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Here we review the single photon and electron interference experiments by using an
optical Mach-Zehnder and a 2-slits (2-pinholes) electron interferometer. According
to Maxwell equations, the electromagnetic fields of the interference using the Mach-
Zehnder waveguides can be described by a localized optical wave in the waveguide
and non-localized vector and scalar potentials. In a quantum mechanical descrip-
tion of the interference, quantum-superposition state has been introduced. However,
the single photon interference can also be calculated under the assumption that the
states are expressed as the localized optical wave (a photon) and the non-localized
potentials. Similarly, Maxwell equations can be divided into a localized electron
beam and the non-localized potentials in case of the 2-slits (2-pinholes) single elec-
tron interferometer. From the analysis results, the non-localized potentials can be
identified as an indefinite metric vector with zero probability amplitude and corre-
spond to gauge fields introduced by gauge transformation of the second kind. The
results show we can express quantum states without quantum-superposition state,
which leads to an improved understanding of the uncertainty principle and resolution
of paradox of reduction of the wave packet. The concept provides not only exactly
the same calculation and experimental results using quantum-superposition state,
but also can eliminate zero-point energy and cause spontaneous symmetry breaking
without complexity. The results insist that Quantum theory is a kind of statistical

physics.
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FIG. 1. Schematic view of MZI.

I. CLASSICAL ELECTROMAGNETIC FIELD IN WAVEGUIDES -
POTENTIALS AND PHOTON

Figure 1 shows schematic view of the Mach-Zehnder Interferometer (MZI) and coordinate
system.

First we examine the input waveguide. Assume that an x-polarized optical wave propagates
in z-direction with angular frequency w and propagation constant [, the electric field E of
the optical wave is well confined in the input, e.g., the cross section profile of the electric
field is expressed as Gaussian distribution.

Then, the electric field of the optical wave in the input can be expressed as follows.

2, ,2
E=e, Cg-exp (_:c u—;y ) - cos (wt — f52) (1)

0

Where, e, is unit vector parallel to the x-axis. Cg is an arbitrary constant of which squared
is proportional to the field intensity. wy is the mode field radius of the optical wave. E and

B are expressed by vector and scalar potentials as follows.

0
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From (1) and (2), A is expressed by introducing a vector function C as follows.
1 2 2
A=——e, - Cg-exp (—x —|—2y ) -sin (wt — fz) + C
w w§
0
—C=— 3
T (3)

By taking C as an irrotational vector function V x C = 0 in order for B to localize in the
input, for example, C and ¢ can be expressed by introducing an arbitrary scalar function A

as C=V\and V (%/\ + ¢) = 0 respectively.
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Then B is expressed as follows

B=VxA
2, .2
= gey -Cg - exp (_x u—%y ) - cos (wt — fz)
2 2 2
—w.—Z)geZ-CE-exp (_:1:' ;)—gy > -sin (wt — (2) (4)

Therefore, E and B are localized in the input waveguide. In contrast, the vector and
scaler potentials, which can not be observed alone, are not necessarily localized. The above
localized form (1) is one example, other forms can be employed as will be described in the

next section.

II. POTENTIALS AND ELECTRON

Figure 2 shows schematic view of a typical setup for the 2-slits (2-pinholes) single electron
interference experiment.t

An electron is launched from the electron source and propagates in right direction. According
to the traditional explanation, the propagating electron passes through the both pinholes.
However, we can obtain the interference pattern even if the electron passes through one of
the two pinholes as described below.

The propagating electron can be identified as an electron beam whose space current density
is 7 = Nqv, where N is the number of electron per unit volume, ¢ is the electron charge and
v is the electron velocity. When the radius of the electron beam is wy, the current I can be
expressed as I = mw?2j. According to Biot-Savart Law, the propagation generates magnetic
fields and potentials around the propagation path.

Assume that the electron propagates parallel to z-axis at a constant velocity. Then, the

vector potentials around the propagation path are expressed as!?

In — (5)

where r = /22 + 42, &g is the permittivity and c is the speed of light.
Therefore the vector potential clearly passes through not only the pinhole the electron passes
through but also the opposite pinhole.

