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Summary 
We consider a vector stochastic process with stationary 

increments of a predetermined order, whose components are 
linearly dependent, i.e. in the absence of noise vector process 
components are constrained by a system of linear equations 
(constraints). The interdependence of stochastic processes can be 
determined by a static or a dynamic model. The constraints can 
be maintained rigidly or with a specified error. We offer a method 
allowing in these conditions synthesis of an optimum filter 
structure. This method works in cases where no information 
about signal and noise static properties is available.  
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1. Introduction 
 
The works [1, 2, 3, 4] review various problems of synthesis of an 

optimum discrete filter for random series with stationary increments of a 
predetermined order (RSSI) for brevity’s sake hereinafter referred to as 
RSSI filters. Below, these problems will be generalized, supplemented and 
classified. For this purpose only end results needed by a developer of a 
control system containing filters. 

For a situation characterized by nonstationarity of measurements and 
the static model of a control object, the problem was formerly considered 
on the basis of an empirically introduced filter structure, and its solution 
was reduced to finding filter parameter values. The method proposed 
allows to synthesize a structure of an optimum  filter. The method works 
even when no information about signal and noise static properties is 
available. It is specifically found that an exponential smoothing filter is a 
special case of the proposed filter and is optimal according to the 
criterion laid down in this work. We do not know of analogues to the 
algorithm proposed. The method covers interdependent RSSI’s. The 
interdependence between them yields some additional information that 
improves the quality of filtration. If we know the filter structure, we can 
filter such processes in real-time systems. 

For dynamic systems Kalman filter is widely used. As compared with it, 
the filter proposed 

• has the capability of finding filter parameters in the absense of 
information necessary for Kalman filter synthesis (knowledge of 
auto- and intercorrelation functions of signals and noise), 

• requires considerably less amount of on-line calculations owing to 
the less complex structure of the synthesized filter. 

Furthermore, there is no solution to the problem in the mentioned 
formulation using Kalman filtration theory. 

The synthesis problem can be formulated in the following way We 
consider a vector stochastic process with stationary increments of the p-
th order whose components are linearly dependent, , i.e. in the absence 
of noise vector process components are constrained by a system of linear 
equations (constraints). This system can be either static or dynamic. The 
constraints can be maintained rigidly or with a specified error. We need 
to synthesize a filter in such a way that this dependence would remain for 
signal estimates. Various versions of this problem have been solved [1, 2, 
3, 4] by methods that are used for control design synthesis [5]. 
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The meaning of this formulation is as follows. Let us assume that 
there is a time function , whose p-th derivative has the small value 
of . The filter is constructed in such a way that in the process of 
noise filtration of function , i.e. during the calculation of function 

 estimate, the value of 

)(tZ
0)( ≈Δ t

)(tZ
)(tL )]()([)()1( tLtZt −⋅+Δ⋅− ββ  would get 

minimized,  where β  is a weight coefficient and 10 ≤≤ β . 
 

2. Multiply correlated vector stochastic 
processes 
 
Below we consider a vector RSSI-p with stationary increments of the 

p-th order whose components are linearly dependent, i.e. in the absense 
of noise the system of linear equations comprising a control object model 
is given by 0)( =ZModel . E.g., it may be of the form CZA =⋅ , where 
А is a known matrix, and С is a known vector. The constraints can be 
maintained with different degrees of strictness (including strong 
constraints). We need to synthesize a filter in such a way that that this 
dependence would remain for signal estimates. At every instant j for each 
i-th process an additive mixture  of useful signal and noise is 
observed. This mixture will be the input of the filter whose output we 
shall call . As a result of the synthesis a 

)( jZi

jL time independent matrix B is 
formed. With a known matrix B, the filtration, i.e. the calculation of 
optimum estimate , is performed by formula )( jLi )()( jWBjL ⋅= , 
where  is a determined function of measurements vector  and 
values of vectors  and  at past instants of time. 

)( jW )( jZ
)(kZ )(kL

 
So the mathematical model of a control object 0)( =XModel  

determines the interdependence between the components of the 
measurable parameters vector. The components of a vector stochastic 
process are, evidently, also constrained by this this dependence 

. This interdependence, on the one hand, complicates the 
filtration problem and the structure of the synthesized filter, but, on the 
other hand, yields some additional information that improves the quality 
of filtration. Below we consider various static and dynamic mathematical 
models. The filtration is performed in such a way that model correlations 
survive in filtered values, i.e. 

