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Abstract. . A new and interesting continued fraction expression is derived for Carnot efficiency. 

The derivation is based on a series combination of a set of Carnot heat engines, wherein heat 

rejected by a member of the series is absorbed by the following member of the series. Our analysis 

of this combination of Carnot heat engines shows that mathematical consistency is maintained 

only if the efficiency of Carnot heat engine is zero. This calls the attention of researchers to look 

back at the  puzzling definition of Carnot efficiency that says the efficiency of ideal heat engine 

(Carnot heat engine) is less than one, in spite of the fact that each of the steps involved in the cycle 

of operation is hundred percent efficient. 
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1.  Introduction: 

 
Carnot heat engine (CHE) is a device, which transforms heat into mechanical energy. It is an 

ideal engine and operates in a cycle consisting of four reversible steps that are described below.  

 

1. An isothermal expansion step AB, during which the system absorbs Q1 units of heat from a 

heat reservoir (HR) at temperature T1 K and delivers work of W1   (= Q1) units. 2. An adiabatic 

expansion step BC, during which no heat interaction occurs between the system and the 

surroundings, but the system delivers W2 units of work expending its internal energy. 3. An 

isothermal compression step CD, during which the system absorbs work of W3   (= Q2) units and 

rejects Q2 units of heat to a HR at temperature T2 K (T2 < T1). 4. An adiabatic compression step 

DA, during which no heat interaction occurs between the system and the surroundings, but the 

system absorbs W4 (= W2) units work to replenish its internal energy that was expended in step 2.  

 

At the end of step 4, the system completes a cycle and returns to its original state suffering no 

change. The only changes left at the end of the cycle are those suffered by the surroundings - the 

changes of heat suffered by the two HRs and the upward displacement of a standard mass in the 

gravitational field, which represents the net work, W = (W1 - W3). According to the first law of 

thermodynamics, (W1 - W3) = (Q1 - Q2). Standard books that deal with thermodynamics [1-3] give 

a description of this well known Carnot cycle.  

 

2. Carnot efficiency 
 

The thermal efficiency of Carnot heat engine (Carnot efficiency) , is defined as the ratio of work 

delivered W, to the quantity of heat Q1, absorbed from the high temperature HR. Thus, 

 

 
 

Carnot engines can be combined in series and parallel to form networks. Such combinations are 

used in many contexts in thermodynamics. For example, such combinations are used to explain 

Kelvin’s thermodynamic heating of buildings [4], the development of the absolute scale or the 

thermodynamic scale of temperature [5], to prove Clausius theorem [1]. 
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3. Derivation of the continued fraction expression for Carnot efficiency 
 

Consider a set of Carnot heat engines connected in series such that the heat rejected by one is 

absorbed by the next in the series and each engine produces the same amount of work per cycle. 

 

Using subscripts i, i+1 for an arbitrary Carnot engine in this series that interacts with heat 

reservoirs at absolute temperatures Ti, Ti+1  (Ti > T i+1) we can write, 

 

 
 

Applying it for the series combination of engines producing equal works, we get, 

 

 
          

But  =     we get,  
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This continued fraction expression is new, and is an interesting expression for Carnot efficiency. 

Adding 1 to both sides of equation (8) gives, 

 

   

 
  

 

We can write the following continued fraction expression for zero and compare it with equation 

(8) to see that ηi, i+1 = 0. 

 

 

 
 

 

Similarly, we can write the following continued fraction expression for 1and compare it with 

equation (9) to see again that ηi, i+1 = 0. 
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Thus, it is clear that η must be zero. 

 

4. Discussion 

 
Since η is the efficiency of an arbitrarily chosen member of the series, it follows that every 

Carnot engine in the series must have zero efficiency. Again since any given Carnot heat engine 

cycle can be considered as a series combination of Carnot heat engines each producing equal 

amounts of work per cycle, it follows that any given Carnot heat engine must have zero 

efficiency, in order that the definition of efficiency is mathematically consistent. Zero efficiency 

in turn demands that the temperatures of the two HRs with which the Carnot heat engine interacts 

must be equal. The cycle then becomes an isothermal reversible cycle that produces zero work 

out put as is to be expected. Thus, if η is less than one it must be zero. The only other alternative 

is η = 1. This calls the attention of researchers to look back at the  puzzling definition of Carnot 

efficiency that says the efficiency of an  ideal heat engine (Carnot heat engine) is less than one, in 

spite of the fact that each of the steps involved in the cycle of operation is hundred percent 

efficient.  

 

Prof. R Vittal Rao of Mathematics department of Indian Institute of Science, Bangalore, India, 

who reviewed the manuscript, gave a simple deduction of the result, given in the appendix.  

   

6. Appendix 
 

Let X be the infinite continued fraction 

 

 
 

Let X1, X2, ……, Xn, … be the convergents defined as 

 

                                                          X1 = 2                                                                                 (A2) 

                                                       (A3) 
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                                              (A4) 

 

                                       (A5) 

                                                                  

 

                                                                       (A6) 

 

                                                 (A7) 

 

                                                                  (A8) 

 

                                                                 (A9) 

 

                              (A10)   

 

Thus the infinite continued fraction X has the value 1. We can also see this intuitively as follows: 

 

                                                                (A11) 

 

                                   (A12) 

 

Therefore, X = 1. 

 

Consequently we get 

                                                                                                 (A13) 

 

                                                                          =  -1 + 1 = 0                                            (A14) 

 

Confirming that η is equal to zero. 
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