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Abstract 

 

A brief discussion on the problems of light scalar meson spectroscopy is given.  A mass 

mixing regime for pure scalar tetraquarks, pure scalar mesons, and a pure scalar glueball 

is presented, resulting in the realization of the experimentally observed masses in the 

scalar I = 0, I = 1, and I = 1/2 channels.  The matrix elements are calculated according to 

SU(3) flavor symmetry, OZI rules for process diagrams, and best fit to experimental data.  

The glueball-meson mixing elements are taken to be imaginary in order to account for the 

reduction in mass of the mixed glueball.  The mixing matrix elements are used to 

compute the unitary flavor amplitude matrices, which are presented and further used to 

calculate theoretical partial widths for the decays S → PiPj.  New theoretical mass and 

error for f0 (600), as well as an approximate two-pseudoscalar total width, are given in 

summary, along with the predicted branching ratio Γ(fgg → ηη)/Γ(fgg → ππ) for the pure 

glueball state which may be present in E760 neutral data.  The new states  

f0 (1200 – 1600), f0 (1790), and X(1810) are mentioned as well, and explained briefly 

according to the new mixing scheme. 
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Introduction 

One of the long-standing problems in high-energy physics is the issue of assignments for 

the scalar mesons.  Although there is considerable controversy, at least one nonet can be 

justifiably established below 2 GeV.  Numerous scalar signals emerge from ππ, 4π, ηη, 

ηπ, ηη’, Kπ, Kη, and⎯KK final state data, enough in fact to construct two or more nonets 

[1].  Although one would expect to find at least one scalar nonet, a glueball, and other 

possible scalar objects below 2 GeV, the over-abundance of detected channels is 

troubling. 

Currently, the Particle Data Group recognizes f0 (1370), f0 (1710), a0 (1450), and 

K0
* (1430) as members of the scalar nonet [1].  However, further light scalar objects 

below 1 GeV may be used to organize an additional nonet of f0 (600), f0 (980), a0 (980), 

and K0
* (800) [2].  There is also considerable debate as to the position of the scalar 

glueball.  Unfortunately, data on scalar masses is still lacking, resulting in further 

ambiguity.  With this highly troubled spectroscopy among the light scalar mesons, and 

different interpretations of the observed scalar channels, many authors are seeking 

methods to rectify the apparent crisis. 

Applying the spectroscopic pattern as established in charmonium and 

bottomonium, one would expect to find all of the scalars in the 1.1 to 1.4 GeV range 

(between the 1− − vectors and 1+ −/1+ + axial-vectors according to the L · S rule [2]), but 

instead one group is seen in the 1.3 to 1.7 GeV range and another, more controversial 

group in the 0.4 to 1.0 GeV range.  The lighter group of scalars is often considered to be a 

nonet of tetraquarks or di-meson molecules.  An additional well-established resonance, 

the f0 (1500), does not appear to fit into the nearest nonet, being super-numerary. 

Although both observed nonets fall outside of the expected range for the nonet of “pure” 

scalar mesons, a mixing regime may be applied to explain this phenomenon. 

 

 

 

 

 

 



3 

Tbl. 1 

Scalar state Lighter mass (mχ’) Heavier mass (mS’) Expected mass (L·S rule) 
f0' (isosinglet) 980 ± 10 1714 ± 5 ~ 1380 
f0  (isosinglet) 400 to 1200 1200 to 1500 ~ 1122 
a0 (isotriplet) 984.7 ± 1.2 1474 ± 19 ~ 1122 
K0

* (doublets) 797 ± 19 ± 43 1412 ± 6 ~ 1168 
 

Table 1 illustrates the problematic scalar masses from [1] with respect to the expected 

masses obtained by comparison to known patterns from charmonium and bottomonium 

spectroscopy. 

 

Glueball-Meson Mixing Rationale 

In the scalar channel, one expects the presence of 9 states in the first radial, including 

four traditional scalar meson groups, four scalar tetraquark groups, and one scalar 

glueball.  The pure scalar meson masses can be obtained via the L · S rule according to 

the placement of other meson states in the 13P band, the pure scalar tetraquark masses are 

easily computed from the bag model of Gottfried and Weisskopf [3], and the most 

accurate pure scalar glueball mass comes from the semi-unquenched lattice 

approximation [4].  Unfortunately, attempts to perform this mixing under the current set 

of theories has been unable to produce a working model, and every author appears to 

have their own different treatment to force correct masses out of the mixing.  The results 

of past mixing regimes for the scalar mesons are widely varied and extremely confusing, 

to the point that assignments for the three heaviest scalar isosinglet states are troubled.  

