

Conjecture 5:  

 

There is an infinity of 2-Poulet numbers P, P = p1*p2, for which p2 – p1 + 1 = q, where q is prime 

or a square of prime.  

 

Note: In other words, we can associate to an infinity of pairs of primes (p1, p2), where p1 and p2 

are the two prime factors of a 2-Poulet number, a prime or a square of prime q. 

 

Examples: 

For P = 2047 = 23*89 we have: 89 – 23 + 1 = 67, prime. 

For P = 2701 = 23*89 we have: 73 – 37 + 1 = 37, prime. 

For P = 4033 = 37*109 we have:109 – 37 + 1 = 73, prime. 

For P = 4369 = 17*257 we have:257 – 17 + 1 = 241, prime. 

For P = 4681 = 31*151 we have:151 – 31 + 1 = 11^2. 

 

Conjecture 6:  

 

There is an infinity of 2-Poulet numbers P, P = p1*p2, for which p2 – p1 – 1 = q, where q is prime 

or a square of prime.  

 

Examples: 

For P = 4033 = 37*109 we have:109 – 37 - 1 = 71, prime. 

For P = 8321 = 53*157 we have:157 – 53 – 1 = 103, prime. 

 

Conjecture 7:  

 

There is an infinity of 2-Poulet numbers P, P = p1*p2, for which p2 – p1 – 1 and p2 – p1 + 1 are 

both primes. 

 

Conjecture 8:  

 

For any pair of twin primes (q1, q2) there exist at least a pair of primes (p1, p2) such that q1 = p2 – 

p1 – 1 and q2 = p2 – p1 + 1 are both primes and P = p1*p2 is a 2-Poulet number. 

 

Conjecture 9:  

 

There is an infinity of pairs of primes, not necessarily consecutive, of the form (p, p + 84). 

 

Conjecture 10:  

 

There is an infinity of 2-Poulet numbers P, P = p1*p2, for which p2 – p1 = 84.  

 

Examples: 
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For P = 3277 = 29*113 we have: 113 – 29 = 84. 

For P = 5461 = 43*127 we have: 127 – 43 = 84. 

 

Reference: 

See the sequence A214305 posted by us in OEIS for a list of Fermat pseudoprimes to base two 

(Poulet numbers) with two prime factors (2-Poulet numbers). 
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Part two. Thirty sequences of Fermat pseudoprimes 
 

 

 

1. Poulet numbers with two prime factors 

  

 
First 38 terms of the sequence (A214305 in OEIS): 341, 1387, 2047, 2701, 3277, 4033, 4369, 

4681, 5461, 7957, 8321, 10261, 13747, 14491, 15709, 18721, 19951, 23377, 31417, 31609, 

31621, 35333, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 80581, 83333, 85489, 88357, 

90751, 104653, 123251, 129889, 130561. 

 

 

Conjecture 1:  

For any biggest prime factor of a Poulet number P1 with two prime factors exists a series 

with infinite many Poulet numbers P2 formed this way: P2 mod (P1 – d) = d, where d is 

the biggest prime factor of P1.  

 

Note:  It can be seen that the Poulet numbers divisible by 73 bigger than 2701 (7957, 10585, 

15841, 31609 etc.) can be written as 1314*n + 73 as well as 2628*m + 73.  

 

Conjecture 2:  

Any Poulet number P2 divisible by d can be written as (P1 – d)*n + d, where n is natural, 

if exists a smaller Poulet number P1 with two prime factors divisible by d.  

 

Note:  This conjecture can't be extrapolated for Poulet numbers P1 with more than two prime 

factors; for instance, if is taken 561 = 3*11*17 as p1, are indeed found bigger Poulet 

numbers divisible by 17 as 1105 and 4369 that can be written as 544*n + 17 but exists 

also such numbers that can’t be written this way, like 2465. But can be extrapolated the 

first conjecture.  
 

Conjecture 3:  

For any biggest prime factor of a Poulet number P1 exists a series with infinite many 

Poulet numbers p2 formed this way: P2 mod (P1 – d) = d, where d is the biggest prime 

factor of P1. 

 

Examples:   

For P1 = 341 = 11*31 were obtained the following Poulet numbers P2 for which P2 mod 

310 = 31: 2821, 4371, 4681, 10261 etc.  

For P1 = 1387 = 19*73 were obtained the following Poulet numbers P2 for which P2 mod 

1314 = 73: 2701, 7957, 10585, 15841 etc.  

For P1 = 2047 = 23*89 were obtained the following Poulet numbers P2 for which P2 mod 

1958 = 89: 31417, 35333, 60787, 62745 etc.  

For p1 = 2701 = 37*73 were obtained the following Poulet numbers P2 for which P2 mod 

2628 = 73: 7957, 10585, 15841 etc. 
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2. Poulet numbers with three prime factors 

 
First 37 terms of the sequence (A215672 in OEIS): 561, 645, 1105, 1729, 1905, 2465, 2821, 

4371, 6601, 8481, 8911, 10585, 12801, 13741, 13981, 15841, 16705, 25761, 29341, 30121, 

30889, 33153, 34945, 41665, 52633, 57421, 68101, 74665, 83665, 87249, 88561, 91001, 93961, 

113201, 115921, 121465, 137149. 

 

Comments:   

The most of the terms shown can be written in one of the following two ways:  

(1)         p*((n + 1)*p – n*p)*((m + 1)*p – m*p);  

(2)         p*((n*p – (n + 1)*p)*(m*p – (m + 1)*p),  

where p is the smallest of the three prime factors and n, m natural numbers.  

 

Exempli gratia for Poulet numbers from first category:  

10585 = 5*29*73 = 5*(5*7 – 6)*(5*18 – 17);  

13741 = 7*13*151 = 7*(7*2 – 1)*(7*25 – 24);  

13981 = 11*31*41 = 11*(11*3 – 2)*(11*4 – 3);  

29341 = 13*37*61 = 13*(13*3 – 2)*(13*5 – 4);  

137149 = 23*67*89 = 23*(23*3 – 2)*(23*4 – 3).  

 

Exempli gratia for Poulet numbers from second category:  

6601 = 7*23*41 = 7*(7*4 – 5)*(7*7 – 8).  

 

Note:  From the numbers from the sequence above, just the numbers 30889, 88561 and 91001 

can’t be written in one of the two ways. What these three numbers have in common: they 

all have a prime divisor q of the form 30*k + 23 (i.e. 23, 53, 83) and can be written as 

q*((r + 1)*q – r), where r is a natural number.  

 

Conjecture:  

Any Poulet number P with three or more prime divisors has at least one prime divisor q 

for that can be written as P = q*((r + 1)*q – r), where r is a natural number.  

 

Note:  It can be proved that a Carmichael number can be written this way for any of its prime 

divisors – see the sequence A213812 in OEIS.  

 

Note:  There are also a lot of Poulet numbers with two prime divisors that can be written this 

way, but here are few exceptions: 7957, 23377, 42799, 49981, 60787. 

 

 

 

3. Poulet numbers with three prime factors divisible by a smaller Poulet 

number 

 

 
First 30 terms of the sequence (A215944 in OEIS): 13981, 137149, 158369, 176149, 276013, 

285541, 294409, 348161, 387731, 423793, 488881, 493697, 617093, 625921, 847261, 1052503, 

1052929, 1104349, 1128121, 1152271, 1398101, 1461241, 1472353, 1507561, 1534541, 

1549411, 1746289, 1840357, 1857241, 2299081. 
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Comments:   

 

Almost all the numbers from the sequence above can be written as p*((m + 1)*p – m)*((n 

+ 1)*p – n), where m, n, p are natural numbers (in the brackets is written the Poulet 

number which every one of them is divisible by):  

(1)  n*(2*n – 1)*(3*n – 2): the number 294409 (2701);  

(2)  n*(2*n – 1)*(5*n – 4): the numbers 285541 (4681), 488881 (2701);  

(3)  n*(2*n – 1)*(11*n – 10): the number 625921 (10261);  

(4)  n*(2*n – 1)*(15*n – 14): the number 1461241 (2701);  

(5)  n*(3*n – 2)*(4*n – 3): the numbers 13981 (341), 137149 (2047);  

(6)  n*(3*n – 2)*(5*n – 4): the number 1152271 (5461);  

(7)  n*(3*n – 2)*(8*n – 7): the number 1840357 (5461);  

(8)  n*(3*n – 2)*(10*n – 9): the number 2299081 (5461);  

(9)  n*(3*n – 2)*(12*n – 11): the number 1746289 (4033);  

(10) n*(3*n – 2)*(31*n – 30): the number 1052503 (15709);  

(11) n*(3*n – 2)*(102*n – 101): the number 348161 (341);  

(12) n*(3*n – 2)*(442*n – 441): the number 1507561 (341);  

(13) n*(4*n – 3)*(7*n – 6): the number 176149 (1387);  

(14) n*(4*n – 3)*(11*n – 10): the number 276013 (1387);  

(15) n*(4*n – 3)*(12*n – 11): the number 1104349 (3277);  

(16) n*(4*n – 3)*(31*n – 30): the number 1398101 (15709);  

(17) n*(5*n – 4)*(6*n – 5): the number 847261 (4681);  

(18) n*(5*n – 4)*(8*n – 7): the number 1128121 (4681);  

(19) n*(5*n – 4)*(11*n – 10): the number 1549411 (4681);  

(20) n*(6*n – 5)*(11*n – 10): the number 1857241 (10261);  

(21) n*(6*n – 5)*(16*n – 15): the number 423793 (4369);  

(22) n*(7*n – 6)*(16*n – 15): the number 493697 (4369);  

(23) n*(15*n – 14)*(16*n – 15): the number 1052929 (4369);  

(24) n*(16*n – 15)*(21*n – 20): the number 1472353 (4369).  

 

Note: The only few numbers from the sequence above that can’t be written this way are 

multiples of the Poulet number 5461 and can be, instead, written as 5461*(42*k – 13): 

158369 = 5461*29, 387731 = 5461*71, 617093 = 5461*113 and 1534541 = 5461*281.  

 

Conjecture:  

The only Fermat pseudoprimes to base 2 divisible by a smaller Fermat pseudoprime to 

base 2 that can’t be written as p*((m + 1)*p – m)*((n + 1)*p – n), where m, n, p are 

natural numbers, are multiples of 5461 and can be written as 5461*(42*k – 13).  

 

Note: Conjecture is checked for the numbers from the sequence above and for the first 15 

Poulet numbers with four prime factors.  

