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ABSTRACT: In this paper we present a method to get the prime counting function π(x) and 
other arithmetical functions than can be generated by a Dirichlet series, first we use the general 
variational method to derive the solution for a Fredholm Integral equation of first kind with 
symmetric Kernel K(x,y)=K(y,x), after that we find another integral equations with  Kernels 
K(s,t)=K(t,s) for the Prime counting function and other  arithmetical functions generated by 

Dirichlet series, then we could find a solution for  π(x) and ( ) ( )
n x

a n A x
≤

=∑ , solving [ ] 0Jδ φ =  

for a given functional J, so the problem of finding a formula for the density of primes on the 
interval [2,x], or the calculation of the coefficients for a given arithmetical function a(n), can be 
viewed as some “Optimization” problems that can be attacked by either iterative or Numerical 
methods (as an example we introduce Rayleigh-Ritz and Newton  methods with a brief 
description)

Also we have introduced some conjectures about the asymptotic behavior of the series 

( ) n
n

p x

x p
≤

Ξ = ∑ =Sn(x) for n>0 , and a new expression for the Prime counting function in terms 

of the Non-trivial zeros of  Riemann Zeta and its connection to Riemman Hypothesis and 
operator theory.

• Keywords: =PNT (prime number theorem), Variational Calculus, Maxima and minima, 
Integral Transforms.

1. VARIATIONAL METHODS IN NUMBER THEORY:

It was Euler, in the problem of “Brachistochrone” (shortest time) or curve of 
fastest descent, who introduced the preliminaries of what later would be called, 
“Calculus of Variations”, he solved the problem minimizing the integral below , 
where “t” is the time employed by the particle to go from (0,0) to another point 
on the plane (x, y) 0x ≠ below (0,0), using Newtonian mechanics he found the 
expression:
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y
dt t

y

+ =∫
&

          ( for constant gravity g=9.8 m/s2 and ignoring  friction) 

(1.1)

Then he got that the minimum of the integral above was a differential equation 
describing a cycloid, later Lagrange used this Calculus of Variations to describe 
the mechanics of a particle introducing the Lagrangian and the action functional 
S, whose extremum gave precisely the equations of motion for the particles:

0
j j

S d L L

q dt dq q

δ
δ

 ∂ ∂= = −   ∂ &
       ( , , )

b

j ja
S dtL q q t= ∫ &        j

j

dq
q

dt
= & (1.2)

The equations above are the Euler-Lagrange equations of motion for the 
system defined by the Lagrangian L, this formulation is equivalent to Newton 
second law, although its use is more extended, as you only need to know the 

Kinetic part of the particle (usually of the form 
,

1

2

N
ij

i j
i j

T Q q q= ∑ & & ) and a potential V 

related to the force ( )F V= −∇
r r

 is the  force of the system , Here Q is an 
Hermitian Matrix.

Now we can ask ourselves if we can generate a similar Variational principle for 
number theory, for the case of a Fredholm equation of second kind, with 
K(x,y)=K(y,x) we have:

2[ ] ( ) ( ) ( ) ( , ) ( ) ( )
b b b b

a a a a
J f a dxf x g x f x dx dx dyK x y f x f y= + −∫ ∫ ∫ ∫ (1.2) 

Taking the functional derivative.

[ ]
0 ( ) ( ) ( , ) ( )

( )

b

a

J f
af x g x dyK x y f y

f x

δ
δ

= = + − ∫     (1.3)

0

[ ( )] [ ]
    lim

( )

F F x y F
a

x ε

δ φ εδ φ
δφ ε→

+ − −∈ =¡ (1.4)

So we have derived for this especial case the Euler-Lagrange equation for this 
Integral equation, for the cases of the prime counting function and an 
arithmetical function that can be generated via Dirichlet series of the form:

1

( ) ( ) s

n

g s a n n
∞

−

=
= ∑          

1

( ) ( )
x n

A x a n
≥ >

= ∑ (1.5) 

We can give the 2 Functional, so their maximum or minimum are precisely 
some integral equations defining these arithmetical functions: (a=0)
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2
sts

J E E s dx ds dt e E s E t
s

ζ∞ ∞ ∞ −= − −∫ ∫ ∫     0( ) ( )tE t E eπ=    (1.6)