Also, errors are large and naïvely attributed to many differing sources.  Where is the real 

problem, and how do we fix it? 

Of critical importance to understanding how to mix the scalar mesons is an 

understanding of how the glueball mixes with adjacent meson states to begin with.  

Under normal circumstances, the scalar glueball may be thought to mix with mesons and 

tetraquarks in the same way that tetraquarks mix with mesons, the same way that the 

differently flavored I = 0 mesons mix with each other.  That is, mesons and tetraquarks 

mix in a mass-squared matrix with pure-state masses on the diagonal, and either positive 

or negative mixing mass elements outside of the diagonal.  This kind of mixing, in effect, 

pushes the mixed masses away from one another with respect to the relative positions of 
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their pure-state masses, as shown in figure 1 part (a).  For many years, the glueball states 

have been treated in the same manner as conventional mesons and tetraquarks.  The 

results have not been truly promising or altogether agreeable.  It was simply assumed that 

the mixing of a glueball with other mesons would follow the same pattern as meson-

meson mixing, since the glueball acts like a meson and has a mass on the same order as 

its meson cousins.  This assumption, although convenient, may not be accurate at all. 

Although the glueball acts like a meson on the whole, as if it were a quark-

antiquark state, it is composed of two gluons, which are entirely different in nature from 

quarks.  Quark flavor mixing is fairly straightforward, with flavors changing via virtual 

boson exchanges (such as in d → uW−), heavy quark decay (such as in s →⎯uud), and 

annihilation-production reactions (such as in⎯dd →⎯uu).  However, gluons are not 

subject to any flavor changing, and are generally considered to be flavor blind.  A lone 

gluon may be emitted by a quark, but a lone quark may not be emitted by a gluon, a 

difference that results from the fundamental difference between bosons and fermions.  

The only way gluons can mix with quarks is through the annihilation-production process 

gg →⎯qq, where q = u, d, and s, with probabilities P = 1/(2 + λ), 1/(2 + λ), and λ/(2 + λ) 

respectively, having the factor λ due to the suppression of the⎯ss pure state formation, 

favoring⎯uu-gg or⎯dd-gg mixing over⎯ss-gg mixing.  All of these factors together, but 

especially the boson-boson → fermion-fermion mixing, require a mixing scheme that 

causes convergence of masses, rather than divergence.  This is achieved by treating the 

mass mixing element of the meson-glueball and tetraquark-glueball mixings as an 

imaginary quantity, as shown in figure 1 part (b) below; 
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Fig. 1 

 
Figure 1 shows the effects of real (a) and imaginary (b) mixing mass elements.  Part (a) 

clearly shows the mixed masses diverging as the mixing strength increases, while part (b) 

shows the mixed masses converging as the mixing strength increases. 

 

Although a full derivation of the dynamics motivating this treatment is not currently 

available, the success of this treatment will be made apparent in the sections that follow. 

 

Pure-State Masses 

In order to generate mixed masses to compare with experiment, pure-state masses are 

calculated using the L · S rule for traditional⎯qq mesons, and the bag model for⎯q2q2 

tetraquark mesons.  The L · S rule approach is straightforward, comparing the masses of 

all other tensor (13P2) and axial-vector (13P1, 11P1) mesons and their accompanying 

mixing angles to find the pure-state scalar meson masses.  In order to simplify the process 

of calculating the scalar isosinglet mixing matrix, central values omitting error bars are 

used, and MSq =  MSa is assumed.  These values are MSq = 1122 MeV, MSs = 1380 MeV, 

MSa = 1122 MeV, and MSK = 1168 MeV for⎯uu +⎯dd,⎯ss,⎯uu −⎯dd /⎯ud /⎯du,  

and⎯sd /⎯su /⎯ds /⎯us respectively. 

 For the tetraquarks, the three-flavor improved bag model is the only available tool 

for calculating the pure-state masses, as tetraquarks are not common in experiment or 

well established.  The bag model is much more involved than the simple L · S rule, but 

fortunately, the scalar tetraquarks have no orbital or spin excitations, making the bag 

model an ideal choice for determining mass.  The tetraquark structure requires a slight 
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adjustment of the bag model from its more traditional use with the meson.  Fortunately, 

the generalized color-magnetic interaction formula [3]; 

 

 R ΔEm =  −¼ α s ∑i< j (λi · λj)(σi · σj) I(κi, κj) 

(1) 

 

is capable of handling any number of quarks in a given hadron, so the tetraquark 

adjustment there is as easy as adding five further terms in the summation beyond the one  

lone term that would be necessary for a traditional meson, or three further terms beyond 

the three terms necessary for the traditional baryon.  All of the other terms in the bag 

model are straightforward, and require no further alteration. 