0)( =ZModel

0)( =LModel . 
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3. Optimum filter structure 
 
The following conventional signs will be used: 
i – vector component number , )( jZi Ii ≤≤0 , 
j – vector measurement instant , )( jZi Jj ≤≤0 , 
p – order of increment, 

pΔ  – increment of the p-th order, 
M  – mathematical expectation, 

10 ≤≤ iβ  – weight coefficients, 
)( jLi  – optimum estimation of vector  at instant j, )( jZi

)( jEi  – vector  filtering error at instant j-момент, where Z ji ( )

)()()( jLjZjE iii −= .      (1) 
The first increment of the discrete stochastic process 

)1()()(1 −−=Δ jZjZjZ .      
Increments of higher orders are found by the recurrent formula 

)1()()(1 −Δ−Δ=Δ + jZjZjZ ppp .     

The stochastic process  with p-th stationary increments  is 
characterized by the fact that mathematical expectation 

)( jZ pΔ

( ) 0)(1 =Δ + jZM p . 
During the process of filter synthesis there is a good reason to pursue a 
similar condition for the filter output signal, i.e. 

( ) 0)(1 =Δ + jLM p .      (2) 
Besides, it is necessary to try to meet the condition 

( ) 0)(2 =jEM .       (3) 
In this connection the following filtering quality characteristic has been 
chosen: 
 )]())()(1[( 221

,
jEjLMR iii

p
i

ji
ββ +Δ−= +∑ ,   (4) 

The filter structure is independent on J. Therefore, with the given p 
and iβ  it can be pre-synthesized and used in real-time systems. An 
optimum filter in terms of minimum quality characteristic R, is  

)()( jWBjL ⋅= ,      (5) 
where 
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B – filter matrix,  
)( jW  – detemined vector-function of measurements vector  

and values of vectors  and  at past instants k = j-1, j-
2, …, j-p; this vector is of the following form: 

)( jZ
)(kZ )(kL

)1(

)1(

...
)1(

)1(

)1(
)(

)(

)(

...
)(

)(

)(

1

2

1

1

2

1

−Δ

−Δ

−Δ

−Δ

−

Δ

Δ

Δ

Δ

=

−

−

jL

jL

jL

jL

jL
jZ

jZ

jZ

jZ

jZ

jW

p

p

p

p

      (6) 

The lentgth of this vector is 
G = 2 * p + 2.       (7) 
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4. Classification of RSSI filters 
Table 1 contains a classification of stochastic processes and related 

filters, Table 2 contains major properties of these filters. They will be 
described in more detail in one of the subsequent sections of this work.  

 
Table 1. 

process 
stationary nonstationary 

vector 1. 
scalar 

2. 
scalar 3. 

simple (no 
model) 

multiply 
correlated (see 

below) 
  

Multiply Correlated Vector Process 
Static Model Dynamic Model 

Type 1 – with strong 
constraints 

4. 
General 

case 

5. 
Synchronous 

processes 

6. 
Type 1 – with 

weak constraints 

7. 
Type 2 

8. 
Type 1 

9. 
Type 2 

 
Table 2. 
№ Process b Filter S 
1 Scalar stationary process, 

exponential smoothing filter, 
p=0, I=1 

2 (5), 
(7a) 

β  

2 Scalar nonstationary process G (5) β,p  
3 Vector process without a model  [I]*[G*I] (5) β,, Ip  
4 Vector multiply correlated 

process with the static model of 
type 1 (8)  

[I]*[G*I+U] (5) 
β,,

,,,
IU

pCA
 

5 Synchronous processes [I]*[G*I+U] (5) β,, Ip  
6 Vector process with a static 

nonstrict model of type 1 (8), 
(12)  

[I]*[G*I+U] (5) 
β,,

,,,
IU

pDA
 

7 Vector process with the static 
model of type 2 (13)  

[I]*[G*(I+U)
] 

(14) 
ββ ′′′,,

,,,
I

UpA
 

8 Vector process with a dynamic 
model of type 1 (16)  

[I]*[G*(I+U)
+U] 

(17) 
ββ ′′′,,

,,,
I

UpA
 

9 Vector process with a dynamic 
model of type 2 (19)  

[I]*[G*I+I] (5) 
β,

,,
I

pA
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In Table 2: 
b – dimension of matrix B, 
I – dimension of measurements vector, 
G – dimension of vector W – s. (7), 
U – number of object model equations, 
S – data for synthesis 
 
4.1. Scalar stationary processes 
In this case we consider a single stochastic process at p=0, I=1. An 

optimum filter in terms of minimum quality characteristic (4), is of the 
form (5), where 

)1(
)(

)(
−

=
jL

jZ
jW , ( )ββ −= 1B . 