1 0 0 0

( )
[ ] ( ) ( ) ( )stg s c

J s dx ds dte s t
s c

φ φ φ φ
∞ ∞ ∞ −+= −

+∫ ∫ ∫       0( ) ( )t ctt A A e eφ −=    (1.7)

Minimizing these Functional 0,1 0Jδ =  with respect to E(s) and φ(s) and making 

the change of variable t=ln(x) we get the usual integral equation for π(x) and 
A(x) namely:

10

( )
( ) ( )

s c

A x
g s c s c dx

x

∞

+ ++ = + ∫          22

ln (2 ) ( )

2 ( 1)s

s x
dx

s x x

ζ π∞
=

−∫    ,  
2 1

(1 )
(2 )

s

p

p
sζ

−− =∏
(1.8)

With c>0 and s>1/2 (the election of g(s+c) and 2s inside the second integral is 
to avoid the singularities inside the integrals due to a pole of the Riemann zeta 
function at s=1), this allows us to study the prime counting function and other 
arithmetical functions by using the Optimization techniques, including some 
iterative methods (gradient-descent, Newton method…) to calculate their 
“shape”, as an example of these iterative methods we can get the Maximum or 
Minimum for a given Functional in the form:

1 2

[ ]

[ ]
n

n n
n

J

J

δ φφ φ
δ φ+ = −                   1|| ||n nφ φ ε+ − <    n →∞   (1)  J=J0 , J1           (1.9)

So we “stop” the process when the condition on the right (1.9) is fulfilled, of 
course we need an initial “guess” function, for the exponential prime counting 

function with J0 we can use the exponential integral E(t)= ( )
t

i x

e
E x dt

t

−∞

−
= −∫  or 

simply E(t)=exp(t)/t ,using some upper and lower bounds for π(x), for our 
arithmetical functions if their sum satisfies that A(x)=O(v(x)), for a known 
function v(x) we could use our trial function in the form, v(et)e-ct and take into 
account that A(n)-A(n-1)=a(n)

The use of an appropriate trial function to begin with the iterative process is not 
casual, as the Newton iterative method could fail and diverge for certain trial 
functions, other inconveniences are that to compute Newton method we should 
need to know the value of the first and second functional derivative, which is not 
always available or easy to obtain, other optimization methods although slower 
in convergence are more secure, generally we will use a Gradient method for 
infinite-dimensional space to get an initial and convergent set of trial functions 
and then, to improve the convergence, we will use a Newton-like method.

For the case that our arithmetical function is generated by a power series:

0

( ) ( )n

n

G x x p n
∞

=
= ∑      |x|<R (Radius of convergence)    Where ( ) ( )

n t

B t p n
≤

= ∑
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We can use the functional J1 with φ(t)=B(t) with c=0 and G(e-s)=g(s), to get the 
values of p(n) and B(t), by obtaining the maximum or minimum of this J.

Another useful method is if we choose our trial function to be of the form 

0

( ) ( )
N

n n
n

t C W tφ
=

≈ ∑  Where the functions Wn(t) are known, so our Functional J 

becomes  

0,1 0 1 2( , , ,......., )NJ J C C C C= And to obtain the Cn we need to solve the system 

0   n=0,1,2,3,.......,N
n

J

C

∂ =
∂    With N→∞  (Rayleigh-Ritz method)

For the study of Prime counting function π(et) when t→∞, we could choose 

( ) ( )n i

t
W t E

n
=  , n>0 so we can introduce some correction to the PNT 

( ) ( ) ( )t t
ie E t Li eπ → =  for  big t, or  simply if we use the trial function ( )iaE bt  and 

take 0
J J

a b

∂ ∂= =
∂ ∂

 ,we calculate the Hessian symmetric  Matrix with elements: 

2

,i j
i j

J
H

C C

∂ =
∂ ∂  We will have a Maximum or a Minimum depending on if H is 

negative or positive definite.