In short, the tetraquark masses are calculated by establishing a boundary condition 

that confines all quarks within a virtual bag, representing the confines of the tetraquark as 

an entity.  The equation for the bag energy then becomes [3]; 

 

 

 Eh =  4A / 3R 

(2) 

 

with [3]; 

 

 A =  nqβq + ns(βs
2 + κs

2)½ + R ΔEm + R ΔEe 

(3) 

 

where nq is the number of light quarks (u, d), ns is the number of strange quarks (s), βq 

and βs are functions representing the kinetic energy of their respective quarks, and  

κs =  ms R where ms is taken to be the strange quark mass and R is the effective bag 

radius.  The first two terms in A describe the kinetic energy content of the constituent 

quarks, while the last two terms give the color-magnetic energy term from equation (1) 

and the color-electric energy term, which is taken to be a constant.  Furthermore, the 

graph in figure 11 of [3] shows that βi is a function of κi, roughly equal to  
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2.043 + (π – 2.043)e−1/κ from its appearance.  Here κq is taken to be zero since mq ≈ 0 

when compared to ms. 

 The actual mass of the hadron in the bag model, in this case a tetraquark, is 

deduced from the bag energy by the formula [3]; 

 

 Mh =  (Eh – nq(βq/R)2 – ns(βs/R)2)½ 

(4) 

 

It should be noted that R =  (A/(4πB))¼ in order to reproduce the natural tendency to 

minimize Mh, where B is the vacuum pressure constant.  In order to solve for the masses, 

one must first solve for κs since the equation for the bag radius contains terms that are  

κs-dependent.  After solving for κs, one may proceed to solve for Mh.  Fortunately, these 

solutions are simple enough that they may be deduced with any graphing calculator that 

has a solver.  Solving for Mh with B¼ = 0.135 GeV (from Mp ≈  Mn ≈  0.939 GeV),  

ms = 0.270 GeV (from MΩ ≈ 1.672 GeV), α s = 2.0 (from Mπ → 0), and R ΔEe = 0.50 

(from all 0−+, 1−−, 1/2+, and 3/2+ masses),  the pure-state scalar tetraquark masses are as 

follows; Mχq = 854 MeV, Mχs = 1372 MeV, Mχa = 1372 MeV, and MχK = 1125 MeV 

for⎯uu⎯dd,⎯uu⎯ss +⎯dd⎯ss,⎯uu⎯ss −⎯dd⎯ss /⎯ud⎯ss /⎯du⎯ss,  

and⎯sd⎯uu ±⎯sd⎯dd /⎯su⎯uu ±⎯su⎯dd /⎯ds⎯uu ±⎯ds⎯dd /⎯us⎯uu ±⎯us⎯dd respectively. 

 Last of all, a pure-state scalar glueball mass is required.  For the sake of 

simplicity, the value is drawn from lattice calculations in another work [4].  From this 

selection, the pure-state glueball is considered to have a mass of MG = 1553 MeV.  

Although all of these figures are derived from fairly simplistic and crude approaches, 

they certainly prove to be accurate and effective, as shown in the remainder of this work. 
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Pseudoscalar Flavor Amplitudes 

Before one can proceed to properly obtain two-pseudoscalar S-wave decay widths from 

the scalar mixing, the flavor amplitudes and nature of the pseudoscalar mixing must be 

established.  Fortunately, the experimental masses of the pseudoscalar states are well 

established, as are the bag model masses of η and η’ [3] 1.  The central experimental 

values, omitting errors, for the η, η’, and η(1405) masses are Mη = 547.3 MeV,  

Mη’ = 957.78 MeV, and Mη(1405) = 1410 MeV respectively.  Thankfully, the pseudoscalar 

channel contains no low-lying tetraquarks, making the mixing less complicated.  

Assuming that Mη
2 + Mη’

2 + Mη(1405)
2 =  MPq

2 + MPs
2 + MPG

2, an unquenched pure-state 

pseudoscalar glueball mass MPG = 1639 MeV is obtained when the bag model 

pseudoscalars have masses MPq = 32 MeV and MPs = 720 MeV [3] 2, according to the  

same parameters of the bag model used to find scalar tetraquark masses. 