However, we examine the following Maxwell equations to clarify the discussion.
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FIG. 2. Schematic view of a typical setup for the 2-slits (2-pinholes) single electron interference

experiment.
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where i is the permeability and p is the electric charge density.
Here, we divide the potentials A, ¢ into localized A;, ¢ and non-localized A, ¢,. Then

the equations (6) can be divided into following equations

1 02 1 O¢y
(A—§@>A1—V(V A+ at)

= — i
(A—C—ig—;ww%(vm%—lz%)——i (7)
and
(A - C%(%) An—V (v A+ 12 8;;‘1) =0
(A-C—lzg—;) ¢nl+§t<v-Anl+C§a§f) ~0 (8)

If the electron beam can be expressed by localized waveform, just as an example, Gaussian
with angular frequency w and propagation constant 3

% 4 y2
wp

iocez-q-C'q-exp(— )-cos(wt—ﬁz) 9)



where e, is unit vector parallel to the z-axis. C, is arbitrary constant which is proportional
to the number of electrons, then the localized potential can be expressed as a function which
produces (9).

This functional form is determined by i. Note that (9) is just one example. Arbitrary forms
which satisfy (7) can be employed for A;, ¢ and i. When i = 0 and p = 0, the equations
(7) can express the localized electromagnetic fields as described in the previous section.

In contrast, the equations (8) are independent of (7). Therefore the non-localized potentials
can eternally populate the whole of space as waves defined by Maxwell equations, which
propagate at the speed of light.

(8) expresses the gauge invariance of the localized electro magnetic field or electron flows and
the non-localized potentials are well-known gauge field introduced by gauge transformation

of the second kind.

III. INTERFERENCE OF SINGLE PHOTON

In a quantum mechanical description, the photon interference is calculated by introducing
the electric field operator F = \%&1 exp (i6) + \/Lidg and the number state |n) as follows.?

Where a4 is the electric field operator in arm 1 or 2 respectively, 6 is the phase difference.

. 1, 4. 1, .. JER
(I) §<n\aia1]n> + §<nlaga2\n) + cos O(nlalas|n) (10)

~

Where (I) is expectation value of the field intensity which is proportional to photon number.

L atyal
G102 and @l ., are defined as a = % and af = % by using the electric field operators
a and a' at the input with (n|ala|n) = (njalas|n) = (n|alag|n) = in. When photon

number is one ( n =1 ), i.e., single photon, the above expectation value is calculated to be
(I) T+ 3+ 5cos =3+ 1 cosf. In this traditional treatment, the electric field operators
are obtained from quantization of (6) by using Coulomb gauge under assumption of i = 0
and p = 0.

However we can make a different description by using the concept of the above non-localized
potentials as follows.

Photon number will be proportional to Cr squared in equation (3). In contrast, the non-
localized potentials C and ¢ or (8) are not necessarily proportional to photon number.

When there are a large number of photons, it is reasonable to suppose that half of photons



pass through arm 1 and the rest pass through arm 2 by law of large numbers because the
probability of ”which arm does each photon select” should be % This concept corresponds
to mixed state instead of quantum-superposition state whose probabilities are statistical and
fundamental sense respectively.

However when there are only a few photons, which correspond to the localized vector poten-
tial expressed as first term of equation (3) is comparable with the non-localized potentials
expressed as the rest terms or (8), we should consider greater probability that the localized
vector potential which represent a photon selects and passes through arm 1 and the non-
localized potentials pass through arm 2. This description can also be applied to (7) and
(8).

According to this description, the operator E = ay exp (i) + do with (1|alay[1) = 1 and
(1]adas|1) # 1 instead of E = \%dl exp (i0) + \/Lidg should be introduced because the photon
passes through only arm 1. Note that a; is the electric field operator in arm 1 obtained
from the traditional quantization as mentioned above using (7) instead of (6). In contrast,
as is a purely-formal operator in arm 2 obtained from the traditional quantization using (8)
instead of (6), which is not the electric field operator but provides some quantity related to
the non-localized potentials in arm 2.

Therefore the expectation value can be expressed as follows.