2 .ON THE ASYMPTOTIC BEHAVIOR OF THE SUMS OVER 
PRIMES, BEYOND THE PRIME NUMBER THEOREM:

Now that we have given a method to obtain π(x) by Variational methods, after 
that we could study every sum over primes:

( )
( ) ( )

p

d x
x x p

dx

ππ δ′ = = −∑     
2

( ) ( ) ( )
x

p x

f p dt t f tπ
≤

′=∑ ∫   p=sum over primes.   (2.1)

Where  we  have  introduced  the  Dirac  delta  function  with  definition  and 
properties:

( ) ( ) ( )
b

a
dxf x x a f aδ − =∫           ( )2 ( ) i x ax a d e ωπδ ω

∞ ± −

−∞
− = ∫  (2.2)

Now we would be interested in some asymptotic behavior for the cases f(t)=tn 

as a conjecture, we have that the probability of a random integer number being 
prime is 1/ln(x) then we have the approximate (asymptotic) relationships:

1

2
2

( ) ( )
ln( ) ln( )

n nx xn n
n

p x k

k t dt
x p Li x

k t
+

≤ =
Ξ = → → =∑ ∑ ∫          n=0, n>0 (2.3)
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1

ln ( )
( ) ln(ln( )) ( 1)

. !

k
n k

k

x
Li x x n

mm
γ

∞
+

=
= + + +∑  (2.4)

The last identity is found on tables for indefinite integrals, with γ the Euler-
Mascheroni constant, for n=0 we get the Prime Number Theorem (PNT) 

( ) / ln( )x x xπ → , for n=1 we get the asymptotic relation:

1
1

( ) ( )
n

i n
i

n p p
=

Σ = = Ξ∑    Setting  ln( )np n n→  (3) 
2

2( )
2ln( )

x
Li x

x
→     

2
( )

ln( )

x dt
Li x

t
= ∫

(3) is the asymptotic expression for the n-th prime, we use the European 
convention so Li(2)=0, expanding the Li(x2) , keeping only the first term and 
using the prime number theorem to give an expression for n-th prime, we get : 

2 ln( )
( )

2

n n
nΣ →

For the case n=-1 the terms inside the sum over k cancel, so we get that the 
Harmonic prime series (as shown before, by Euler and others) diverges in the 
form ln(ln(x)) as x→∞ , Or  if our conjecture is valid, we can study the growth-
rate of the series :

1 1( ) ( ) ( )n n n
n

p x

x p x Li xπ + +

≤
Ξ = → →∑      

1

2
( ) ( )

xn n n

p x

p dt t t xπ π +

≤

′= →∑ ∫      (2.5)

Differentiating both sides: 1

( )
( 1)

( )n

x
n

x

π
π +

′
→ +

′  With 
1

( )
ln( )

d
x

dx x

ππ ′ = →  (PNT)

The last is how the derivative of the prime counting function behaves for big x, 
using the relation (2.4) with an function F(x) that is analytic near x=0 and has 

the limit lim ( )
x

F x
→∞

= ∞ ,then the asymptotic expression for the sum :

1

0

( ) ( ) ( )n

p x n

F p c n Li x
∞

+

≤ =
→∑ ∑            

1
( ) (0)

!

n

n

d F
c n

dx n
=  (2.6)

Where we have used the asymptotic notation ( ) ( )f x g x→  meaning that 
( )

lim 1
( )x

f x

g x→∞
=

o Sum over primes:

For other convergent prime sums, first we use the identity:

0 0

( 1) [ ( ) ( 1) 1] ( ) 2 (2) ( ) ( 1) ( )n n

n p n

n n f n f f x f nπ π
∞ ∞

= =
− − − + = − + −∑ ∑ ∑    (2.7)
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To obtain a relation between a prime series and an alternating series, valid 
when both, the alternating series and the sum over all primes for f(x) converge, 
the main purpose of this is that we can accelerate the convergence of the prime 
series using only a few values of  ( )nπ  n<100, as an example putting f(x)=x-s .

1

0

( 1) [ ( ) ( 1) 1] 2 ( )n s s s

n p

n n n p sπ π η
∞

− − −

=
− − − + = − +∑ ∑ (2.8)        

Where we have introduced the Prime Zeta function ( ) s

p

P n p−= ∑  

1( ) (1 2 ) ( )  Dirichlet Zeta functionss sη ζ−= − , The Euler (forward) transform for 
alternating series is given by the expression:

1
0 0

(0)
( 1) ( ) ( 1)       ( ) ( 1) ( )

2

n
n n

n
n n

f
f n f n f n f n

∞ ∞

+
= =

∆− ≈ − ∆ = + −∑ ∑  (2.9)