 With these pure masses, one may give the pseudoscalar mesons a conventional 

mixing Lagrangian of the form; 

 

 2L  =  − MPq
2Pq

2  − MPs
2Ps

2  − MG
2G2  − 2MPqPs

2PqPs  − 2iMPqG
 2PqG    

           − 2iMPsG
 2PsG 

(5) 

 

 

 

 

 

 

——————————— 
1  The same overall rationale for the masses of η and η’ is used here, but the quadratic mass relationship is 

used here, instead of the linear one, to give Mη
2 = 588 MeV and Mη’

2 = 417 MeV, as opposed to the values 

530 MeV and 250 MeV respectively obtained by Gottfried and Weisskopf. 
2  The value for MPq is so low due to the requirement that it be near zero for small breaking of chiral 

symmetry.  The value for MPs was taken directly from the results of Gottfried and Weisskopf, as proprietary 

calculations generated a slightly higher value. 
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Using the following 3 × 3 matrix; 

 

  
(6) 

 

one may evaluate the mixed masses.  Since the bag model mass of the η is nearly equal to 

its experimental mass, and must maintain its dominant⎯ss structure, one may assume that 

the mixing mass MPsG
2 falls close to zero since the η mass appears satisfied by the mixing 

MPqPs
2 alone.  Under this assumption, one deduces the matrix; 

 

  
(7) 

 

Furthermore, through the determinant equation; 

 

 det(M 2 − λ2) = 0 

(8) 

 

the matrix elements are evaluated, with the experimental masses being the eigenvalues λ.  

From this approach, one obtains MPqPs
2 =  −238000 MeV2 and MPsG

2 = 1181000i MeV2 to 

fill in the matrix (with values in GeV2); 

 

  
(9) 
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considering that one should also mention that MPdPu
2 = 84000 MeV2.  Using the mixing 

masses to calculate the mixing angles involved, the unitary flavor amplitude matrix R for 

the isoscalar-pseudoscalar mesons is obtained; 

 

  
(10) 

 

The elements [Rη(M)I] of the unitary matrix R will be useful when calculating the decay 

widths of scalar mesons in a later section. 

 

Scalar Mixing Dynamics 

With the pseudoscalar mixing established, one may move on to the scalar mixing.  Using 

the pure masses established in a previous section, one again uses the conventional I = 0 

mixing Lagrangian of the form; 

 

 2L  =  − MSq
2Sq

2  − Mχq
2 χq

2  − MG
2G2  − MSs

2Ss
2  − Mχs

2 χs
2  

                − 2MSqSs
2SqSs  − 2Mχqχs

2 χqχs  − 2iMSqG
 2SqG   − 2iMχqG

2 χqG 

           − 2iMSsG
 2SsG  − 2iMχsG 

2 χsG   − 2MSqχs
2Sqχs  − 2MχqSs

2 χqSs 

           − 2MSsχs
 2Ssχs − 2MSqχq

2Sqχq 

 (11) 

 

Additionally, one requires two more mixing Lagrangians, one for the I = 1 channel and 

one for the I = 1/2 channel; 

 

 2L  =  − MSa
2Sa

2  − Mχa
2 χa

2  − 2MSaχa
2Saχa 

(12) 

 

 2L  =  − MSK
2SK

2  − MχK
2 χK

2  − 2MSKχK
2SKχK 

(13) 
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Each of these requires a 2 × 2 mixing matrix which, for the sake of brevity and 

simplicity, will not be shown here.  The resulting I = 0 5 × 5 matrix, however, is as 

follows; 

 

  
(14) 

 

 In order to properly reduce the matrix elements, the appropriate Feynman 

diagrams must be accounted for.  Diagrams for the processes allowed by direct transition 

(tree-level) appear in figure 2 below; 
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Fig. 2 

 
Figure 2 shows all of the viable tree-level transitions that influence the scalar mixing.  