 

Note:  There are Fermat pseudoprimes to base 2 divisible with 5461 that can be written as p*((m 

+ 1)*p – m)*((n + 1)*p – n); these ones can be written as 5461*(42*k + 43)). Numbers 

from this category are: 1152271 = 5461*211, 1840357 = 5461*337, 2299081 = 

5461*421. 
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4. Poulet numbers of the form (6*k + 1)*(6*k*n + 1), where k, n are integers 

different from 0 

 

 
First 30 terms of the sequence (A214607 in OEIS): 1105, 1387, 1729, 2701, 2821, 4033, 4681, 

5461, 6601, 8911, 10261, 10585, 11305, 13741, 13981, 14491, 15841, 16705, 18721, 29341, 

30121, 30889, 31609, 31621, 39865, 41041, 41665, 46657, 49141, 52633, 57421, 63973, 65281, 

68101, 75361. 

 

 

Comments:   

A few examples of how the formula looks like for k and n from 1 to 4:  

For k = 1 the formula becomes 42*n + 7.  

For k = 2 the formula becomes 156*n + 13.  

For k = 3 the formula becomes 342*n + 19.  

For k = 4 the formula becomes 600*n + 25.  

For n = 1 the formula generates a perfect square.  

For n = 2 the formula becomes (6*k + 1)*(12*k + 1) and were found the following Poulet 

numbers: 2701, 8911, 10585, 18721, 49141 etc.  

For n = 3 the formula becomes (6*k + 1)*(18*k + 1) and were found the following Poulet 

numbers: 2821, 4033, 5461, 15841, 31621, 68101 etc.  

For n = 4 the formula becomes (6*k + 1)*(24*k + 1). See the sequence A182123 in 

OEIS.  

 

Note:  The formula is equivalent to Poulet numbers of the form p*(n*p – n + 1), where p is of 

the form 6*k + 1. From the first 68 Poulet numbers just 7 of them (7957, 23377, 33153, 

35333, 42799, 49981, 60787) can’t be written as p*(n*p – n + 1), where p is of the form 

6*k ± 1 and k, n are integers different from 0. 

 

 

 

5. Poulet numbers of the form (6*k – 1)*((6*k – 2)*n + 1), where k, n 

are integers different from 0 

 

 
First 37 terms of the sequence (A210993 in OEIS): 341, 561, 645, 1105, 1905, 2047, 2465, 3277, 

4369, 4371, 6601, 8321, 8481, 10585, 11305, 12801, 13747, 13981, 15709, 16705, 18705, 

19951, 23001, 30889, 31417, 34945, 39865, 41041, 41665, 55245, 60701, 62745, 65077, 68101, 

72885, 74665, 75361. 

 

 

Comments:   

A Poulet number can be written in more than one way in this form: e.g. 561 = (6*2 – 

1)*((6*2 – 2)*5 + 1) = (6*3 – 1)*((6*3 – 2)*2 + 1).  

 

Few examples of how the formula looks like for k and n from 1 to 4:  

For k = 1 the formula becomes 20*n + 5 and generates all the Poulet numbers divisible 

by 5 from the sequence above (beside 645, all of them have another solutions beside k = 

1).  
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For k = 2 the formula becomes 110*n + 11 and generates the Poulet numbers: 341, 561 

etc.  

For k = 3 the formula becomes 272*n + 17 and generates the Poulet numbers: 561, 1105, 

2465, 4369 etc.  

For k = 4 the formula becomes 506*n + 23 and generates the Poulet numbers: 2047, 6601 

etc.  

For n = 1 the formula generates a perfect square.  

For n = 2 the formula becomes 3*(6*k – 1)*(4*k – 1) and were found the following 

Poulet numbers: 561 etc.  

For n = 3 the formula becomes (6*k – 1)*(18*k – 5) and were found the following Poulet 

numbers: 341, 2465, 8321, 83333 etc.  

For n = 4 the formula becomes (6*k – 1)*(24*k – 7) and were found the following Poulet 

numbers: 1105, 2047, 3277, 6601, 13747, 16705, 19951, 31417, 74665, 88357 etc.  

 

Note:  The formula is equivalent to Poulet numbers of the form p*(n*p – n + 1), where p is of 

the form 6*k – 1. From the first 68 Poulet numbers just 26 of them (1387, 2701, 2821, 

4033, 4681, 5461, 7957, 8911, 10261, 13741, 14491, 18721, 23377, 29341, 31609, 

31621, 33153, 35333, 42799, 46657, 49141, 49981, 57421, 60787, 63973, 65281) can’t 

be written as p*(n*p – n + 1), where p is of the form 6*k – 1 and k, n are integers 

different from 0. 

 

 

 

6. Poulet numbers of the form 7200*n^2 + 8820*n + 2701 

 

 
First 29 terms of the sequence (A214016 in OEIS): 2701, 18721, 49141, 93961, 226801, 314821, 

534061, 665281, 1537381, 1755001, 1987021, 2233441, 3059101, 3363121, 4014361, 5489641, 

6313681, 8134561, 9131401, 10185841, 13073941, 13694761, 18443701, 21474181, 27331921, 

30058381, 30996001, 32914441, 34890481. 

 

 

Comments:  

Poulet numbers were obtained for the following values of n: 0, 1, 2, 3, 5, 6, 8, 9, 14, 15, 

16, 17, 20, 21, 23, 27, 29, 33, 35, 37, 42, 43, 50, 54, 61, 64, 65, 67, 69. 

  

Conjecture:  

There are infinite many Poulet numbers of the form 7200*n^2 + 8820*n + 2701.  

  

 

7. Poulet numbers of the form 144*n^2 + 222*n + 85 
 

First 29 terms of the sequence (A214017 in OEIS): 1105, 2047, 3277, 6601, 13747, 16705, 

19951, 31417, 74665, 88357, 275887, 514447, 604117, 642001, 741751, 916327, 1293337, 

1433407, 1520905, 2205967, 2387797, 2976487, 2976487, 3316951, 3539101, 4005001, 

4101637, 4863127, 5575501, 8209657. 

 

Comments:  

Poulet numbers were obtained for the following values of n: 2, 3, 4, 6, 9, 10, 11, 14, 22, 

43, 59, 64, 66, 71, 79, 94, 99, 102, 123, 128, 143, 151, 156, 166, 168, 183, 196, 238.  
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Conjecture:  

There are infinite many Poulet numbers of the form 144*n^2 + 222*n + 85.  

 

 

 

8. Poulet numbers of the form 8*p*n + p^2, where p is prime 
 

 

First 29 terms of the sequence (A218483 in OEIS): 561, 1105, 1729, 1905, 2465, 4033, 4369, 

4681, 6601, 8321, 8481, 10585, 11305, 12801, 15841, 16705, 18705, 18721, 23001, 23377, 

25761, 30121, 30889, 31417, 31609, 33153, 34945, 35333, 39865, 41041, 41665, 46657, 52633, 

62745, 65281, 74665, 75361, 83665, 85489. 

 

 

Comments:  

For p = 5 the formula becomes 40*n + 25. From the first 15 pseudoprimes divisible by 5, 

12 are of the form 40*n + 25 (beside 3 of them which are of the form 40*n + 5). 

Conjecture: there are no pseudoprimes to base 2 of the form 40*n + 15.  

 

Note:  it can be seen that a pseudoprime can be written in this formula in more than one way: 

e.g. 561 = 8*3*23 + 3^2 = 8*11*5 + 11^2 = 8*17*2 + 17^2 or 1905 = 8*3*79 + 3^2 = 

8*5*47 + 5^2.  

 

Conjecture 1:   

If a Fermat pseudoprime to base 2 can be written as 8*p*n + p^2, where n is an integer 

number and p one of it’s prime factors, than can be written this way for any of it’s prime 

factors. Checked for all pseudoprimes from the sequence above.  

 

Conjecture 2:   

If a Fermat pseudoprime to base 2 with two prime factors can be written as 8*p1*n + 

p1^2, where n is a natural number and p1 one of it’s two prime factors, than can be 

written too as 8*p2*(–n) + p2^2, where p2 is the other prime factor. Checked for 4033 = 

37*109(n = 9), 4369 = 17*257(n = 30), 4681 = 31*151(n = 15), 8321 = 53*157(n = 13), 

18721 = 97*193(n = 12), 23377 = 97*241(n = 18), 31417 = 89*353(n = 33), 31609 = 

73*433 (n = 45), 65281 = 97*673(n = 72), 85489 = 53*1613 (n = 195).  

 

Conjecture 3:  

If a Fermat pseudoprime to base 2 can’t be written as 8*p*n + p^2, where n is an integer 

number and p one of it’s prime factors, than can’t be written this way for any of it’s 

prime factors. Checked for the following pseudoprimes: 341, 645, 1387, 2047, 2701, 

2821, 3277, 4371, 5461, 7957, 10261, 13741, 13747, 13981, 14491, 15709, 19951, 

29341, 31621, 42799, 49141, 49981, 55245, 60701, 60787, 63973, 65077, 68101, 72885, 

80581, 83333.  

 

Note: from the first 72 pseudoprimes, 39 can be written this way.  
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9. Poulet numbers of the form (n^2 + 2*n)/3 
 

 

First 33 terms of the sequence (A216170 in OEIS): 341, 645, 2465, 2821, 4033, 5461, 8321, 

15841, 25761, 31621, 68101, 83333, 162401, 219781, 282133, 348161, 530881, 587861, 

653333, 710533, 722261, 997633, 1053761, 1082401, 1193221, 1246785, 1333333, 1357441, 

1398101, 1489665, 1584133, 1690501, 1735841. 

 

 

Comments:  

The corresponding values of n: 31, 43, 85, 91, 109, 127, 157, 217, 277, 307, 451, 499, 

697, 811, 919, 1021, 1261, 1327, 1399, 1459, 1471, 1729, 1777, 1801, 1891, 1933, 1999, 

2017, 2047, 2113, 2177, 2251.  

The formula can be generalised this way: Fermat pseudoprimes to base 2 of the form 

(n^m + m*n)/(m + 1).  

For m = 3 the formula becomes (n^3 + 3*n)/4 and were obtained the following Poulet 

numbers: 341, 1729, 188461, 228241, 1082809 (for n = 11, 19, 91, 97, 163).  

 

Conjecture:  

For any m natural, m > 1, there exist a series with infinite many Fermat pseudoprimes to 

base 2, P, formed this way: P = (n^m + m*n)/(m+1).  

 

 

 

10. Poulet numbers that can be written as 2*p^2 –  p, where p is also a 

Poulet number 
 

 

First 22 terms of the sequence (A215343 in OEIS): 831405, 5977153, 15913261, 21474181, 

38171953, 126619741, 210565981, 224073865, 327718401, 377616421, 390922741, 

558097345, 699735345, 1327232481, 1999743661, 4996150741, 8523152641, 11358485281, 

13999580785, 15613830541, 17657245081, 20442723301. 