Euler method allows you to accelerate the convergence of an alternating series 
like (5) with general terms ( 1) [ ( ) ( 1) 1] ( ) n n n f nπ π− − − + and n(-1) ( )f n  providing 
that f(n)>f(n+1) , if Euler transform is not good or converges worse than the 
initial series, we could use the backward Euler transform with the Backward 
difference operator ( ) ( ) ( 1)f n f n f n∇ = − − ,the main purpose of using Euler 
transform is to be able to compute the expression 

0

2 (2) ( ) ( 1) ( )n

p n

f f x f n
∞

=
− + −∑ ∑ . For a given f with an small error, knowing only a 

few values of the Prime counting function, so we can extract the behavior or 
approximate the sum for the series over all the primes, calculating the sum of 
the alternating series with general term (-1)nf(n) , which is in general, easier to 
calculate, this expression to evaluate prime sums can also be applied to 
products.

Even if the sum is divergent , we could use the functional equation for Riemann 
function relating  ( )       (1 )s sζ ζ→ −  so using the definition of the Prime zeta 
function in terms of the Möbius formula and Riemann Zeta :

1

1
1

( )
( 1) ln ( ) ( )             2, 4,6,...

( )

r
s r r

r
p n

d ks
p p n ks

ds ks

ζµ
ζ

−∞

−
=

′ −− = ≠ − 
∑ ∑  s > 0  (2.10)

and  r being a positive integer bigger than 1 , we can consider the infinite sum 
on the right being the regularized value of the divergent prime sum on the left

From equation (1.8) we can find a Lambert series representation for the prime 
counting function, introducing the notation ( ) ( )nE n eπ= , and s=-lnx we can find 
the Lambert series for Prime number counting function.
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1

( ln ) ( ln )
( ( ) ( 1))

1 1 ( ln )

n

n
n

x x x
E n E n n x

x x x

ζ ζ
ζ

∞

=

′∂ − − − − = − = − ∂ − 
∑ (2.11)

In this method we approximate the sum over all the primes  ( )
p

f p∑ with the 

series (Euler transformation of alternating series) 

1
0 0

2 (2) ( 1) ( ) ( 1) (0)    
2

n
n n

n
n n

f f n b
∞ ∞

+
= =

∆− − − −∑ ∑ ( )( ) ( ) ( 1) ( )b n n n f nπ π= − −    (2.12) 

So expression (2.12) converges faster thant the sum ( )
p

f p∑

3.SUMS OVER ARITHMETICAL FUNCTIONS:

In many important cases all the arithmetical functions which are useful in 

number theory has a Dirichlet series in the form  
1

( )
( )

s
n

a n
G s

n

∞

=

=∑  , Where G(s) 

includes powers or quotients of the Riemann zeta function for example

1

1 ( )

( ) s
n

n

s n

µ
ζ

∞

=

= ∑        
1

'( ) ( )

( ) s
n

s n

s n

ζ
ζ

∞

=

Λ− = ∑         
1

(2 ) ( )

( ) s
n

s n

s n

ζ λ
ζ

∞

=

= ∑    (3.1)

1

( ) | ( ) |

(2 ) s
n

s n

s n

ζ µ
ζ

∞

=

= ∑       
1

( 1) ( )

( ) s
n

s n

s n

ζ ϕ
ζ

∞

=

− = ∑        
2

1

( ) ( 1) ( 2) ( )

(2 2) s
n

s s s n

s n

ζ ζ ζ σ
ζ

∞

=

− − =
− ∑   (3.2)

The definition of the functions inside (3.1) and (3.2) is as follows
• The Möbius function, ( ) 1nµ =  if the number ‘n’ is square-free (not 

divisible by an square) with an even number of prime factors , ( ) 0nµ =  if 
n is not squarefree and   if the number ‘n’ is square-free with an odd 
number of prime factors.