Part (a) represents the transition of a light quark pair to a glueball (by annihilation), part 

(b) represents the transition of a strange quark pair to a glueball (by annihilation), part (c) 

represents the transition of a light quark pair to a strange quark pair (by virtual weak 

boson/kaon exchange), part (d) represents the transition of a stranged tetraquark to a 

strange quark pair (by annihilation and gluon exchange), part (e) represents the transition 

of a light tetraquark to a light quark pair (by annihilation and gluon exchange), and part 

(f) represents the transition of a stranged tetraquark to a light quark pair (by annihilation 

and gluon exchange).  Note that each process is reversible.  These diagrams do not 

include the processes where a tetraquark transitions into a glueball, since this is not 

diagrammatically possible as a tree-level process.  Note also that the process⎯qq →⎯ss 

involving annihilation into gluons is not a tree-level transition either, and is OZI-

violating.  Taking each of these in an even-order ring/ladder approximation appears to 

yield self-energy induced mass. 

 



13 

where one finds that MSsχq
2, MχqG

2, and MχsG 
2 must automatically reduce to zero.  Other 

elements may be reduced by invoking flavor symmetry, allowing the reductions; 

 

MSqχs
2√2 =  MSqχq

2 =  MSsχs
 2 

(15) 

 

 MSsG
 2√2 =  −MSqG

 2 

(16) 

 

which then give the matrix; 

 

  
(17) 

 

Using the target masses Mf0(980) = 980 MeV, Mf0(1370) = 1350 MeV,  

Mf0(1500) = 1507 MeV, and Mf0(1710) = 1714 MeV from experiment [1] excluding errors, 

one finds, first of all, that Mf0(600) = 441 MeV (which matches the prediction of [5]) since  

MSq
2 + Mχq

2 + MG
2 + MSs

2 + Mχs
2 =  Mf0(600)

2 + Mf0(980)
2 + Mf0(1370)

2 + Mf0(1500)
2 + Mf0(1710)

2.  

Secondly, the matrix elements may be deduced and exact masses for the mixed states 

found by solving the matrix based on the most well known experimental masses (since 

others are not well established).  The result of much tedious calculation gives  

Mχqχs
2 = 420000 ± 40000 MeV2, MSsG

 2 = −190000i ± 10000i MeV2,  

MSqχs
2 = 520000 ± 10000 MeV2, MSqSs

2 = 210000 ± 20000 MeV2, and the matrix (with 

values in GeV2); 
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(18) 

 

 Additionally, the mixing masses MSaχa
2 = −520000 ± 10000 MeV2,  

Mχdχu
2 = −10000 ± 10000 MeV2, and MSdSu

2 = −5000 ± 5000 MeV2 can be combined with 

the I = 0 matrix; the first mixing mass is specific to the I = 1 channel, while the second 

and third mixing masses are for the⎯dd⎯ss →⎯uu⎯ss  and⎯dd →⎯uu mixings respectively, 

which produce the I = 0 and I = 1 channels.  Using the errors in the I = 0 5×5 matrix 

elements (fixed by the f0 (1500) and f0 (1710) mass errors from experiment), the mixed 

masses from the matrix (18) become Mf0(600) = 457 ± 13 MeV, Mf0(980) = 979 ± 6 MeV, 

Mf0(1370) = 1342 ± 7 MeV, Mf0(1500) = 1505 ± 7 MeV, and Mf0(1710) = 1717 ± 7 MeV, as 

compared to the experimental values Mf0(600) = 400 to 1200 MeV, Mf0(980) = 980 ± 10 

MeV, Mf0(1370) = 1200 to 1500 MeV, Mf0(1500) = 1507 ± 5 MeV, and  

Mf0(1710) = 1714 ± 5 MeV [1].  Indeed, the mass Mf0(600) falls closely in line with the 

prediction of [5], and all other masses are acceptably within experimental limits.  

Additionally, the masses Ma0(980) = 985 ± 6 MeV and Ma0(1450) = 1475 ± 3 MeV emerge 

when MSaχa
2 in the I = 1 channel is identical in magnitude and opposite in sign to MSqχq

2 

in the I = 0 channel (compare to Ma0(980) = 984.7 ± 1.2 MeV and  

Ma0(1450) = 1474 ± 19 MeV from [1]), and the masses MK*0(800) = 797 ± 11 MeV and 

MK*0(1430) = 1412 ± 7 MeV emerge with MSKχK
2 = 678000 ± 18000 MeV2 (compare to 

MK*0(800) = 797 ± 43 ± 19 MeV and MK*0(1430) = 1412 ± 6 MeV from [1]). 
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Tbl. 2 

Scalar state Light scalar mass (mχ’) Standard mass (mS’) Mixing mass 
f0' (isosinglet) 979 ± 6 1717 ± 6 858 ± 9 
f0  (isosinglet) 457 ± 13 1342 ± 7 858 ± 9 
a0 (isotriplet) 985 ± 6 1475 ± 3 721 ± 7 
K0

* (doublets) 797 ± 11 1412 ± 7 823 ± 11 
 

Table 2 shows the mass values deduced from the scalar mixing matrices, and the mixing 

mass from the meson-tetraquark mixing in each set. 