 

 

Comments:  

The correspondent p for the numbers from the sequence above: 645, 1729, 2821, 3277, 

4369, 7957, 10261, 10585, 12801, 13741, 13981, 16705, 18705, 25761, 31621, 49981, 

65281, 75361, 83665, 88357, 93961, 101101.  

Note that for 22 from the first 80 Poulet numbers we obtained thru this formula another 

Poulet numbers!  

The formula could be generalised this way: Poulet numbers that can be written as (n + 

1)*p^2 – n*p, where n is natural, n > 0, and p is another Poulet number.  

For n = 1 that formula becomes the formula set out for the sequence above.  

For n = 2 that formula becomes 3*p^2 – 2*p and were obtained the following Poulet 

numbers: 348161, 1246785 (for p = 341, 645) etc.  

For n = 3 that formula becomes 4*p^2 – 3*p and were obtained the following Poulet 

numbers: 119273701 (for p = 5461) etc.  

For n = 4 that formula becomes 5*p^2 – 4*p and were obtained the following Poulet 

numbers: 2077545, 9613297 (for p = 645, 1387) etc.  
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Conjecture:  

There are infinite many Poulet numbers that can be written as (n + 1)*p^2 – n*p, where n 

is natural, n > 0, and p is another Poulet number.  

 

Note: Finally, considering, e.g., that for the Poulet number 645 were obtained Poulet numbers 

for n = 1, 2, 4 (i.e. 831405, 1246785, 2077545), yet another conjecture.  

 

Conjecture: For any Poulet number p there are infinite many Poulet numbers that can be written 

as (n + 1)*p^2 – n*p, where n is natural, n > 0.  

 

 

 

11. Poulet numbers of the form m*n^2 + (11*m – 23)*n + 19*m – 49 
 

 

First 37 terms of the sequence (A215326 in OEIS): 341, 645, 1105, 1387, 2047, 2465, 2821, 

3277, 4033, 5461, 6601, 7957, 8321, 11305, 13747, 15841, 16705, 19951, 23001, 25761, 30889, 

31417, 31621, 39865, 41665, 49981, 65077, 68101, 74665, 83333, 83665, 85489, 88357, 90751, 

107185, 137149, 158369. 

 

 

Comments:  

The solutions (m,n) for the Poulet numbers from the sequence above are: (3, 9); (3, 13); 

(4, 14); (4, 16); (9, 11) and (4, 20); (3, 27); (3, 29); (4, 26); (3, 35); (290, 0) and (3, 41); 

(350, 0) and (4, 38); (259, 1); (3, 51); (367, 1); (4, 56); (94, 8) and (3, 71); (4, 62); (329, 

3) and (4, 68); (379, 3); (3, 91); (182, 8); (319, 5) and (4, 86); (3, 101); (888, 2); (928, 2) 

and (66, 20); (43, 29); (659, 5); (3, 149); (438, 8) and (4, 134); (3, 165); (4406, 0) and (4, 

142); (4502, 0); (4, 146); (4, 148); (2384, 2) and (38, 48); (1387, 5); (5111, 1).  

Few examples of how the formula looks like for m from 3 to 4.  

For m = 3 the formula becomes 3*n^2 + 10*n + 8 and were found the following Poulet 

numbers: 341, 645, 2465, 2821, 4033, 5461, 8321, 15841, 25761, 31621, 68101, 83333 

etc. (12 from the first 100 Poulet numbers can be written this way!).  

For m = 4 the formula becomes 4*n^2 + 21*n + 27 and were found the following Poulet 

numbers: 1105, 1387, 2047, 3277, 6601, 13747, 16705, 19951, 31417, 83665, 88357, 

90751 etc. (12 from the first 100 Poulet numbers can be written this way!).  

 

Note:  For n = –2 the formula becomes (m – 3) and for n = –9 becomes (m + 158) so all the 

Poulet numbers have at least these integer solutions to this formula.  

 

Note:  For n = –1 the formula becomes (9*m – 26) and 37 from the first 100 Poulet numbers can 

be written this way! That means that for more than a third from Poulet numbers P 

checked is true that (P + 8) is divizible by 9 (for comparison, this relation is true for just 

14 from the first 100 primes).  
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12. Poulet numbers that can be written as (p^2 + 2*p)/3, where p is 

also a Poulet number 

 

 
First 22 terms of the sequence (A216276 in OEIS): 997633, 1398101, 3581761, 26474581, 

37354465, 63002501, 70006021, 82268033, 93030145, 561481921, 804978721, 1231726981, 

2602378721, 12817618945, 15516020833, 16627811905, 22016333333, 25862624705, 

53707855201, 67220090785, 95074073281, 144278347201. 

 

Comments:  

The corresponding values of the Fermat pseudoprime p: 1729, 2047, 3277, 8911, 10585, 

13747, 14491, 15709, 16705, 41041, 49141, 60787, 88357, 196093, 215749, 223345, 

256999, 278545, 401401, 449065, 657901.  

Note that for 22 from the first 200 Fermat pseudoprimes to base 2 were obtained also 

Fermat pseudoprimes to base 2 through this formula!  

 

Conjecture 1:  

For any Fermat pseudoprime to base 2, p1, there exist infinite many Fermat 

pseudoprimes to base 2, p2, formed this way: p2 = (p1^n + n*p1)/(n + 1), where n 

natural, n > 1.  

 

Conjecture 2:  

For any Carmichael number, c1, there exist infinite many Carmichael numbers, c2, 

formed this way: c2 = (c1^n + n*c1)/(n + 1), where n natural, n > 1. Note that, in the 

sequence above, from Fermat pseudoprimes to base 2 that are also Carmichael numbers 

(1729, 8911, 10585, 41041, 278545, 449065) were obtained too Carmichael numbers.  

 

 

 

13. Poulet numbers that can be written as p^2*n –  p*n + p, where p is 

also a Poulet number 

 

 
First 22 terms of the sequence (A217835 in OEIS): 348161, 831405, 1246785, 1275681, 

2077545, 2513841, 5977153, 9613297, 13333441, 13823601, 18137505, 19523505, 21474181, 

21880801, 37695505, 38171953, 44521301, 47734141, 54448153, 72887585, 75151441, 

95423329. 

 

 

Comments:  

The numbers from sequence are the all numbers of this type up to 10^8.  

The corresponding (p, n): (341, 3), (645, 2), (645, 3), (341, 11), (645, 5), (561, 8), (1729, 

2), (1387, 5), (341, 120), (561, 44), (1905, 5), (645, 47), (3277, 2), (2701, 3), (2047, 9), 

(4369, 2), (341, 384), (2821, 6), (2047, 13), (2465, 12), (3277, 7), (4369, 5).  

 

 

Conjecture 1:  
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For any Fermat pseudoprime p to base 2 there are infinitely many Fermat psudoprimes to 

base 2 equal to p^2*n – p*n + p, where n is natural.  

 

Note: See the sequence A215343: the generalised formula from there is p^2*n – p*n + p^2, 

which suggests an extrapolated formula for obtaining some Fermat pseudoprime to base 

2 from other: p^2*n – p*n + p^k.  

 

Conjecture 2:  

For any Fermat pseudoprime p to base 2 and any k natural, k > 0, there are infinitely 

many Fermat psudoprimes to base 2 equal to p^2*n – p*n + p^k, where n is natural.  

 

 

 

14. Primes of the form (24*p + 1)/5, where p is a Poulet number 
 

 

First 22 terms of the sequence (A218010 in OEIS): 1637, 2693, 20981, 22469, 40709, 42773, 

49253, 65957, 69557, 123653, 140837, 235877, 451013, 623621, 626693, 716549, 1095557, 

1370597, 1634693, 2108597, 2459813, 2548229, 2554421, 2563493, 2869781, 3534197, 

3669557, 3755237, 4093637, 4337429, 4567109. 

 

 

Comments:  

The corresponding values of p: 341, 561, 4371, 4681, 8481, 8911, 10261, 13741, 14491, 

25761, 29341, 49141, 93961, 129921, 130561, 149281, 228241, 285541, 340561, 

439291, 512461, 530881, 532171, 534061, 597871, 736291, 764491, 782341, 852841, 

903631, 951481.  

It is notable that, from the first 128 natural solutions of this equation ((24*p + 1)/5, where 

p is Fermat pseudoprime to base 2), 31 are primes (the ones from the sequence above), 51 

are products (not necessary squarefree) of two prime factors and 41 are products of three 

prime factors; only 5 of them are products of four prime factors.  

It is notable yet another relation between numbers of the form (24*n + 1)/5, where n 

natural, and Fermat pseudoprimes:  

 

Conjecture:  

There is no absolute Fermat pseudoprime m for which n = (5*m – 1)/24 is a natural 

number (checked for the first 300 Carmichael numbers; if true, then the formula is a 

criterion to separate pseudoprimes at least from a subset of primes, because there are 37 

primes m from the first 300 primes for which n = (5*m – 1)/24 is a natural number).  

 

 

 

15. The smallest m for which the n-th Carmichael number can be 

written as  p^2*(m + 1) – p*m 
 

 

First 60 terms of the sequence (A213812 in OEIS): 1, 3, 4, 2, 2, 3, 1, 1, 2, 7, 24, 4, 4, 7, 47, 80, 9, 

1, 23, 2, 46, 15, 24, 21, 24, 1, 1, 76, 8, 21, 16, 14, 6, 2, 150, 16, 8, 16, 3, 156, 36, 232, 2, 13, 10, 

788, 40, 25, 2, 4, 123, 12, 44, 16, 8, 207, 226, 462, 92, 6. 
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Comments:  

The corresponding values of p are (we write the Carmichael number in brackets): 

17(561), 17(1105), 19(1729), 29(2465), 31(2821), 41(6601), 67(8911), 73(10585), 

73(15841), 61(29341), 41(41041), 97(46657), 103(52633), 89(62745), 37(63973), 

31(75361), 101(101101), 241(115921), 73(126217), 233(162401), 61(172081), 

109(188461), 101(252601), 113(278545), 109(294409), 397(314821), 409(334153), 

67(340561), 211(399001), 137(410041), 163(449065), 181(488881), 271(512461), 

421(530881), 61(552721), 197(656601), 271(658801), 199(670033), 433(748657), 

73(825265), 151(838201), 61(852841), 577(997633), 271(1024651), 307(1033669), 

37(1050985), 163(1082809), 211(1152271), 631(1193221), 541(1461241), 

113(1569457), 353(1615681), 199(1773289), 331(1857241), 461(1909001), 

101(2100901), 97(2113921), 73(2433601), 163(2455921), 599(2508013).  