(I) o (1|alag)1) + (1]alas|1)
+e(1|alag|1) + e (1]ada,|1)
=1+ (1abao|1)

+e(1)alag|1) + e~ (1]ada, 1) (11)

A

If (1]abas|1) = —1 and (1alas|1) = (1|alas|1)* = +1e™, the same interference (I) o
% + %cos (0 + ¢) can be observed. Where % means complex conjugate.

The above calculation is based on Heisenberg picture. We can calculate the same interference
based on Schrodinger picture. In Schrodinger picture, the interference can be calculated by
using the output state |1) + |¢) and the electric field operator E = a at the output. Because
the operator is fixed in Schrodinger picture, the operator is obtained from the traditional
quantization using (6). Where |1) and |() represent the states of a photon passes through
arm 1 and non-localized potentials passes through arm 2 respectively. Because nothing is

observed in arm 2, we should recognize (¢|¢) = 0.
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In this picture, the expectation value can be expressed as follows.

(1) o< (e(1] +(¢]) ala (e711) +1¢))
=1+ (cla'alc) + e (1]¢) + e (CI) (12)

Where a'all) = [1) and (1|afa = (1] are used.

If (Clafal¢) = —1 and (1]¢) = (¢|1)* = +1e™, the same interference (I) o< 1 & L cos (0 + ¢)
can be observed. From this expression, we can recognize that |¢) has the phase difference
for the interference without substantial photons.

Note that ¢ is determined by the phase difference of the MZI arms. When there is no phase
difference between the MZI arms, ¢ is determined from the normalization of probability,
Le, (1] 4+ (CD (1) +16)) = (1]1) + (1]) + (¢[1) 4 (¢[¢) = 1+ (1¢) + (¢[1) + (¢[¢) = 1, and
(¢|¢) = 0 then (1]¢) = —(¢|1). Therefore ¢ = 7 + Nw. Where N is integer.

In the above mathematical formula for the interference by Schrodinger picture, there is
no mathematical solution in usual Hilbert space. Therefore the non-localized potentials,
which can not be observed alone, must be regarded as a vector in indefinite metric Hilbert
space. The same kind of unobservable vector has been introduced as ”ghost” in quantum
field theory.*™ We also call () ”ghost” in this report though this "ghost” has a different
definition. The traditional "ghost” was introduced mathematically as an auxiliary field for
consistent with relativistic covariance of the theory and had no effect on physical phenomena.
However, the above ”"ghost” is a physical field which causes the interferences or is essential
for the interferences instead of the mathematical auxiliary field.

From the equation (11) and (12), the non-localized potentials pass through arm 2 produce
the single photon interference as if the photon passes through the both arms in cooperation
with a photon field passes through arm 1.

The photon number should be proportional to Cr squared as can be seen in equation (3).
However non-localized potentials C and ¢ or (8), which express ”ghost”, are not proportional
to it as mentioned above. Therefore, the interference effect will be drop off when there are a
large number of photons. This will be the reason why quantum effects are hardly observed
in macroscopic scale.

In a classical description, we can express the electric field of the interference formed by one

side MZI arm, i.e., Egy = %El + %Eg, as follows by using the potentials
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0 0

Eout = _aAl - V¢l - EAHI - V¢nl
0
= El - EAnl - V¢nl (13)

If the non-localized potentials configure the following electric field, the interference by one

side MZI arm can be produced in cooperation with a photon field passes through arm 1.

0 1 1
—EAHI — Vgﬁm - §E2 - EEl (14)

where subscripts 1 and 2 stand for the MZI arm 1 and 2 respectively.

IV. INTERFERENCE OF SINGLE ELECTRON

In a quantum mechanical description, the 2-slits (pinholes) single electron interference is

typically explained by the probability of finding the electron on the screen.!

Py = |¢1 + ¢ (15)

Where ¢ = (z|1)(1]s) and ¢ = (x]2)(2|s), which are composed of probability amplitudes

2

(1or2[s): 7 (electron arrives at pinhole 1 or 2|electron leaves s (electron source))” and
(x]|152): 7 (electron arrives at screen z|electron leaves pinhole 1 or 2)”.

When either pinhole 1 or 2 is closed, the each and total probabilities are calculated to be
Py = |¢1]?, Py = |¢s|?> and P = P, + P» # Pi5. Therefore we must admit the electron passes
through both pinholes at the same time despite an electron can not be split off, which forces
us to introduces a concept of quantum-superposition states .