• The Von Mangoldt function ( ) logn pΛ =  , in case ‘n’ is a prime or a prime 
power and takes the value 0 otherwise

• The Liouville function  ( )( ) ( 1) nnλ Ω= −   ( )nΩ  is the number of prime 
factors of the number ‘n’ 

• | ( ) |nµ  is 1 if the number is square-free and 0 otherwise

•
|

1
( ) 1

p n

n n
p

ϕ  
= − 

 
∏  , the meaning of  |p n  is that the product is taken only 

over the primes p that divide ‘n’.
• ( )nσ  is the divisor function, it counts the number of divisors of ‘n’

To obtain the coefficients of the Dirichlet series we can use the Perron formula

1
1 1

( ) ( )
( )

s s
n

a n A x
G s s

n x

∞∞

+
=

= =∑ ∫      
1

( ) ( ) ( )
2

c i s

n x c i

x
A x a n G s ds

i sπ

+ ∞

≤ − ∞

= =∑ ∫    (3.3)
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If the function G(s) includes powers and quotients of the Riemann zeta function 
we can use Cauchy’s theorem to obtain the explicit formulae for example

( )
2

1 1

( ) ( ) 2 2
' '( 2 )( 2 )

k nN

n x k nk k

x x
M x n e

n n

ρ

µ
ρ ζ ρ ζ

−∞

≤ = =

 
= = − + ℜ +   − − 

∑ ∑ ∑    (3.4)

2

1 1

'(0)
( ) ( ) 2

(0) ( 2 )

k nN

n x k nk

x x
x n x e

n

ρζ
ζ ρ

−∞

≤ = =

 
Ψ = Λ = − − ℜ +  − 

∑ ∑ ∑                 (3.5)

( ) ( )1

(2 )
( ) ( ) 1 2

1/ 2 '

kN
k

n x k k k

xx
L x n e

ρ ζ ρλ
ζ ρ ζ ρ≤ =

 
= = + + ℜ    

∑ ∑                      (3.6)

( )

2

2
1 1

6 ( )2
( ) | ( ) | 1 2

' ( 2 ) '( 2 )

k

k
nN

n x k nk k

x
x x k

Q x n e
n k

ρ ρζ
ζµ

π ρ ζ ρ ζ

−∞

≤ = =

  
   −  = = + + ℜ +

− − 
  

∑ ∑ ∑   (3.7)

( )
2 2

2
1 1

( 1)1 3 ( 2 1)
( ) ( ) 2

6 ' ( 2 ) '( 2 )

k nN
k

n x k nk k

xx x k
x n e

n k

ρ ζ ρ ζϕ
π ρ ζ ρ ζ

−∞

≤ = =

 − − −Φ = = + + ℜ +   − − 
∑ ∑ ∑     (3.8)

( )

1
2

2 3
2

2
1

1 1
1 5 (3) 2 2

( ) ( ) 2
48 12 4 ( 2) ' 2

k

k k
N

k

n x k k k

x
x x x

T x n e

ρ ρ ρζ ζ
ρζσ ζ

π ρ ζ ρ

−

≤ =

    + −          = = − − + + ℜ  +  
  

∑ ∑

                                                                                                                                      (3.9)
In all cases N must be taken in the limit  N → ∞  , also we have for the Riemann 
zeta function

2 1 2

( 1) (2 1)(2 )!
'( 2 )

2

n

n n

n n
n

ζζ
π+

− +− =    ( )1
'(0) log 2

2
ζ π= −       

1
(0)

2
ζ = −      (3.10)

The sum of an arithmetical function ( ) ( )
n x

A x a n
≤

= ∑  is an step function, therefore 

its derivative in distributional sense must satisfy  
1

( ) ( )
( log )bx

b
n

dA x a n
e x n

dx n
δ

∞
−

=

= −∑ , 

so if we take the derivative with respect to ‘x’ and make a change of variable 
tx e=  inside every formulae  (3.4) to (3.9).

( )
( ) ( )

1
2

2

1 1 1

( ) 1
(log ) 2 ( )

' ' 2

N x n
k

n k nk

hn
g n e dxg x e

nn

γµ
ζ ρ ζ

 ∞∞ ∞ − +  

= = = −∞

 
= ℜ +   − 

∑ ∑ ∑ ∫     (3.11)

( )
( ) ( )

( )1 1

' 2( ) 1
(log ) ( ) 2

2 1/ 2 '

N
k k

n k k

hn
g n dxg x e

n

ζ ρ γλ
ζ ζ ρ

∞∞

= =−∞

 
= + ℜ    

∑ ∑∫     (3.12)
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( )
13
44

1 2
1 1 14

| ( ) | 6 1 '( )2
(log ) ( ) ( )

' 2 2 '( 2 )

k
N x nx

k

n k nk

h
n n
g n dxg x e e dxg x e

n
n

γ
ρµ ζζ

π ζ ρ ζ

 ∞ ∞∞ ∞ − +  

= = =−∞ −∞

  
   −   = + ℜ +  −  

  