 

Note: Any Carmichael number C can be written as C = p^2*(n + 1) – p*n, where p is any prime 

divisor of C (it can be seen that the smallest n is obtained for the biggest prime divisor). 

The formula C = p^2*(n + 1) – p*n is equivalent to C = p^2*m – p*(m – 1) = p^2*m – 

p*m + p, equivalent to p^2 – p divides C – p, which is a direct consequence of Korselt’s 

criterion. It can be shown from p – 1 divides C – 1 not that just p^2 – p divides C – p but 

even that p^2 – p divides C – p^k (if C > p^k) or p^k – C (if p^k > C) which leads to the 

generic formula for a Carmichael number: C = p^k + n*p^2 – n*p (if C > p^k) or C = p^k 

– n*p^2 + n*p (if p^k > C) for any p prime divisor of C and any k natural number.  

 

Note:  The formulas generated giving values of k seems to be very useful in the study of Fermat 

pseudoprimes; also, the composite numbers C for which the equation C = p^k – n*p^2 + 

n*p gives, over the integers, as solutions, all their prime divisors, for a certain k, deserve 

further study.  

 

 

 

16. Carmichael numbers of the form (30*k + 7)*(60*k + 13)*(150*k + 31) 
 

 

First 18 terms of the sequence (A182085 in OEIS): 2821, 488881, 288120421, 492559141, 

776176261, 1632785701, 3835537861, 6735266161, 9030158341, 21796387201, 

167098039921, 288374745541, 351768558961, 381558955141, 505121232001, 582561482161, 

915245066821, 2199733160881. 

 

 

Conjecture:  

The number C = (30*k + 7)*(60*k + 13)*(150*k + 31) is a Carmichael number if (but 

not only if) 30*k + 7, 60*k + 13 and 150*k + 31 are all three prime numbers.  

 

Note: We got Carmichael numbers with three prime divisors for k = 0, 1, 10, 12, 18, 24, 32, 43, 

85, 102, 123, 129, 150, 201, 207, 256.  

We got Carmichael numbers with more than three prime divisors for n = 14, 29, 109, 

112.  

 

Note: All these numbers can be written as well as N = (n + 1)*(2*n + 1)*(5*n + 1), where n = 

30*k + 6.  
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17. Carmichael numbers of the form C = (30*n – 7)*(90*n – 23)*(300*n – 79) 

 

 
First 16 terms of the sequence (A182132 in OEIS): 340561, 4335241, 153927961, 542497201, 

1678569121, 2598933481, 25923026641, 63280622521, 88183003921, 155999871721, 

209850699601, 240893092441, 274855097881, 380692027321, 733547013841, 

1688729866321. 

 

Conjecture:  

The number C = (30*n – 7)*(90*n – 23)*(300*n – 79) is a Carmichael number if (but not 

only if) 30*n – 7, 90*n – 23 and 300*n – 79 are all three prime numbers.  

 

Note: We got Carmichael numbers with three prime divisors for n = 2, 9, 15, 32, 43, 48, 58, 64, 

67, 78, 97, 128.  

We got Carmichael numbers with more than three prime divisors for n = 1, 6, 13, 70.  

 

 

 

18. Carmichael numbers of the form C = (30*n – 17)*(90*n – 53)*(150*n – 89) 

 

 
First 17 terms of the sequence (A182133 in OEIS): 29341, 1152271, 34901461, 64377991, 

775368901, 1213619761, 4562359201, 8346731851, 9293756581, 48874811311, 68926289491, 

72725349421, 147523256371, 235081952731, 672508205281, 707161856941, 779999961061. 

 

 

Conjecture:  

The number C = (30*n + 13)*(90*n + 37)*(150*n + 61) is a Carmichael number if (but 

not only if) 30*n + 13, 90*n + 37 and 150*n + 61 are all three prime numbers.  

 

Note:  We got Carmichael numbers with three prime divisors for n = 0, 1, 5, 12, 14, 12, 27, 28, 

49, 55, 56, 71, 83, 121, 125.  

We got Carmichael numbers with more than three prime divisors for n = 4 and n = 119.  

 

 

 

19. Carmichael numbers C = (60*k + 13)*(180*k + 37)*(300*k + 61) 

 

 
First 16 terms of the sequence (A182416 in OEIS): 29341, 34901461, 775368901, 1213619761, 

4562359201, 9293756581, 72725349421, 672508205281, 707161856941, 779999961061, 

983598759361, 1671885346141, 1800095194261, 3459443867461, 6513448976101, 

8369282635561. 

 

 

Conjecture:  

N = (60*k + 13)*(180*k + 37)*(300*k + 61) is a Carmichael number if (but not only if) 

60*k + 13, 180*k + 37 and 300*k + 61 are all three prime numbers.  
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Note:  We got Carmichael numbers with three prime divisors for k = 0, 6, 7, 11, 14, 28, 60, 62, 

80, 102, 126, 137, 139, 157, 171.  

We got Carmichael numbers with more than three prime divisors for k = 2, 59, 67, 82.  

 

Note:  We can see that 13 = 7*2 – 1, 37 = 7*6 – 5 and 61 = 7*10 – 9, while 60 = 30*2, 180 = 

30*6 and 300 = 30*10; we also have Carmichael numbers that can be written as (30*n – 

11)*(60*n – 23)*(150*n – 59), for instance 63973, or as (30*n – 7)*(90*n – 23)*(300*n 

– 79), for instance 340561; we can see that, this time, 23 = 11*2 + 1, 59 = 11*5 + 4, 23 = 

7*3 + 2 and 79 = 7*10 + 9, while 60 = 30*2, 150 = 30*5, 90 = 30*3 and 300 = 30*10.  

 

Observation:  

Many Carmichael numbers, not only with three prime divisors, can be written in one of 

the following two forms: C = ((30*a*m – (a*p + a – 1))*((30*b*m – (b*p + b – 

1))*((30*c*m – (c*p + c – 1)) or C = ((30*a*m + (a*p – a + 1))*((30*b*m + (b*p – b + 

1))*((30*c*m + (c*p – c + 1)), where p, a*p + a – 1, b*p + b – 1 and c*p + c – 1 are all 

(four or three, if a = 1)primes (in the first case) or p, a*p – a + 1, b*p – b + 1 and c*p – c 

+ 1 are all primes (in the second case).  

 

 

 

20. Carmichael numbers C = (30*n – 29)*(60*n – 59)*(90*n – 89)* 

(180*n – 179) 

 

 
First 9 terms of the sequence (A182088 in OEIS): 31146661, 2414829781, 192739365541, 

197531244744661, 741700610203861, 973694665856161, 2001111155103061, 

2278278996452641, 4271903575869601. 

 

 

Conjecture:  

The number C = (30*n – 29)*(60*n – 59)*(90*n – 89)*(180*n – 179) is a Carmichael 

number if (but not only if) 30*n – 29, 60*n – 59, 90*n – 89 and 180*n – 179 are all four 

prime numbers.  

 

Note:  We got Carmichael numbers with three prime divisors for n = 10, 52, 77, 143.  

We got Carmichael numbers with more than three prime divisors for n = 2, 4, 72, 92, 95, 

111.  

 

 

 

21. Carmichael numbers C = (330*k + 7)*(660*k + 13)*(990*k + 19)* 

(1980*k + 37) 

 

 
First 11 terms of the sequence (A182089 in OEIS): 63973, 461574735553, 7103999557333, 

35498632881313, 111463190499493, 271061745643873, 560604728986453, 

1036648928639233, 1765997490154213, 2825699916523393, 4303052068178773. 
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Conjecture:  

The number C = (330k + 7)*(660k + 13)*(990k + 19)*(1980k + 37) is a Carmichael 

number if 330k + 7, 660k + 13, 990k + 19 and 1980k + 37 are all four prime numbers.  

 

 

 

22. Carmichael numbers of the form C = (30*n – p)*(60*n – (2*p + 1))* 

(90*n – (3*p + 2)), where p, 2*p + 1, 3*p + 2 are all three primes 
 

 

First 17 terms of the sequence (A182087 in OEIS): 1729, 172081, 294409, 1773289, 4463641, 

56052361, 118901521, 172947529, 216821881, 228842209, 295643089, 798770161, 

1150270849, 1299963601, 1504651681, 1976295241, 2301745249. 

 

 

Comments:  

These numbers can be reduced to only two possible forms: C = (30*n – 23)*(60*n – 

47)*(90*n – 71) or C = (30*n – 29)*(60*n – 59)*(90*n – 89). In the first form, for the 

particular case when 30*n – 23, 60n – 47 and 90n – 71 are all three prime numbers, we 

obtain the Chernick numbers of the form 10*m + 1 (for k = 5*n – 4 we have C = (6*k + 

1)*(12*k + 1)*(18*k + 1)). In the second form,  for the particular case when 30*n – 29, 

60*n – 59 and 90*n – 89 are all three prime numbers, we obtain the Chernick numbers of 

the form 10*m + 9 (for k = 5*n – 5 we have C = (6*k + 1)*(12*k + 1)*(18*k + 1)).  

So the Chernick numbers can be divided into two categories: Chernick numbers of the 

form (30*n + 7)*(60*n + 13)*(90*n + 19) and Chernick numbers of the form (30*n + 

1)*(60*n + 1)*(90*n + 1).  

 

 

 

23. Carmichael numbers of the form C = p*(2*p – 1)*(3*p – 2)*(6*p – 5), 

where p is prime 
 

 

First 15 terms of the sequence (A182518 in OEIS): 63973, 31146661, 703995733, 21595159873, 

192739365541, 461574735553, 3976486324993, 10028704049893, 84154807001953, 

197531244744661, 741700610203861, 973694665856161, 2001111155103061, 

3060522900274753, 3183276534603733. 

 

 

Comments:  

We get Carmichael numbers with four prime divisors for p = 7, 271, 337, 727, 1237, 

1531, 2281, 3037, 3067.  

We get Carmichael numbers with more than four prime divisors for p = 31, 67, 157, 577, 

2131, 2731, 3301.  

Note:  We can see that p, 2*p – 1, 3*p – 2 and 6*p – 5 can all four be primes only for p = 6*k + 

1 (for p = 6*k + 5, we get 2*p – 1 divisible by 3), so in that case the formula is equivalent 

to C = (6*k + 1)*(12*k + 1)*(18*k + 1)*(36*k + 1).  
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24. Carmichael numbers of the form C = p*(2*p – 1)*(n*(2*p – 2) + p), 

where p and 2*p–1 are primes 
 

 

First 29 terms of the sequence (A182207 in OEIS): 1729, 2821, 41041, 63973, 101101, 126217, 

172081, 188461, 294409, 399001, 488881, 512461, 670033, 748657, 838201, 852841, 997633, 

1033669, 1050985, 1082809, 1461241, 2100901, 2113921, 2628073, 4463641, 4909177, 

7995169, 8341201, 8719309. 