Thus,  
( ) )1(1)()( −−+⋅= jLjZjL ββ              (7a) 

i.e. filter RSSI-0 is the same as the wide-spread exponential smoothing 
filter. 
 

4.2. Scalar nonstationary processes 
In this case we consider a single stochastic process at p>0, I=1. An 

optimum filter in terms of minimum quality characteristic (4), is of the 
form (5), where G=2p+2.  
 

4.3. Uncorrelated vector processes 
Let us consider a vector stochastic process with independent 

components at I>1. It is obvious that each component’s filter is 
synthesized independently. If components have the same orders, then 
matrix В can be constructed for a vector process as a whole. 
 

4.4. Vector process with the static model of type 1  
In this case the static model takes the form 

)()( jCjZA =⋅       (8) 
where 

A – known matrix of dimension U*I, 
C(j) – known vector that can be time variant 
U – number of model equations and the dimension of vector С. 

In this case filter (5) takes the form 
)()( jWBjL ′⋅= ,      (9) 

where 
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)(
)(

)(
jC
jW

jW =′ ,                 (10) 

i.e. the dimension of vector )( jW ′  equals I*G+U, where G=2p+2. The 
dimension of matrix B of filter (9) equals [I]*[ I *G+U]. 

For filtered vector values a condition similar to condition (8) is 
fulfilled: 

)()( jCjLA =⋅                (11) 
Let us remark here that matrix B is independent on vector . 
Therefore, 

)( jC

)( jC  can be time variant. vector 
 
4.6. Synchronous processes 
Synchronous processes are characterized by the fact that between 

each pair of processes there remains the dependence 
),(,)()( bafunckYjZjZ kba ==− . A model of such processes is a 

special case of the static model of type 1, and matrix А and vector С are 
formed automatically at a given I. E.g., at I =4 we obtain: U = 10. Let us 
remark that in this case matrix B is independent on vector { . 
Therefore, 

}kY

values { }kY  can be time variant. 
 

А С 
C[0]=Z[0]-Z[1]; 
C[1]=Z[0]-Z[2]; 
C[2]=Z[0]-Z[3]; 
C[3]=Z[0]-Z[4]; 
C[4]=Z[1]-Z[2]; 
C[5]=Z[1]-Z[3]; 
C[6]=Z[1]-Z[4]; 
C[7]=Z[2]-Z[3]; 
C[8]=Z[2]-Z[4]; 

11000
10100

01100
10010

01010
00110
10001

01001
00101
00011

−
−

−
−

−
−

−
−

−
−

=A
 

C[9]=Z[3]-Z[4]; 

 
In Figure 1 graphically shown is the result of the filtration of a 

synchronous 6-dimensional vector process with stationary increments of 
the second order, synchronous circular movement of three points (yellow 
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curve). Here each stochastic process is changed coordinates of a point, 
on which noise is superimposed (blue curve). The filtered process (red 
curve) comes close to the ideal circle. 

 

 
 

 
4.6. Static model of type 1 at weak constraints 
For the static model of type 1 the quality coefficient can be 

supplemented and presented as 
 )]]()([)]()([[ jCjLADjCjLAMRT T

j
−⋅⋅−⋅+= ∑ ,        (12) 

where D is a diagonal matrix of the dimension  of known weight 
coefficients . At  the model equations are strongly fulfilled. At 

 the model equations can be violated to the same degree as 
filtering errors, i.e. conditions (2) and (3). Finally, at 

UU *
kd 1>>kd

1≈kd
1≈kd  and different 

k the model equations can be fulfilled with different degrees of accuracy. 
 