However we can examine the states of the localized electron propagation and non-localized
potentials instead of the quantum-superposition state as mentioned above.

In such a case, the electron wave functions should be expressed as follows.

P =11 - exp {z%/s (pmdt — Ay - dx)}

—Pinholel—screen

Py = P - exp {q / (Pmdt — Ay - dx)} (16)

Z_
h —Pinhole2—screen
where, ¥] and ), are the electron wave functions on the screen passing through pinhole 1 and

2 with the non-localized potentials respectively. 1; and 1) are the electron wave functions
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heading to pinhole 1 and 2 at the electron source without the effects of the non-localized
potentials. ¢, and A, include not only the non-localized potentials expressed as (8) but
also the non-localized part of the potentials generated by localized potentials such as (3)
and (5).

Then the probability of finding the electron on the screen by using these wave functions can

be described as follows,

Py o |¢']? = |4 + ¢
= |t + 4]
_9Re (exp {z% 74 (Guidt — Ay - dx)} w;zp2> (17)

—1—screen—2—s

where 1 and 2 of the integration path denote pinhole 1 and 2 respectively. In case of single
electron interference, we can find the electron at pinhole 1 without fail but not at pinhole
2, Le, [¢1]* =1 and |¢)2|* = 0. Although [ |[¢h16:2|?°dV = 1 or 0 should be exact expression,
we continue analysis with |¢;|*> = 1 and |¢5|* = 0 for simplification.

When we introduce a phase difference 6 between 1, and 14, P> expresses the interference

as follows,

Py <1 —2Re (expi [y + 0] i) (18)

where v = g]{ (pmdt — Ay - dx).

B J o1 ssereen—s2-s
Note that when 0 is fixed, the interference can be observed on the screen as a function of
v, i.e., position on the screen. When = is fixed, the interference can be observed on a fixed
position of the screen as a function of 6.
However, the wave function 1, must satisfy ¥, # 0 and |¢|* = 0.
Then we introduce the states "an electron passes through pinhole 1 with the non-localized
potentials” as e”[y)) with P, = (¢1]11) = 1 and "no electron passes through pinhole 2
with the non-localized potentials” as e?2|1),) with Py = (¢s|thy) = 0. In these states, 71, 72
and vy = 7, — 72 correspond to the phase terms of (16) and (17).
After the example of single photon interference as described above,® we introduce the charge
operator Q = [ d*xzjy(x) defined by a conserved current j, = (¢, 1), i.e., 9"j, = %+V-i = 0.
The charge operator satisfies Q|i1) = ¢|11), which means the electron state incoming from

pinhole 1 is the eigenstate of Q.8°



The interference can be calculated using the charge operator as follows.

<]> _ (61(9—71)<w1| + e~ <¢2|) Q (e—z‘(e—«ﬂ)Wl) 4 e”2|¢2>)
= q + (V2| Ql¢2)
+qe’ 7 (hr]aha) + qe O (o) (19)

where (I) is the expectation value of charge intensity. If (¢2|Q[i2) = —1q and (¢1]ths) =
(o]thy)* = iie“, then the single electron interference (I) = ¢ {% + %COS 0 —~+ 5)} can
be obtained.

The above discussion suggests that the non-localized potentials produce phase shift of the
electron wave functions or electron states and will correspond to gauge fields introduced by
gauge transformation of the second kind as can be seen from (16). Hence, we can recognize
the state "no electron passes through pinhole 2 with the non-localized potentials” has the
phase difference for the interference without electron charges.

In the above expression for [¢);), there is no mathematical solution in usual Hilbert space.
Therefore the state of "no electron passes through pinhole 2 with the non-localized poten-
tials” must also be regarded as a vector with zero probability amplitude in indefinite metric
Hilbert space and we can express the quantum state of the interference without quantum-
superposition state.

Note that the calculation using the superposition state of (17) is valid in case of mixed state

whose probability is statistical sense.