 

 

Conjecture:  

Any Carmichael number C divisible by p and 2*p – 1 (where p and 2*p – 1 are prime 

numbers) can be written as C = p*(2*p – 1)*(n*(2*p – 2) + p).  

Checked for the first 30 Carmichael numbers divisible by p and 2*p – 1.  

Note:  We can see how easy is to obtain Carmichael numbers with this formula:  

For n = 1 we get p*(2*p – 1)*(3*p – 2) and Carmichael numbers 1729, 172081, 294409 

etc. 

For n = 2 we get p*(2*p – 1)*(5*p – 4) and Carmichael numbers 2821, 63973, 488881 

etc.  

For n = 3 we get p*(2*p – 1)*(7*p – 6) and Carmichael numbers 399001, 53711113 etc.  

  

 

 

25. Carmichael numbers of the form n*(2*n – 1)*(p*n – p + 1)* 

(2*p*n – 2*p + 1), where p is odd 

 
 

First 17 terms of the sequence (A212882 in OEIS): 63973, 172081, 31146661, 167979421, 

277241401, 703995733, 1504651681, 2414829781, 117765525241, 192739365541, 

461574735553, 881936608681, 2732745608209, 3145699746793, 3307287048121, 

3976486324993, 7066238244481. 

 

 

Comments:  

The following Carmichael numbers are of the form n*(2*n – 1)*(3*n – 2)*(6*n – 5): 

63973, 31146661, 703995733, 2414829781, 192739365541, 461574735553, 

3976486324993.  

The following Carmichael numbers are of the form n*(2*n – 1)*(5*n – 4)*(10*n–9): 

172081, 881936608681, 3307287048121, 8916642713161.  

The following Carmichael number is of the form n*(2*n – 1)*(7*n – 6)*(14*n – 13): 

167979421.  

The following Carmichael number is of the form n*(2*n – 1)*(9*n – 8)*(18*n – 17): 

277241401.  

The following Carmichael number is of the form n*(2*n – 1)*(11*n – 10)*(22*n – 21): 

9924090391909.  

The following Carmichael number is of the form n*(2*n – 1)*(15*n – 14)*(30*n – 29): 

7932245192461.  

The following Carmichael number is of the form n*(2*n – 1)*(17*n – 16)*(34*n – 33): 

3145699746793.  
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The following Carmichael numbers are of the form n*(2*n – 1)*(21*n – 20)*(42*n – 

41): 1504651681, 117765525241, 2732745608209.  

The following Carmichael number is of the form n*(2*n – 1)*(23*n – 22)*(46*n – 45): 

7066238244481.  

For p = 13 and p = 19, there is no Carmichael number up to 10^13.  

There is not any other Carmichael number of this form, for p from 3 to 23, up to 10^13.  

 

Conjecture:  

For any odd number p we have an infinite number of Carmichael numbers of the form 

n*(2*n – 1)*(p*n – p + 1)*(2*p*n – 2*p + 1).  

 

Note:  Many numbers of the form n*(2*n – 1)*(p*n – p + 1)*(2*p*n – 2*p + 1), not divisible by 

2, 3 or 5, where p is odd or even, are squarefree and respects the Korselt's criterion for 

many of their prime divisors or are not squarefree but respects the Korselt's criterion 

sometimes even for all their divisors (but we didn’t find Carmichael numbers when p is 

even).  

 

 

 

26. Carmichael numbers of the form 3*n*(9*n + 2)*(18*n – 1), where n 

is odd 
 

 

First 29 terms of the sequence (A213071 in OEIS): 561, 13833, 62745, 170625, 360801, 656601, 

1081353, 1658385, 2411025, 3362601, 4536441, 5955873, 7644225, 9624825, 11921001, 

14556081, 17553393, 20936265, 24728025, 28952001, 33631521, 38789913, 44450505, 

50636625, 57371601, 64678761, 72581433, 81102945, 90266625. 

 

 

Comments:  

Carmichael numbers (561, 62745, 656601, 11921001, 174352641) were obtained for the 

following values of n: 1, 5, 11, 29, 71.  

 

Note: The sequence can be generalized this way: C = p*n*(3*p*n + 2)*(6*p*n – 1), where p is 

prime.  

Few examples for p from 5 to 23:  

For p = 5 the formula becomes 5*n*(15*n + 2)*(30*n – 1) and were obtained the 

following Carmichael numbers: 2465, 62745, 11119105, 3249390145 (for n = 1, 3, 17, 

113);  

For p = 7 the formula becomes 7*n*(21*n + 2)*(42*n – 1) and were obtained the 

following Carmichael numbers: 6601 (for n = 1);  

For p = 11 the formula becomes 11*n*(33*n + 2)*(66*n – 1) and were obtained the 

following Carmichael numbers: 656601 (for n = 3);  

For p = 13 the formula becomes 13*n*(39*n + 2)*(78*n – 1) and were obtained the 

following Carmichael numbers: 41041, 271794601 (for n = 1, 21);  

For p = 17 the formula becomes 17*n*(51*n + 2)*(102*n – 1) and were obtained the 

following Carmichael numbers: 11119105, 2159003281 (for n = 5);  

For p = 19 the formula becomes 19*n*(57*n + 2)*(114*n – 1) and were obtained the 

following Carmichael numbers: 271794601 (for n = 13);  
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For p = 23 the formula becomes 23*n*(69*n + 2)*(138*n – 1) and were obtained the 

following Carmichael numbers: 5345340001 (for n = 29).  

 

 

 

27. Carmichael numbers that have only prime divisors of the form 10k+1 
 

 

First 28 terms of the sequence (A212843 in OEIS): 252601, 399001, 512461, 852841, 1193221, 

1857241, 1909001, 2100901, 3828001, 5049001, 5148001, 5481451, 6189121, 7519441, 

8341201, 9439201, 10024561, 10837321, 14676481, 15247621, 17236801, 27062101, 

29111881, 31405501, 33302401, 34657141, 40430401, 42490801. 

 

 

Conjecture:  

All Carmichael numbers C (not only with three prime divisors) of the form 10*n + 1 that 

have only prime divisors of the form 10*k+1 can be written as C = (30*a + 1)*(30*b + 

1)*(30*c + 1), C = (30*a + 11)*(30*b + 11)*(30*c + 11), or C = (30*a + 1)*(30*b + 

11)*(30*c + 11). In other words, there are no numbers of the form C = (30*a + 1)*(30*b 

+ 1)*(30*c + 11).  

 

 

28. Carmichael numbers divisible by a smaller Carmichael number 
 

 

First 29 terms of the sequence (A214758 in OEIS): 63973, 126217, 172081, 188461, 278545, 

748657, 997633, 1773289, 5310721, 8719921, 8830801, 9890881, 15888313, 18162001, 

26474581, 26921089, 31146661, 36121345, 37354465, 41471521, 93614521, 93869665, 

101957401, 120981601, 151813201. 

 

 

Comments:  

Carmichael numbers by which the numbers from sequence are divisible: 1729, 1729, 

2821, 1729, 2465, 1729, 1729, 8911, 29341, 6601, 8911, 41041, 8911, 75361, 8911, 

46657, 2821 and 172081, 1105, 10585, 2821 and 172081, 41041, 2465, 1729 and 

188461, 46657, 252601.  

 

Note:  A Carmichael number can be divisible by more than one Carmichael number: e.g. 

31146661, 41471521, 101957401.  

A subsequence of this sequence contains the numbers C1 (and another subsequence the 

numbers C3) that can be written as C1 = (C2 + C3)/2, where C1, C2 and C3 are Carmichael 

numbers and C1 and C3 are both divisible by C2 (e.g. 63973 = (1729 + 126217)/2; 

93614521 = (41041 + 187188001)/2).  

 

Conjecture:  

A Carmichael number C1 can be written as C1 = (C2 + C3)/2, where C2 and C3 are also 

Carmichael numbers, only if both C1 and C3 are divisible by C2.  
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29. Carmichael numbers divisible by 1729 
 

 

First 29 terms of the sequence (A212920 in OEIS): 1729, 63973, 126217, 188461, 748657, 

997633, 101957401, 509033161, 705101761, 1150270849, 1854001513, 2833846561, 

7103660473, 8039934721, 9164559313, 10298458261, 14530739041, 23597511301, 

41420147041, 49923611101, 50621055121, 55677010753, 65039877721. 

 

 

Conjecture:  

If m*126 + n = 1729, m*126 > n, then exists a series with infinite many Carmichael 

terms of the form C mod m*234 = n.  

 

Verifying the conjecture: 

 

(1)  For m < 7 we have m*126 < n;  

(2)  For m = 7 the formula becomes C mod 882 = 847 and were obtained the Carmichael 

numbers: 1729, 15841, 1033669 etc.;  

(3)  For m = 8 the formula becomes C mod 1008 = 721 and were obtained the Carmichael 

numbers: 1729, 15841, 41041, 172081, 670033, 748657, 825265, 997633 etc.;  

(4)  For m = 9 the formula becomes C mod 1134 = 595 and were obtained the Carmichael 

numbers: 1729, 1033669 etc.;  

(5)  For m = 10 the formula becomes C mod 1260 = 469 and were obtained the Carmichael 

numbers: 1729, 1033669 etc.;  

(6)  For m = 11 the formula becomes C mod 1386 = 343 and were obtained the Carmichael 

numbers: 1729, 1082809 etc.;  

(7)  For m = 12 the formula becomes C mod 1512 = 217 and were obtained the Carmichael 

numbers: 1729, 41041 etc.;  

(8)  For m = 13 the formula becomes C mod 1638 = 91 and were obtained the Carmichael 

numbers: 1729, 41041, 63973, 670033, 997633 etc. 

 

Conjecture:  

If m*234 + n = 1729, m*234 > n, then exists a series with infinite many Carmichael 

terms of the form C mod m*234 = n.  

 

Verifying the conjecture: 

 

(1)  For m < 4 we have m*234 < n;  

(2)  For m = 4 the formula becomes C mod 936 = 793 and were obtained the Carmichael 

numbers: 1729, 41041, 46657, 126217, 748657, 4909177, 65037817, 193910977, 

311388337, 633639097 etc.;  

(3)  For m = 5 the formula becomes C mod 1170 = 559 and were obtained the Carmichael 

numbers: 1729, 1033669, 1082809, 7995169, 26921089 etc.;  

(4)  For m = 6 the formula becomes C mod 1404 = 325 and were obtained the Carmichael 

numbers: 1729, 41041, 46657, 188461, 314821 etc.;  

(5)  For m = 7 the formula becomes C mod 1638 = 91 and the case is similar with one from 

precedent conjecture.  