4.7. Vector process with the static model of type 2 
The static model of type 2 takes the following form: 

)()( jZAjZ ′⋅=′′ ,              (13) 
where 

)(),( jZjZ ′′′  – two different vectors (here primes identify two 
different RSSI-р’s and all values associated with them), 
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U – number of  model equations and the dimension of 
measurements vector )( jZ ′′ , 

I – dimension of measurements vector )( jZ ′ , 
A – known model matrix of the dimension U*I. 

An optimum filter in terms of quality characteristic (4) is 

),()(
,)(

jLAjL
WBjL
′⋅=′′

⋅=′
               (14) 

where  
B – matrix of the dimension [I]*[G*(I+U)], 
W  – vector of the dimension G*( I +U), where G=2p+2, and 

)(
)(

)(
jW
jW

jW
′′
′

=                (15) 

 
4.8. Vector process with the dynamic model of type 1 
The dynamic model of type 1 takes the form 

)()1( jZAjZ ′⋅=+′′ ,              (16) 
i.e., it connects nearest objects in terms of measurement time that belong 
to two different processes. 
Here 

)(),( jZjZ ′′′  – two different vectors (here primes identify two 
different RSSI-р’s and all values associated with them), 

U – number of  model equations and the dimension of 
measurements vector )( jZ ′′ , 

I – dimension of measurements vector )( jZ ′ , 
A – known model matrix of the dimension U*I. 

An optimum filter in terms of quality characteristic (4) is 

),()1(
,)(

jLAjL
WBjL

′⋅=+′′
⋅=′

               (17) 

where 
B – matrix of the dimension [I]*[G*(I+U)+U], 
W  – vector of the dimension [G*(I+U)+U], where G=2p+2, and 

)(
)(
)(

)(
jL
jW
jW

jW
′′
′′
′

=               (18) 
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4.9. Vector process with the dynamic model of type 2 
The dynamic model of type 2 takes the form 

)()1( jZAjZ ⋅=+ ,              (19) 
i.e., it connects nearest objects in terms of measurement time that belong 
to one process. Such an object can be one with a known movement 
model. 

Here A is a known square matrix of the dimension I*I. An 
optimum filter in terms of quality characteristic (4) takes the 
form (5), where 

B – matrix of the dimension [I]*[G*I+I], 
W  – vector of the dimension [G*I+I], where G=2p+2, and 

)1(
)(

)(
−′′

=
jL
jW

jW                (20) 

 
5. Filtration procedure 
 
On the completion of filter synthesis, i.e. calculation of matrix В, 

filtration of measurements is performed  on-line by the following 
procedure: 

 receipt of vectors Z(j), C(j); 
 formation of new vector W(j) based on known vectors W(j-1), 

L(j-1), C(j), Z(j); 
 calculation of a vector of smoothed L(j) based on known vectors 

W(j), B; 
 repetition of the above calculation group for the next value of j, 

etc. 
 
6. Programming technology 
 
Programming of a RSSI-filter using the method proposed consists of 

the following stages: 
• given process analysis and selection from mathematical models of 

filters of such a model that would be adequate to the given process; 
• filter synthesis for the selected mathematical model; this stage is 

fulfilled by means of the proposed program; 
• programming of a real-time filter; for this purpose a function library 

is proposed. 
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7. Conclusion 

 
An indication can be made of a number of practically useful 

properties of the proposed method: 
• optimality of a multivariate filter for nonstationary stochastic 

processes. 
• feasibility at any order of stationary increments. 
• applicability to real-time systems. 
• applicability to cases where no information about signal and noise 

static properties is available. 
• preservation for filtered values of a known dependence between 

RSSI components; this dependence can be static, i.e. time-
independent, or dynamic, i.e. account for the association between 
component values at consequent instants of time; 

• improvement in filtration quality  owing to the additional 
information provided by a known interdependence between 
RSSI’s. 

 
The proposed method can be used in real-time systems for 

controlling objects with determined mathematical models, e.g.: 
• in power grid supervisory control systems, oil and gas 

pipelines (it is known that appropriate models are adequately 
described by a linear equation system); 

• in industrial continuous process control (mathematical 
models for these processes can often be linarized); 

• in recognition of objects whose shape changes affinely; 
• in particular, in radar systems tracking multiple object groups 

(it can be shown that in such systems the process is described 
by equations resulting from the limited maneuvring of objects 
within a group; the criterion of filter optimality in this case  is 
a rephrased requirement for filtering error minimization at a 
group acceleration limited due to physical restrictions). 
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