 

 The scalar mixing angles are deduced from the mixing elements, and converted 

into a unitary flavor amplitude matrix, much the same as was done for the pseudoscalars 

in the previous section.  The unitary 5×5 matrix is as follows; 

 

  
(19) 

 

The masses of the scalar mesons, shown in their full mixing in figure 3, and the newly 

found flavor amplitudes [Rf0(M)I] are a prediction of this work, as well as the S-wave two-

pseudoscalar decay widths that will follow from these parameters in the next section. 
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Fig. 3 

 
Figure 3 is an illustration of the pure scalar meson nonet (upper left, with internal I = 0 

and isoscalar-isovector mixings enforced), the pure scalar tetraquark nonet (upper right, 

with internal I = 0 and isoscalar-isovector mixings enforced), standard scalar nonet 

(lower left), and light scalar nonet (lower right).  The pure scalar glueball is at the top and 

center, while the mixed scalar glueball is at the bottom and center. 

 

Decays of Scalar Mesons 

The scalar meson states found in the previous section are capable of decaying in S-wave 

into two pseudoscalar mesons, whose combined isospin are appropriate to the isospin 

channel of each scalar.  The scalars are also capable of decaying into two vector mesons 

in S-wave, but the dynamics of that situation require further work before they can be 

presented.  In short, figure 4 below illustrates the most general S → PiPj decay diagrams 

used to generate couplings for the width calculations to follow. 
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Fig. 4 

 
Figure 4 shows all of the viable tree-level decay processes for the I = 0, 1 scalar mesons.  

The I = 1/2 scalar mesons are not shown here, but have similar processes by extension.  

Part (a) is the conventional mechanism for scalar meson decay, while part (b) is a 

penguin-diagram decay similar in results to the first.  Parts (c) and (d) are the so-called 

“fall apart” mechanism for tetraquark decay, and part (e) is a gluon-fission decay.  These 

Feynman diagrams are the driving framework behind the reduced partial widths of 

equation (20) which follow. 

 

From the previously solved flavor amplitude matrices, the scalar decays into two 

pseudoscalar mesons follow according to extensions to the generalized partial width 

equations in table 14.4 of [1] and, by extension, table 1 of [6] as follows; 
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 γ 
2

f0  →   ππ     = 3 ((Rπq
2 + Rπa

2) RSq + Rπs
2RSs√2 + r2 RG + (Rπq√2 − Rπs)2 r3 RG  

+ iRπG
2RG + xq (Rπq

2 + Rπa
2) Rχq√2 + xs RπqRπs Rχs)2 

 

 γ 
2

f0  →   ηη     = ((Rηq
2 + Rηa

2) RSq + Rηs
2RSs√2 + r2 RG + (Rηq√2 − Rηs)2 r3 RG  

+ iRηG
2RG + xq (Rηq

2 + Rηa
2) Rχq√2 + xs RηqRηs Rχs)2 

 

 γ 
2

f0, a0  →⎯KK = (RSq + RSs√2 + 2r2 RG + xs Rχs)2 + (RSa + xs Rχa)2 

  

γ 
2

f0  →  ηη’     = 2 ((RηqRη’q + RηaRη’a) RSq + RηsRη’s RSs√2  

+ (Rη’q√2 − Rη’s) (Rηq√2 − Rηs) r3 RG + iRηG Rη’G RG  

+ xq (RηqRη’q + RηaRη’a) Rχq√2 + xs (RηqRη’s + RηsRη’q) Rχs)2 

 

γ 
2

a0  →   ηπ     = 2 ((RηqRπa + RηaRπq) RSa + xs (RηaRπs + RηsRπa) Rχa)2 

 

γ 
2

a0  →  η’π     = 2 ((RπqRη’a + RπaRη’q) RSa + xs (RπaRη’s + RπsRη’a) Rχa)2 

 

 γ 
2

K*0 → Kπ     = ((RSK − xK RχK) (Rπq + Rπs/√2))2 + ((RSK − xK RχK) Rπa)2 

 

 γ 
2

K*0 → Kη     = ((RSK − xK RχK) (Rηq + Rηs/√2))2 + ((RSK − xK RχK) Rηa)2 

(20) 