 

Conjecture:  
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If m*342 + n = 1729, m*342 > n, then exists a series with infinite many Carmichael 

terms of the form C mod m*342 = n.  

 

Verifying the conjecture: 

 

(1)  For m < 2 we have m*342 < n;  

(2)  For m = 3 the formula becomes C mod 1026 = 703 and were obtained the Carmichael 

numbers: 1729, 8911 etc.;  

(3)  For m = 4 the formula becomes C mod 1368 = 361 and were obtained the Carmichael 

numbers: 1729, 126217 etc.;  

(4)  For m = 5 the formula becomes C mod 1710 = 19 and were obtained the Carmichael 

numbers: 1729, 1773289 etc.  

 

Conclusion:  

We can see that 126 = 18*7, 234 = 18*13 and 342 = 18*19 and 7, 13, and 19 are the 

prime factors of 1729, so the three conjectures could be expressed all in one. Even more 

than that, taking randomly another Carmichael number, 8911 = 7*19*67, taking 

randomly m = 7 in the formula m*18*67, we obtain the formula C mod 8442 = 469, 

which, indeed, leeds to a series of Carmichael numbers: 8911, 1773289, 8830801 etc., 

which means that the conjecture could be generalised:  

 

Conjecture:  

For any prime factor of a Carmichael number C1 exists a series with infinite many 

Carmichael terms C2 formed this way: C2 mod m*18*d = n, where m*18*d + n = C1, 

where d is the prime factor of C1 and m, n are natural numbers, m*18*d < n.  

 

Note: Finally, if we have a Carmichael number divisible by 1729 (i.e. 63973, see the sequence 

above), we can see that the formula C mod 62244 = 1729 (it can see that 62244 + 1729 = 

63973) leeds too to a series of Carmichael numbers: 126217 etc. which means that 1729 

can be treated like a prime factor. This can be probably generalised to the Carmichael 

numbers that are divisible with other Carmichael numbers or probably even for a 

randomly chosen product of prime factors.  

 

 

 

30. Fermat pseudoprimes n to base 3 of the form n = (3^(4*k + 2) – 1)/8 
 

 

First 9 terms of the sequence (A217853 in OEIS): 91, 7381, 597871, 48427561, 3922632451, 

317733228541, 25736391511831, 2084647712458321, 168856464709124011. 

 

 

Comments:  

These numbers were obtained for values of k from 1 to 20, with the following exceptions: 

k = 10, 12, 13, 16, 17, 19, for which were obtained 3^n mod n = 3^7, 3^31, 3^37, 3^25, 

3^31, 3^13.  

 

Conjecture:  

There are infinitely many Fermat pseudoprimes to base 3 of the form (3^(4*k + 2) – 1)/8, 

where k is a natural number.  
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Part three. Sixty-five open problems regarding Fermat 

pseudoprimes 
 

 

 

1.  Study the sequence of Poulet numbers of the form (6*k – 1)*(18*k – 5): 341, 8321, 

83333, 162401, 348161, 587861, 653333, 722261, 1053761, 1398101, 1735841 (…), 

obtained for k = 2, 9, 28, 39, 57, 74, 78, 82, 99, 114, 127 (…). 

 

2.  Study the sequence of Carmichael numbers of the form (6*k + 1)*(12*k + 1): 2821, 

15841, 530881, 997633, 1193221, 3581761, 4767841 (...). 

 

3.  Study the sequence of Carmichael numbers of the form (6*k + 1)*(18*k + 1): 8911, 

10585, 115921, 314821, 334153, 6313681, 8134561 (...). 

 

4. Study the sequence of Carmichael numbers of the form 7*13*(18*k + 1): 1729, 63973, 

126217, 188461, 670033, 748657, 997633, 1033669, 1082809, 4463641, 4909177, 

7995169, 18900973, 27336673, 31146661, 41298985 (...), obtained for k = 1, 39, 77, 

105, 115, 409, 457, 609, 631, 661, 2725, 2997, 4881, 11539, 16689, 19015, 25213 (...). 

 

 Conjecture: Any Carmichael number C divisible by 7 and 13 can be written as C = 

7*13*(18*k + 1)or as C = 7*13*(18*k + 13), where k is natural; checked for the first 17 

Carmichael numbers divisible by 7 and 13. 

 

5. Study the sequence of Carmichael numbers of the form 19*37*(18*k + 1): 63973, 

8719309, 12490201, 69331969, 105117481, 136625941, 144218341, 242641153, 

247095361, 292244833 (...), obtained for k = 5, 689, 987, 5479, 8307, 10797, 11397, 

19175, 19527, 23095 (...). 

 

Conjecture: Any Carmichael number C divisible by 19 and 37 can be written as C = 

19*37*(18*k + 1), where k is natural; checked for the first 10 Carmichael numbers 

divisible by 19 and 37.  

 

6. Study the following possible generic form of the Carmichael numbers which are not 

divisible by 3, not necessarily with only three prime factors: C = [a*10*m – (a*p + a –

1)]*[b*10*m – (b*p + b ± 1)]*[c*10*m – (c*p + c ± 1)], where  m, a, b, c are natural 

numbers and p is a prime number, 5 < p < 29. The formula is interesting because it 

highlights the potential series of Carmichael numbers.  

Examples:  

:  2821 = 7*13*31 = [1*30 – (1*23 + 1 – 1)]*[2*30 – (2*23 + 2 – 1)]*[5*30 – 

(5*23 + 5 –1)]; 2821 is the first term in the sequence of Carmichael numbers of the form 

(30*n –23)*(60*n – 47)*(150*n – 119);  

:  340561 = 13*17*23*67 = 23*67*221 = [1*30 – (1*7 + 1 – 1)]*[3*30 – (3*7 + 3 

– 1)]*[10*30 – (10*7 + 10 – 1)]; 340561 is the first term in the sequence of Carmichael 

numbers of the form (30*n – 7)*(90*n – 23)*(300*n – 79).  

 

7. Study the sequence of Carmichael numbers of the form 20*n^2 + 12*n + 1: 561, 1729, 

41041, 46657, 52633  (...), obtained for k = 5, 9, 45, 48, 51 (...). 
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8. Study the sequence of Carmichael numbers of the form n*(2*n – 1)*(5*n – 4): 2821, 

63973, 488881, 288120421 (...), obtained for k = 7, 37, 19, 307  (...). 

 

Conjecture: Any Carmichael number C can be written as a product of three numbers in 

one of two ways:  

I. C = n*(a*n – a + 1)*(b*n – b + 1), where n is (the smallest prime) divisor of C and a, b 

natural numbers;  

II. C = n*(a*n – a – 1)*(b*n – b – 1), where n is (the smallest prime) divisor of C and a, b 

natural numbers.  

Examples:  

Carmichael numbers of form I: 8911 = 7*(3*7 – 2)*(11*7 – 10).  

Carmichael numbers of form II: 6601 = 7*(4*7 – 5)*(7*7 – 8).  

 

9. Study the sequence of Carmichael numbers of the form n*(2*n – 1)*(7*n – 6)*(14*n – 

13), where n, 2*n – 1, 7*n – 6 and 14*n – 13 are all four prime numbers. We found, to 

the numbers of this form which are not Carmichael, an interesting property: Korselt’s 

criterion applies to smaller two prime divisors and for the other two we obtained, for the 

rational number resulted from fraction (C – 1)/(p – 1), the following periods: 428571 (= 

3^4*11*13*37), 714285 (= 5*3^3*11*13*37), and  857142 (= 2*3^4*11*13*37). We 

found the following such numbers N: 7415394013, 71970231133, 2336497750621. 

 

10. Study the sequence of Carmichael numbers of the form (6*n – 5)*(24*n – 5). 

 

11. Study the sequence of Carmichael numbers of the form C = n*(2*n – 1)*(6*n – 5)*(12*n 

– 11), C not divisible by 2, 3 or 5; the numbers with only four prime divisors that we got 

(245791, 129736725, 52889761459, 86242504141) respects a “larger” form of Korselt’s 

criterion [n divides (C – 1), (2*n – 1) and (6*n – 5) divides 2*(C – 1) and (12*n – 11) 

divides 4*(C – 1)]. Also, for many other squarefree (not Carmichael numbers) of this 

form, (p – 1) divides 2^r*(C – 1) for every prime divisor p.  

 

12. Study the following generic form for Poulet numbers: P = ((d – 1)*(d + m)/m) + 1, where 

d is a prime factor of P. 

 

 Conjecture: Any Poulet number P, except for a set of definable exceptions, can be 

written as P = ((d – 1)*(d + m)/m) + 1, where d is any prime factor of P (the first 

exception is the 15-th Poulet number, the number 4371). 

 

13. Study the following conjecture: 

 

 Conjecture: For any Poulet number P, except for a set of definable exceptions, is true 

one of the following two relations: (P/d) – 1 is divisible by d – 1 or d – 1 is divisible by 

(P/d) – 1 for any d prime factor of P (the first exception is the 15-th Poulet number, the 

number 4371). 

 

14. Study the following conjecture: 

 

 Conjecture: For any 2-Poulet number P, except for a set of definable exceptions, is true 

the following relation: P = ((d – 1)*(d + m)/m) + 1, where m is natural and d is any of the 

two prime factors of P (the first three exceptions are the 19-th, the 35-th and the 38-th 

Poulet numbers, i.e. the numbers 7957 = 73*109, 18721 = 97*193 and 23377 = 97*241). 
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15. Study the following function: f = 2^C mod 560, where C is a Carmichael number (for C 

= 1105, 1729, 2821, 6601, 10585, 15841, 29341, 41041, 46657, 52633, 63973, 75361, 

101101, 115921, 126217 we have f = 352 = 2^5*11). 

 

16. Study the following conjecture: 

 

Conjecture: Any Carmichael number C can be written in one of the following three 

forms: C = 10*k + 1; C = 12*k + 1 or C = 14*k + 1, where k natural (checked for the first 

300 Carmichael numbers). 

 

17. Study the numbers obtained by concatenation of a Carmichael number with its reversal; 

interesting palindromic primes are obtained: for instance, 1584114851 = 11*144010441. 

 

18. Study the following relation: p*(C1 – 1) – C2 = C3, where p is prime and C1, C2 and C3 

are Carmichael numbers. Are there any other such triplets of Carmichael numbers beside 

(C1, C2, C3) = (561, 1729, 8911)? 