∑ ∑ ∑∫ ∫  

(3.13)

( )
( ) ( )

13 2
22

2
1 1 1

( ) 6 '( 2 1)
(log ) ( ) 2 1 ( )

' '( 2 )

N x nx k
k

n k nk

hn n
g n dxg x e e dxg x e

nn

γϕ ζζ ρ
π ζ ρ ζ

 ∞ ∞∞ ∞ − +  

= = =−∞ −∞

  − −= + ℜ − +   − 
∑ ∑ ∑∫ ∫  

(3.14)

( )

3 72
4 4 4

5 2
1 4

1

( ) 1 1 15
(log ) ( ) ( ) ( )

12 2 (3)

1
2 22 1 1

' 2 2 2 2

x x x

n

k k
N

k k k

k k

n
g n g x e g x e g x e

n

h
e

k

σ
π ζ

γ ρ
ρ ρ ρζ ζ ζ

ζ ρ ρ

∞ ∞ ∞−∞

= −∞ −∞ −∞

=

= − − + +

    +          ℜ − +        +          

∑ ∫ ∫ ∫

∑
     (3.15)

Where ( )g x  is an smooth test function , so it has a Fourier transform and the 

integral ( ) ( ) cxH c dxg x e
∞

−

−∞

= ∫  exists and is finite for every real number (positive or 

negative) ‘c’,  and  
1

( ) ( )
2

i xg dxh x e αα
π

∞

−∞

= ∫   or  
0

1
( ) ( ) cos( )g dxh x xα α

π

∞

= ∫  

depending on if the test function are even or not ( ) ( )h x h x= − .

The sum over the Riemann zeros must be done as follows, we take the sum in 

pairs of zeros 
1

( )
2k k kiρ γ γ= +  and  

1
( )

2k k kiρ γ γ= −  , also for the imaginary part 

of the zeros , they must be summed in pairs kiγ  and kiγ−  to avoid problems of 
convergence, that is the meaning of the expression eℜ  inside each of the 
formulae (3.12) to (3.15).

These formulae are very similar to the Riemann-Weil explicit formula for the 

Chebyshev and Von Mangoldt functions ( ) ( )
n x

x n
≤

Ψ = Λ∑  

( )
1 0

( ) 1 ' 1 (0)
(log ) log

4 4 2 2 2 k
n k

n ir i h
g n dr h h

n
π γ

π

∞∞ ∞

= =−∞

Λ Γ    = + + − −   Γ    
∑ ∑∫    (3.16)

4.EXPRESSION FOR π(x)  AS A SUM OVER ZEROS:
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If we use the expressions of the Prime Counting function via Mellin transform:

1

0

1 ( )
( ) ( )   ( )

2

c is

c i

P s
P s s dx x x x ds

i s
π π

π
∞ + ∞− −

− ∞
= → =∫ ∫  (4.1)   

Where P(s) is the “Prime zeta function” (sum over the inverse powers of primes) 
that satisfies:

1 1

( ) ( )
ln ( )          ( ) ln ( )

n n

P ns n
s P s sn

n n

µζ ζ
∞ ∞

= =
= → =∑ ∑     (4.2)

Where we have introduced the Mertens and Möbius functions related by the 
sum: 

( ) ( )
n x

M x nµ
≤

= ∑ . Now using the Abel sum-formula with the Möbius function:

1

( ) ( ) ( ) ( )
n

n f n dxM x f xµ
∞ ∞

−∞
=

′=∑ ∫      and  0 ( ) ( )
dM

M x M x
dx

′ ′= =  (4.3)           

2 +1

0
1

1
( ) ( )  iff x( 1) 2

( ) 2 2
( ) (2 )! (2 1)

( )                Otherwise

k
nn

nk k

M x x Zx
M x

n n n x
M x

ρ

ρ

µπ
ζ ρ ρ ζ

−∞

=

 − ∈−  = − +  ′ +   
∑ ∑  

(4.4)

In case that there are no multiple Non-trivial roots of the Riemann Zeta function 
so  

( ) 0kζ ρ′ ≠ ,  1
1

1
( ) ( 1)  e( s) >0

1 2
n s

s
n

s nζ
∞

−
−

=
= − ℜ

− ∑  , (1)ζ = ∞      (4.4)