 

To convert these reduced partial widths into partial widths extended from equation 

(14.18) in [1], we take the formulae; 

 

Γf0 →  P1P2 = 4C (9RG
2/4 + (1 − RG

2)) γ 
2

f0→P1P2 | F(q)|2 q 

 

 Γa0 → P1P2 = 4C (9RG
2/4 + (1 − RG

2)) γ 
2

a0→P1P2 | F(q)|2 q 

 

 ΓK*0→P1P2 = 4C γ 
2

K*0→P1P2 | F(q)|2 q 

(21) 

 



19 

with the S-wave form factor from [1]; 

 

 | F(q)|2 = e−t, t = q 2/(8β2) 

(22) 

 

where C = 0.004 is a nonet constant from a best fit to data, the factor 4 is due to the 

multiplicity factor (2S1 +1)(2S2 +1)/(2J +1) where J = 0 and S1 = S2 = 1/2,  

q = √(MS
2 − (MPi + MPj)2)/2 is the momentum of each of pseudoscalars in the center-of-

mass of the decaying scalar, and β ≈ 500 MeV is a scale factor.  Merging equations (20), 

(21), and (22) appropriately, one may find all of the S-wave two-pseudoscalar partial 

widths of the scalar mesons, and, in some cases, close approximations to their total 

widths, by fitting the parameters r2, r3, and x to data.  For r2 = 0.548i, r3 = −0.258i,  

xq = 3.034, xK = −4.231, and xs = 9.018, the fit to existing states is achieved with 

considerable success. 
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Tbl. 3 

Scalar meson Mass (MeV) Decay path Theory (MeV) Experiment (MeV)
f0 (600) 457 ± 13 →  ππ 139.5 335 ± 67 
f0 (980) 979 ± 6 →  ππ 11.3 33.6 to 84.0 
f0 (1370) 1342 ± 7 →  ππ 

→⎯KK 
→  ηη 
→  PiPj (total)

45.0 
45.4 
7.4 
97.8 

52 to 130 
70 to 175 

seen 
129 to 321 

f0 (1500) 1505 ± 7 →  ππ 
→⎯KK 
→  ηη 
→  ηη’ 
→  PiPj (total)

38.0 
9.4 
5.6 
---- 
53.0 

38.041 ± 2.507 
9.374 ± 1.090 
5.559 ± 0.981 
2.071 ± 0.872 
55.045 ± 8.225 

f0 (1710) 1717 ± 6 →  ππ 
→⎯KK 
→  ηη 
→  ηη’ 
→  PiPj (total)

6.5 
77.1 
0.4 
28.9 
113.0 

~ 6.54 ± 3.04 
~ 77.13 ± 32.72 
~ 30.38 ± 18.70 

---- 
<137 ± 8 

a0 (980) 985 ± 6 →  ηπ 54.5 42.3 to 84.5 
a0 (1450) 1475 ± 3 →  ηπ 

→  η’π 
→⎯KK 
→  PiPj (total)

179.9 
69.4 
132.0 
381.4 

~ 122.58 ± 21.44 
41.59 ± 19.01 
104.57 ± 27.33 

265 ± 13 
K0*(800) 797 ± 11 →  Kπ 200.5 618 ± 234 
K0*(1430) 1412 ± 7 →  Kπ 

→  Kη 
→  PiPj (total)

243.9 
17.6 
261.4 

275.72 ± 50.79 
---- 

290 ± 21 

 

Table 3 shows the theoretical scalar masses and partial widths as they would appear in 

nature, side by side with current experimental partial width values found in [7]. 

 

As table 3 indicates, the mixing model is rather successful, with all but four of the partial 

widths listed in table 4 falling acceptably close to or within experimental limits. 

 A more thorough investigation of pure state decays has also been pursued, and the 

fascinating results posted in this work.  The finding of a resonance X(1110)  

(M = 1107 ± 4 MeV, Γ = 111 ± 8 ± 15 MeV) by Daftari et. al. [8], now in the PDG  

listings [1], and the presence of an unknown peak around 1630 MeV in E760 neutral data 

[9] indicate the possibility that pure or near-pure states may emerge in the scalar channel 

in certain reactions, such as⎯pp annihilation.  Using only the nonet isospin-0 mixing for 
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the pure⎯qq scalar mesons, one finds that a theoretical state f0 (1090) emerges with partial 

widths Γ(ππ) = 26.2 MeV and Γ(⎯KK) = 3.3 MeV for a total width of   

Γ = 29.5 MeV, matching the mass of the reported resonance found by Daftari et. al. [8] 

in⎯pn collisions.  Perhaps this state is not so theoretical after all. 