 

19. Study the following relation: C – 1440 = p^2, where C is Carmichael number and p is 

prime; are there any other Carmichael numbers beside 1729 (1729 – 1440 = 17^2) and 

41041 (41041 – 1440 = 199^2) that satisfy this relation? 

 

20. Study the Carmichael numbers equal to a + b, where b is equal to the concatenation of the 

numbers a and 0 (e.g. 561 = 51 + 510) or is equal to the concatenation of the numbers a 

and 1 (e.g. 15841 = 1440 + 14401). 

 

21. Study the Carmichael numbers equal to 23^2 + n^2 (e.g. 1105 = 23^2 + 24^2; 2465 = 

23^2 + 44^2). 

 

22. Study the following relation: C = 176*n + 1, where C is Carmichael number and n is 

natural; are there any other Carmichael numbers beside 2465 (2465 = 176*14 + 1) and 

15841 (15841 = 176*90 + 1) that satisfy this relation? 

 

23. Study the following relation: n*(C1 – 1) + p^2 = C2, where p is prime, n natural and C1 

and C2 are Carmichael numbers. Are there any other such duplets of Carmichael numbers 

beside (C1, C2) = (1729, 15841)? 

 

24. Study the Carmichael numbers which satisfy the relation abs{C – 13^4} = 

2^a*3^b*5^c*7^d*11^e*13^f*p, where p is prime (the first 40 Carmichael numbers 

satisfy this relation). Also the first 16 absolute Euler pseudoprimes satisfy the relation 

abs{E – 13^4} = 2^a*3^b*7^c*13^d*p, where p is prime. 

 

25. Study the Carmichael numbers of the form C = 420*n + 7^4 (for n = 1 and n = 10 we 

obtain C = 2821 and C = 6601). Also Carmichael numbers of the forms 8*n + 11^2, 

560*n + 161, 1728*n + 11*m or 1728*n + 17*m. 

 

26. Study the following two conjectures:  

 

Conjecture 1: For any Poulet number P there exist n such that P – 80*n is prime. 

Conjecture 2: For any Poulet number P there exist n such that P – 150*n is prime. 
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27. Study the following conjecture:  

 

Conjecture: For any 3-Carmichael number C = d1*d2*d3, except for a set of definable 

exceptions, is true that d3 > d1^2 + d2^2 (the first exception is the Carmichael number 

116682721 = 281*617*673). 

 

28. Study the Carmichael numbers of the form C = (2^m + 1)^2 + 2^n*p, where p is prime 

and m, n are naturals [for (m, n, p) = (4, 4, 17) we obtain C = 561 and for (m, n, p) = (4, 

7, 17) we obtain C = 6601].  

 

29. Study the Carmichael numbers which satisfy the relation (C^2 + 1)/2 = 37*p, where p is 

prime (such numbers are 561 and 8911); also Carmichael numbers that satisfy the 

relation (C^2 + 1)/2 = 181*p, where p is prime (such numbers are 1105 and 29341). 

 

30. Study the Carmichael numbers which satisfy the relation C – 180 = p*q, where p and q 

are primes and q – p is divisible by 23 (such numbers are 29341 and 41041). 

 

31. Study the operation modulo reiterated on Carmichael numbers in the following way: 

2821 mod (2821 mod 90) = 0 (which appears to be true for many Carmichael numbers). 

 

32. Study the following function: f = 2^C mod (30*s), where C is a Carmichael number and s 

is the sum of its digits; for the first 19 Carmichael numbers we obtain f = 2^n, where n 

non-null positive integer, or f = 2^n*p, where n non-null positive integer and p prime. 

 

33. Study the following function: f = C mod (60*d), where C is a Carmichael number and d 

is one of its prime factors; interesting results might be obtain: for instance, we obtain f = 

7*19 for all the first seven Carmichael numbers of the form 10*k + 3 divisible by 7 (i.e. 

52633, 63973, 334153, 670033, 997633, 2628073, 18900973). Also the function f = C 

mod (90*d). 

 

34. Study the following function: f = C mod (90*s), where C is a Carmichael number and s is 

its digital root. 

 

35. Study the following conjecture:  

 

Conjecture: Any Carmichael number C, except for a set of definable exceptions, can be 

written as C = p*q + p – q, where p and q are primes; such duplets of primes are: (p, q) = 

(41, 13) for C = 561, (p, q) = (73, 23) for C = 1729 etc. 

 

36. Study the Carmichael numbers C which satisfy the relation C = p*q^2 + 30*q, where p 

and q are primes (e.g. 1729 = 31*7^2 + 30*7). 

 

37. Study the Poulet numbers which satisfy the relation P = 1800*n^2 + 840*n + 1 (for n = 3 

we obtain the Poulet number 18721) or  P = 1800*n^2 + 840*n + 31 (for n = 2 we obtain 

the Poulet number 8911) or P = 1800*n^2 + 840*n + 61 (for n = 1 we obtain the Poulet 

number 2701). 

 

38. Study the following conjecture:  
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Conjecture: Any Carmichael number C of the form 10*k + 1, not divisible by 3, can be 

written at least in one of the following two forms: C = 1800*n^2 + 840*n + p or C = 

1800*n^2 – 840*n – q, where p and q are primes (p of the form 30*h + 1 and q of the 

form 30*h + 29).  

 

39. Study the following relation: 2*C1 + C2 – 30 = C3, where C1, C2 and C3 are Carmichael 

numbers. Are there any other such triplets of Carmichael numbers beside (C1, C2, C3) = 

(561, 1729, 2821)? 

 

40. Study the following relation: C^2 – 2*C – 30*k = p, where C is Carmichael number not 

divisible with 3 or 5 and p is prime. Is there for any such C a natural number k for which 

p is prime? For C = 1729 we obtain, for k = 1, p = 2985953 prime, for k = 3, p = 2985893 

prime; for C = 2821 we obtain, for k = 1, p = 7952369 prime, for k = 3, p = 7952309 

prime; for C = 6601 we obtain, for k = 2, p = 43559939 prime etc.  The same problem for 

the following relation: C1^2 – 2*C2 – 30*k = p, where C1 and C2 are distinct Carmichael 

numbers. For (C1, C2) = (1729, 561) we obtain, for k = 1, p = 2988289 prime, for k = 2, p 

= 2988259 prime. For (C1, C2) = (2821, 561) we obtain, for k = 1, p = 7956889 prime, for 

k = 2, p = 7956859 prime etc.). 

 

41. Study the following operations on 2-Poulet numbers P: P mod (n*d1 – n) and P mod 

(n*d2 – n), where n is non-null positive integer and d1 and d2 are the two prime factors of 

P. Interesting results are obtained. For instance, for P = 23377 = 97*241, we obtain P 

mod (4*97 – 4) = P mod (4*241 – 4) = 337; note that the Poulet number 23377 it is the 

first exception for many generic forms that are suitable for the all smaller Poulet 

numbers, like for instance P = d1*d2 = d1*(d1*n – n + 1). 

 

Conjecture: For any 2-Poulet number P = d1*d2, except for a set of definable exceptions, 

there exist the non-null positive integers m, n such that P mod (n*d2 – n) = (m + 1)*d1 – 

m. For P = 341 = 11*31 we obtain P mod (3*31 – 3) = 7*11 – 6 and P mod (4*31 – 4) = 

10*11 – 9. For P = 1387 = 19*73 we obtain P mod (4*73 – 4) = 4*19 – 3. For P = 2047 = 

23*89 we obtain P mod (4*89 – 4) = 13*23 – 12. For P = 2701 = 37*73 we obtain P mod 

(4*73 – 4) = 3*37 – 2. For P = 3277 = 29*113 we obtain P mod (3*113 – 3) = 9*29 – 8, 

P mod (4*113 – 4) = 5*29 – 4, P mod (5*113 – 5) = 17*29 – 16, P mod (6*113 – 6) = 

21*29 – 20. 

  

42. Study the numbers N, where N = p*(p + 2) + C, where p and p + 2 are twin primes and C 

a Carmichael number; for C = 1729 and the first twenty pairs of twin primes, N = 

2^m*3^n*p, where m and n are non-null positive integers and p is prime. This formula 

might be also a method for obtaining big primes; we have, for instance, for C = 1729, for 

the pair of primes (982449569, 982449571), N = 2^2*3^2*p, where p = 

26811309933144073 is prime; for the pair of primes (982450457, 982450459), N = 

2^2*3^3*p, where p =  8937119466892699 is prime; for the pair of primes (982451579, 

982451581), N = 2^4*3^2*p, where p = 6702854910031237 is prime. 

 

Conjecture: The number N = p*(p + 2) + 1729, where p and p + 2 are twin primes, is 

always equal to a product of powers of the numbers 2 and 3 and of prime factors of the 

form 30*k + 1, 30*k + 7, 30*k + 13 and 30*k + 19.  
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43. Study the functions f and g, where f(C) = C – s(C) + 1 and g(C) = s(C)*(C – s(C)) + 1, 

where C is a Carmichael number and s(C) is the sum of the digits of C. For instance, 

f(6601) = 6601 – 13 + 1 = g(561) = 12*(561 – 12) + 1 = 6589. 

 

44. Study the Carmichael numbers C that satisfy the relation C = 561 + 272*n. Are there any 

other Carmichael numbers that satisfy this relation beside C = 1105 (corresponding to n = 

2) and C = 2465 (corresponding to n = 7)? 

 

45. Study the Carmichael numbers C that satisfy the relation C = n*(C – 1) – p*(p + 2), 

where n is non-null natural integer and p and p + 2 are twin primes. Are there any other 

Carmichael numbers that satisfy this relation beside C = 1729 (corresponding to n = 4 

and p = 71)? 

 

46. Study the following conjecture:  

 

Conjecture: Any Poulet number P of the form 10*k + 1, 10*k + 5 or 10*k + 9  (not of 

the form 10*k + 3 or 10*k + 7) can be written as  P = (a^2 – b^2)/8, where a and b are 

non-null positive integers. 

 

47. Study the following conjecture:  

 

Conjecture: Let C be a Carmichael number and s(C) be its digital root. If C is not a 

Harshad number and s(C) is not equal to 1, then any prime factor d of C, d ≠ 3, can be 

written as d = n*s(C) – n ± 1, where n is a non-null positive integer. 

Examples: 

 For C = 561 = 3*11*17, s(561) = 3 and d1 = 11 = 5*3 – 5 + 1 and d2 = 17 =  8*3 – 8 + 1. 

 For C = 1105 = 5*13*17, s(1105) = 7 and d1 = 5 = 1*7 – 1 – 1, d2 = 13 = 2*7 – 2 + 1 and 

d3 = 17 = 3*7 – 3 – 1. 