V. DISCUSSION
A. uncertainty principle and the reduction of the wave packet

By the existence of the non-localized potentials, Heisenberg’s uncertainty principle can be
explained independently of measurements. In addition, the paradox of the reduction of the
wave packet typified by ”Schrodinger’s cat” and ”Einstein, Podolsky and Rosen (EPR)” 101
can be solved, because the origins of both are quantum-superposition state.

Former results insist the states of arm 1 and 2 or pinhole 1 and 2 by Schrodinger picture are
defined when the system is prepared expressed as a substantial single photon or electron and
the non-localized potentials respectively and each state does not split off such as quantum-

superposition state, which means there is no reduction of the wave packet.
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”When the system is prepared” corresponds to immediately after the branching point of the
optical MZI or the pinholes. Which arm or pinhole does the photon or electron select is un-
predictable but after the selection, the state is fixed instead of quantum-superposition state.
The concept of these states is identical with mixed states rather than pure states formed by
quantum-superposition, which suggests there is no concept of quantum-superposition state.
As for Heisenberg’s uncertainty principle, we should recognize it as trade-offs derived from
Fourier transform non-related to measurement, which correspond to the canonical commu-

tation relation.

B. zero-point energy

If we calculate the equation (12) under vacuum instead of single photon, (¢|a'a|¢) = —3 can

eliminate zero-point energy as follows.

+{clatal) = 5~ 5 =0 (20)

1
2
where a|0) = (<0|dT)T = 0 and normalization of probability, i.e.,

({01 + {¢1) (10) +1¢)) = (0]0) + {0I¢) + (<0} + {CI¢)
=14 {0[¢) + (¢[0) + (¢I¢) =1

then (0[¢) + (¢]0) + (¢|¢) = 0, are used.

C. spontaneous symmetry breaking

Traditional treatment of the spontaneous symmetry breaking, which explores the possibility
of Q|0) # 0 or generally ”|0) is not an eigenstate of Q”, introduces an artificial intricate
boson field such as Goldstone boson or Higgs boson.” Where |0) is vacuum state.

However, the non-localized potentials eternally populate the whole of space as mentioned
above and there are no electron at pinhole 2. Therefore the state of pinhole 2, €72|1)s),

can be identified as vacuum instead of |0). From the relation (i|¢2) = 0 as described

11



above, if €72|1,) is an eigenstate of Q, i.e., Qe2|1)y) = ae™2[1hy), then (¢y|e™2Qe2|1hy) =
aiolihy) = 0 # —1g, where a is an eigenvalue. Hence the vacuum €™2i)y) is not an
eigenstate of QQ, which expresses the spontaneous symmetry breaking.

The traditional intricate bosons may correspond to the non-localized potentials.

VI. CONCLUSION

There are some unresolved paradoxes in quantum theory.

If we take advantage of the indefinite metric vectors as described in this report, the para-
doxes can be removed. In addition, it can explain the uncertainty principle independently
of measurements, eliminate zero-point energy and cause spontaneous symmetry breaking
without complexity.

We should consistently introduce indefinite metric vectors because Maxwell equations are
wave equations in Minkowski space. When we introduce state vectors in Minkowski space,
indefinite metric vectors are absolutely required. The required vector should be recognized
not only as an auxiliary field but also as a real physical field which is the root cause of single
photon and electron interferences.

The results insist the vacuum space is filled with the non-localized potentials which can
eternally exist as waves and correspond to gauge fields introduced by gauge transformation
of the second kind.

This idea provides exactly the same calculation and experimental results by using quantum-
superposition state because the phase difference between the photon or electron and the non-
localized potentials provide the interferences as if the quantum-superposition state exists.
In addition, the concept is based on an analogy from the expression of substantial localize
electromagnetic fields or an electron flow and the non-localized potentials instead of curious
quantum-superposition state that forces us to imagine a photon or an electron passes through
the both arms or pinholes despite a photon or an electron can not be split off.

The superposition states are valid in case of mixed states whose probabilities are statistical
sense. However, quantum-superposition state is not valid in case of pure state whose prob-
ability is fundamental sense. Therefor, there is no concept of quantum-superposition state
in nature, which insists Quantum theory is a kind of statistical physics.

I hope that the results will be greatly debated and encourage a reconsideration of the para-

12



doxes.
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