If we combine expressions (4.1-2) involving P(s) and perform the Mellin 
transform, using the next identity obtained by Riemann:

1 /

1/ /
2

ln ( ) 1
( ) ( ) ln 2

2 ( 1) lnn

c i s n n

c i x

n ns
ds x Li x Li x dt

i ns t t t
ρ

ρ

ζ
π

+ ∞ ∞

− ∞
= − − +

−∑∫ ∫     (4.5)   

For n=1 we obtain the “Riemann Prime counting function”  

1/

2
1

( ) 1
( ) ( ) ( ) ln 2

( 1) ln

n

x
n

x
J x Li x Li x dt

n t t t
ρ

ρ

π∞ ∞

=
= = − − +

−∑ ∑ ∫        (4.6)

Then the Prime counting function in terms of the non-trivial zeroes would read:
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0

1

( )1
( ) ln ( )

2

c i

c i

M n
x ds ds ns

i ns
π ζ

π
+ ∞ ∞

− ∞

′
= ∫ ∫            (4.7)

 (Mellin inverse transform plus Abel sum formula)

1/

/1/
2 21

1
( ) ( ) ( ) ( ) ln 2

( 1) ln
k

u

uu

x

du
x G u Li x Li x dt

u t t t
ρ

ρ
π

∞ ∞ 
= − − + − 

∑∫ ∫   (4.8)       

2

1

( 1) 2
( )

( ) (2 1)! (2 1)

k
nn

nk

u
G u

n n n u

ρ

ρ

π
ζ ρ ζ

∞

=

−  + = ′ − +  
∑ ∑       (4.9)

And, for the sum over primes of a certain function f(x) using Abel formula and 
the result above, we have that:

1
( 1) 1

222 2 1

1
( ) ( ) ( ) ( ) ( )

ln( ) ln( )
( 1) ln( )

u ur r

p r u

du x x
f p dt t f t d dx G u f x

u x x
x x x

ρ

ρ
π π

− −
∞

≤

 
 ′= = − −  − 

∑ ∑∫ ∫ ∫

(4.10)

A faster method to get the Prime counting function is using the definitions for 
J(x) and M0 (x), and then using  the Möbius inversion formula together with 
Abel sum formula :

1/
1/ 1/0

1 1   1

( )( ) ( )
( )           (x) ( ) = ( )

n
n u

n n

dM ux n
J x J x J x

n n u

π µπ
∞∞ ∞

= =
= → =∑ ∑ ∫          (4.11)

The sum over the Non-trivial roots of ( )sζ , must be summed in order of 
increasing [ ]m ρℑ  imaginary part to avoid some problems with convergence:

1

[ ] 0

( ) [ ( ) ( )]k k k

m

f x f x f xρ ρ ρ

ρ ρ

−

ℑ >
= +∑ ∑     (4.12)

The sum over the Non-trivial zeros , (those different from 
( 2 ) 0  n=1,2,3,4,5,.....nζ − = ) has a deep connection with operator theory, if 

Riemann Hypothesis is correct then  n

1

2 niEρ = +  Where the En are the 

Eigenvalues of a certain Hermitian operator  T , if we could also consider the 
prime numbers to be some kind of “Eigenvalues” of a certain operator P then 
we could make the connection:

1/
ˆ

2
1

( ) 1ˆ ˆ ˆ( ) 1 ( ) ( ) 1ln 2 1
( 1) ln

n
iT

x
n

x
J x Tr Li x Li xx dt

n t t t

π∞ ∞

=

 
= = − − + − 

∑ ∫     (4.13)  
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ˆ1
( )

2

sxc i sP

c i

e
Tr ds e x

i s
π

π
+ ∞ −

− ∞

 
= 

 
∫         1̂  = Identity operator , †ˆ ˆT T=     (4.14)

Another curious relation involving Riemann Hypothesis, Logarithmic integral 
and Möbius function comes from combining Riemann-Siegel formula:

1( ) ( )
1 2 sin( ln )

ln

x Li x
x

x
x

γ

π γ γ−− ≈ − − ∑
     (4.15)

Where the sum on the right is over the imaginary part of Non-trivial zeros of the 

form 
1

     
2
i Cγ γ+ ∈ , in case RH is true then all the imaginary parts are real, 
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