For C = 6601 = 7*23*41, s(6601) = 4 and d1 = 7 = 2*4 – 2 + 1, d2 = 23 = 7*4 – 6 + 1 and 

d3 = 41 = 14*4 – 14 – 1. 

 

48. Study the following conjecture:  

 

Conjecture: Let C be a Carmichael number and s(C) be the sum of its digits. Any C 

except for a set of definable exceptions can be written as C = n*s(C) – n + 1, where n is a 

non-null positive integer. 

Examples: 

For C = 1105 we have s(C) = 7 and 1105 = 184*7  –  184 + 1. 

For C = 1729 we have s(C) = 19 and 1729 = 96*19  –  96 + 1. 

For C = 2465 we have s(C) = 17 and 2465 = 154*17  –  154 + 1. 

For C = 6601 we have s(C) = 13 and 6601 = 550*13  –  550 + 1. 

 

49. Study the Carmichael numbers C1 = d1*d2*d3 and C2 that satisfy the relation C2 = 2*(d1 + 

d2 + d3 – 6)*(C1 – 2) – 1. Are there any other Carmichael numbers that satisfy this 

relation beside the pair (C1, C2) = (1105, 63973)? It can be seen that, for 1105 = 5*13*17 

we obtain 2*(5 + 13 + 17 – 6)*(1105 – 2) – 1 = 7*13*19*37 = 63973. The function f(C) 

= 2*(d1 + d2 +…+ dn – 2*n)*(C – 2) – 1, where C is a Carmichael number and n is the 

number of the prime factors d1, d2, …, dn of C might also be interesting to be studied. 
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Conjecture 1: There exist an infinity of 3-Carmichael numbers C = d1*d2*d3 for which 

the number N = 2*(d1 + d2 + d3 – 6)*(C – 2) – 1 is also a Carmichael number. 

 

Conjecture 2: There exist an infinity of n-Carmichael numbers C = d1*d2*…*dn for 

which the number N = 2*(d1 + d2 +…+ dn – 2*n)*(C – 2) – 1 is also a Carmichael 

number. 

 

50. Study the following conjecture:  

 

Conjecture: For any Carmichael number C, except for a set of definable exceptions, is 

true at least one of the two following statements:  

(1) C – 1 is divisible by s(C) – 1; 

(2)  C – 1 is divisible by s(C) + 1, where s(C) is the sum of digits of C. 

Note: The first exception is the first Carmichael number, 561, and the second exception is 

the 15-th Carmichael number, 63973; the majority of Carmichael numbers satisfy the 

relation (1), which is also the case of primes: there are 23 primes p for which the relation 

p – 1 is divisible by s(p) – 1 is true (i.e. the primes 11, 13, 19, 31, 37, 41, 43, 61, 71, 73, 

101, 103, 109, 113, 127, 151, 157, 163, 181, 191, 193, 199, 211) smaller than the first 

prime for which the relation p – 1 is divisible by s(p) + 1 is true, i.e. the prime 241, for 

which is also true the relation p – 1 is divisible by s(p) – 1. 

Observation: For C = 46657 we obtain (46657 – 1)/(28 – 1) = 1728 = 1729 – 1; are there 

any Carmichael numbers C1 and C2 for which (C1 – 1)/(s(C1) – 1) = C2 – 1? 

 

51. Study the following conjectures:  

 

Conjecture 1: Any Carmichael number C can be written as C = (n*(n + p))/8, where n is 

non-null positive integer and p is prime or power of prime. 

 Examples: 

561 = (51*(51 + 37))/8; 1105 = (85*(85 + 19))/8; 1729 = (104*(104 + 29))/8; 2465 = 

(136*(136 + 3^2))/8; 2821 = (104*(104 + 113))/8. 

  

Conjecture 2: There is an infinity of Carmichael numbers of the form (104*(104 + p)/8, 

where p is prime (for p = 29 and 113 are obtained Carmichael numbers 1729 and 2821). 

 

Conjecture 3: There is an infinity of primes p of the form p = 7*q – 104, where q is a 

prime of the form 6*k + 1. 

 Examples: for q = 19, 31, 43, 79 we obtain p = 29, 113, 197, 449 

 

Conjecture 4: There is an infinity of primes p of the form p = q1*q2 – 8*(q1 + 6), where 

q1 and q1 + 6 are primes of the form 6*k + 1 and q is also prime of the form 6*k + 1. 

Examples: for (q1, q2) = (13, 31), we obtain p = 251; for (q1, q2) = (31, 19), we obtain p = 

293. 

 

52. Study the following conjecture:  

 

Conjecture: Any Carmichael number C can be written as C = (n*(n + a))/(a + 1), where 

n and a are non-null positive integers. 

 Examples: 

561 = (33*(33 + 1))/2; 1105 = (65*(65 + 3))/4; 1729 = (91*(91 + 4))/5; 2465 = 

(145*(145 + 8))/9; 2821 = (91*(91 + 2))/3. 
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53. Study the Poulet numbers P1 and P2 that satisfy the relation P1 + p*(p – 1) = P2 and the 

ones that satisfy the relation P1 + 2*p*(p – 1) = P2, where p is prime. Are there any pairs 

of Poulet numbers beside (P1, P2) =  (1387, 1729) that satisfy the first relation and beside 

(341, 561) that satisfy the second relation? 

 It can be seen that 1729 = 1387 + 18*19 and 561 = 341 + 2*10*11. 

 

Conjecture 1: For any Poulet number P1 there is an infinity of primes p such that P1 + 

p*(p – 1) = P2, where P2 is also a Poulet number. 

 

Conjecture 2: For any Poulet number P1 there is an infinity of primes p such that P1 + 

2*p*(p – 1) = P2, where P2 is also a Poulet number. 

 

54. Study the Carmichael numbers of the form 2821 + 26520*n; for n = 0, 1 and 7 are 

obtained the Carmichael numbers 2821, 29341 and 188461. 

 

Conjecture: There is an infinity of Carmichael numbers C of the form C = 2821 + 

26520*n, where n is non-negative integer.  

 

55. Study the Carmichael numbers of the form p^4 + 60*p, where p is prime; for p = 7 and 

13 are obtained the Carmichael numbers 2821 and 29341. 

 

Conjecture: There is an infinity of Carmichael numbers C of the form C = p^4 + 60*p, 

where p is prime.  

 

56. Study the following conjecture:  

 

Conjecture: Any Carmichael number C can be written as C = 2^n*p + q, where p and q 

are primes and abs{p – q} = 10*k, where k is non-negative integer. 

 Examples:  

C = 561 = 2*277 + 7 = 2*257 + 47 = 2^3*59 + 89; 

C = 1105 = 2^2*269 + 29 = 2^2*263 + 53 = 2^6*17 + 17; 

C = 1729 = 2*853 + 23 = 2^3*211 + 41 = 2^4*107 + 17.  

 

57. Study the Carmichael numbers of the form n*(n + 1) + p^2, where n is non-null positive 

integer and p is prime; for (n, p) = (23, 3) is obtained 561 and for (n, p) = (32, 7) is 

obtained 1105. 

 

Conjecture: There is an infinity of Carmichael numbers C of the form C = n*(n + 1) + 

p^2, where n is non-null positive integer and p is prime. 

 

58. Study the Carmichael numbers C which can be written as C = 2^m + p^n, where p is 

prime and m, n are non-null positive integers. 

 Examples: 561 = 2^9 + 7^2 = 2^5 + 23^2; 2465 = 2^6 + 7^4. 

 

Conjecture: There is an infinity of Carmichael numbers C which can be written as C = 

2^m + 7^n, where m and n are non-null positive integers. 

 

59. Study the Carmichael numbers C which can be written as C = (p^2 + n)/(n + 1), where p 

is prime and n non-null positive integer. 

 Examples: 561 = (41^2 + 2)/3; 1105 = (47^2 + 1)/2. 
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Conjecture: There is an infinity of Carmichael numbers C which can be written as C = 

(p^2 + n)/(n + 1), where p is prime and n non-null positive integer. 

 

60. Study the Carmichael numbers C which can be written as C = (p^2*q^2 + n)/(n + 1), 

where p and q are primes and n non-null positive integer. 

 Example: 1729 = (7^2*23^2 + 14)/15. 

 

Conjecture: There is an infinity of Carmichael numbers C which can be written as C = 

(p^2*q^2 + n)/(n + 1), where p and q are primes and n non-null positive integer. 

 

61. Study the Carmichael numbers C which can be written as C = (sqrt(4*p – 1)/3) + 2, 

where p is prime. For p = 59527711 is obtained C = 8911, for p = 83999917 is obtained 

C = 10585, for p = 188155441 is obtained 15841. 

 

Conjecture: There is an infinity of Carmichael numbers C which can be written as C = 

(sqrt(4*p – 1)/3) + 2, where p is prime. 

 

62. Study the following triplets of primes: (p, p + C1 – 1, p + C2 – 1), where C1 and C2 are 

Carmichael numbers. For p = 59, C1 = 561 and C2 = 1729 we have the triplet of primes 

(59, 619, 1787) and the relation 59 + 619 + 1787 = 2465, also a Carmichael number. Are 

there any other numbers p, C1, C2, C3 that satisfy this relation? 

 

63. Study the numbers of the form N = abs{C3 – (C1 + C2 – 2)}, where C1, C2 and C3 are 

Carmichael numbers; appears that N is often prime of product of very few prime factors; 

for C1 and C2 equal to 1105 and 1729, we obtain N prime for C3 equal to 561, 1729, 

2465, 2821, 6601, 8911, 10585, 15841, i.e. for the first 8 from 9 Carmichael numbers. 

 

64. Study the following conjecture: 

 

Conjecture: Any Carmichael number C can be written as C = p*q + q – p, where p and q 

are primes (appears that often q – p is of the form 10*k). 

Examples: C = 561 = 19*29 + 29 – 19; C = 1729 = 23*73 + 73 – 23. 

 

65. Study the following conjectures: 

 

Conjecture: Any 3-Carmichael number C divisible by 5 can be written as C = p*(q – 

2^n), where p is one of its prime factors beside 5, q is a prime and n is non-null positive 

integer. 

Examples:  

C = 1105 = 13*(89 – 2^2) = 17*(67  – 2);  

C = 2465 = 17*(149 – 2^2) = 29*(89 – 2^2);  

C = 10585 = 29*(367 – 2) = 73*(149 – 2^2). 

 

Conjecture:  For any p odd prime, p ≠ 5, there exist an infinity of numbers n such that q 

= 5*p + 2^n is prime. 

Example: for p = 3, q is prime for n = 1, 2, 3, 4, 5, 6. 