Also, the troubling width Γ(f0 (600) → ππ) from this theory may be reconciled 

with experiment when the pure state decay of f0 (⎯q2 q2) is considered.  The⎯q2 q2 

structure is dominant in f0 (600), and the pure state decay of this state is considerably 

larger than the attained width here; one may assign a width closer to ~ 240 MeV 

considering that the⎯q2 q2 dominates f0 (600), and may not survive long enough to enter 

other states such as⎯qq.  This same rationale applied to the K0*(800) shifts the width  

Γ(K0*(800) → Kπ) closer to ~ 400 MeV.  Similarly, the troublingly small f0 (980) total 

width may be reconciled by considering that its ratio γ2(⎯KK)/γ2(ππ) ≈ 1, allowing a 

large⎯KK contribution due to its closeness to threshold. 

Additionally, a pure glueball fgg emerges with an interesting pattern of decays.  

Based on the parameter λ used earlier, the pure glueball decays appear to decay by ratios; 

 

γ2(⎯KK)/γ2(ππ) ≈ 4λ/3 = 1.333 

 (23) 

 

In the case calculated here, the value of λ = 1 is easily obtained since Γ(ππ) = 18.6 MeV 

and Γ(⎯KK) = 21.8 MeV.  In E760 neutral data, a peak appears at about 1630 MeV which 

could be an fgg shifted up by about 80 MeV due to constructive interference with f4 (2050) 

and f6 (2510) in the 3π0 background data.  A sure way to tell if it is indeed an fgg will be to 

measure the branching ratio Γ(fgg → ηη)/Γ(fgg → ππ), which should be nearly zero for the 

pure-state scalar glueball, and may be deduced by comparing the integrated peak size in 

the 3π0 and π0ηη backgrounds.  This is opposed to the f0 (1500) branching ratio value of 

0.146 for the same process.  If the comparison of the integrated peaks yields a branching 

ratio other than 0 or 0.146, and/or a mass above 1600 MeV, then the object is likely to be 

something other than a scalar meson or glueball. 
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The Latest Scalar Resonances 

In the past two years, the experimental physics community has seen the proliferation of 

previously unknown scalar states in the 1 to 2 GeV range.  These states can be explained 

if the radial excitation Regge trajectory for scalar mesons is based on the slope  

ΔM2/Δn = 1.394 GeV2; in this event, the states f0 (1200 − 1600)  

(M = 1480 ± 150 MeV or 1530 ± 250 MeV, Γ = 1030 ± 170 MeV or 560 ± 40 MeV) [10] 

and X(1810) (M = 1812 ± 26 ± 18 MeV, Γ = 105 ± 20 ± 28 MeV) [11] fall in line with 

the masses predicted for the radially-excited pure-state light scalar tetraquark and heavy 

scalar tetraquark respectively.  Indeed, their decays all indicate an agreement with this 

scheme; f0 (1200 − 1600) decays dominantly to ππ and X(1810) decays into ωφ (which is 

only possible for a heavy tetraquark).  In the next year or so, there should be data to 

support that X(1810) occurs in both I = 0 and I = 1 channels.  As for the more familiar 

K0*(1950), the assignment is still ambiguous, but leaning toward a radial excitation of the 

pure-state strange scalar meson.  However, f0 (1790) (M = 1790 ± 40 MeV,  

Γ = 270 ± 60 MeV) [12] does not appear to match any possible states that should occur 

below 2 GeV, and has been suggested to be a light scalar hybrid⎯qqg [13] because of its 

OZI-violating appearance in J/ψ → φππ. 

 

Conclusion 

In the grand scheme of things, the scalar mesons still represent a massive experimental 

challenge to the world.  Recent attempts to explain all of the scalars in one framework, 

such as [14] and [15], have proven that standard theoretical phenomenologies do not 

explain the mass splittings or flavor content of the scalar mesons, as evidenced by their 

experimental masses or decays.  As evidenced here in this work, however, the scalar 

mesons are still capable of being interpreted phenomenologically in a manner that 

manifests consistently good results, even with rather crude methods and calculations.  It 

is hoped that this work will provide a new phenomenological tool for the prediction and 

assignment of scalar mesons as new data become available. 
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