Unobservable Gauge Fields to Explain Single Photon and Electron Interference
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We show single photon and electron interferences can be calculated without quantum-
superposition states assuming that the states are expressed as a localized optical or electron beam
and unobservable potentials. From the analysis results, the unobservable potentials can be identified
as indefinite metric vectors with zero probability amplitude. The results insist there is no concept
of quantum-superposition states, which leads to an improved understanding of the uncertainty prin-
ciple and resolution of paradox of reduction of the wave packet, elimination of zero-point energy on
certain conditions and derivation of spontaneous symmetry breaking. The results insist Quantum

theory is a kind of statistical physics.

I. INTRODUCTION

Basic concept of the quantum theory is the quantum-
superposition states. Arbitrary states of a system can be
described by pure states which are superposition of eigen-
states of the system. Calculation results by the concept
agree well with experiment. Without the concept, single
photon or electron interference could not be explained.
In addition to the interference, entangle states also could
not be explained.

However the concept leads to the paradox of the reduc-
tion of the wave packet typified by ”Schrodinger’s cat”
and "Einstein, Podolsky and Rosen (EPR)”. [1, 2]

In order to interpret the quantum theory without para-
doxes, de Broglie and Bohm had proposed so called ”hid-
den variables” theory. [3, 4] Although, ”hidden variables”
has been negated,[5] the theory has been extended to con-
sistent with relativity and ontology. [6-10] However the
extension has not been completed so far.

Although there were a lot of arguments about the para-
doxes, recent paper related to the quantum interferences
convince us of the validity of the concept. For exam-
ple, quantum mechanical superpositions by some exper-
iments have been reviewed. [11] The atom interference
by using Bose-Einstein condensates (BECs) has been re-
ported experimentally and theoretically. [12, 13] The co-
herence length of an electron or electron-electron inter-
ference by using the Aharonov-Bohm oscillations in an
electronic MZI has been discussed theoretically. [14, 15]
A plasmonic modulator utilizing an interference of co-
herent electron waves through the Aharonov-Bohm ef-
fect has been studied by the author. [16] The entan-
gle states have been widely discussed experimentally and
theoretically. [17-22] The photon interference by using
nested MZIs and vibrate mirrors has been measured and
analyzed. [23, 24] The double-slit electron diffraction
has been experimentally demonstrated. [25] According
to our analysis, BECs, condensate and bosonization sys-
tems correspond to mixed states with or without coher-
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ence rather than pure states, and no paper can solve the
paradoxes.

In this paper, we offer a new insight of the single pho-
ton and electron interference that can solve the para-
doxes. According to the new insight, there is no concept
of quantum-superposition and pure states whose proba-
bilities are fundamental sense in nature. Only the con-
cept of mixed states whose probabilities are statistical
sense is valid in nature. The new insight gives us novel
and important results, i,e., improved understanding of
the uncertainty principle non-related to measurements,
elimination of zero-point energy on certain conditions
without artificial subtraction, derivation of spontaneous
symmetry breaking without complexity and knowledge
that Quantum theory is a kind of statistical physics.

In addition, new insight can conclude that the concept
of entangle state is also not valid in nature though there
have been reported the validity of the concept of entangle
states. [17-22] We will discuss the entangle state by using
the new insight in other letter. [26]

In section II, we show easy example of Gaussian pho-
ton beam to explain that single photon can be described
by substantial (localized) photon and unobservable po-
tentials. In addition, more general description by us-
ing gauge invariance is offered. In section IV, we also
show easy explanation that we should recognize the ex-
istence of the potentials in two-slit electron interference
experiment. In section III and V, we show the calcu-
lation of the interferences by using states represent the
substantial photon or electron and the unobservable po-
tentials, which does not require quantum-superposition
states. In section VI, we discuss the paradoxes related to
quantum-superposition states, zero-point energy, sponta-
neous symmetry breaking and general treatment of single
particle interferences. In section VII, we summarize the
findings of this work.

Aharonov and Bohm had pointed out the unobservable
potentials can effect the electron wave interferences and
the effect had been experimentally identified by Tono-
mura et. al. [27-29]

The findings has pointed out the unobservable poten-
tials, which can be identified as gauge fields, generate
not only Aharonov-Bohm effect but also single photon,
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FIG. 1. Schematic view of MZI. BS:Beam Splitter.

electron or an arbitrary particle field interferences and
fluctuation of the universe as will be described later in
this paper.

The discussions in this paper are very simple to the
same level as an introductory of quantum theory, because
the quantum theory has a misunderstanding in such a
fundamental concept and nature of nature will be simple.

II. CLASSICAL ELECTROMAGNETIC FIELD
OF MZI - POTENTIALS AND PHOTON

Figure 1 shows schematic view of the Mach-Zehnder
Interferometer (MZI) and coordinate system.

First we examine the input beam. Assume that an x-
polarized optical beam propagates in z-direction with an-
gular frequency w and propagation constant [3, the elec-
tric field E of the optical beam is well localized in the free
space, e.g., the cross section profile of the electric field is
expressed as Gaussian distribution.

Then, the electric field of the optical beam in the input
can be expressed as follows.
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E=e, Cg-exp (_a: —|-2y
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) ~cos (wt — Bz) (1)

Where, e, is unit vector parallel to the x-axis. Cg is
an arbitrary constant of which squared is proportional to
the field intensity. wq is the radius of the optical beam.
E and B are expressed by vector and scalar potentials as
follows.

0
E=——A-Vo
B=VxA (2)

From (1) and (2), A is expressed by introducing a vector
function C as follows.
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By taking C as an irrotational vector function Vx C = 0

in order for B to localize in the space, for example, C and

¢ can be expressed by introducing an arbitrary scalar

function A as C = VA and V (%)\ + (;5) = 0 respectively.
Then B is expressed as follows

B=VxA
6 1‘2 +y2
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Therefore, E and B are localized in the free space in the
input. In contrast, the vector and scaler potentials, which
can not be observed alone, are not necessarily localized.

Note that, the Gaussian beam radius will be spatially
expanded due to the free space propagation. However,
the radius of the propagated beam w(z) will be ap-
proximately 10.5mm when the beam with the initial ra-
dius wy = 10mm propagates z = 100m in free space.

2
This value can be calculated by w (2) = wo4/1 + ( Az )
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when the wavelength A = 1um is applied. Then the spa-
tially expansion of the beam will be negligible small when
the paths of the MZI are less than several tens meters.

The above localized form (1) is one example, other
forms can be employed as follows.
Let examine the following Maxwell equations.
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where g is the permeability and p is the electric charge
density.
Here, we divide the potentials A, ¢ into localized A,

¢ and unobservable Ao, ¢uo. Then the equations (5)
can be divided into following equations
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When i = 0 and p = 0, the equations (6) can express
the localized electromagnetic fields in free space as de-
scribed in the above.
In contrast, the equations (7) are independent of (6).
Note that even if we study a wave packet like optical




beam instead of continuous one in z-axis as (1), unob-
servable potentials (7) are independent of the beam con-
figuration. In addition, even if there are no optical beam,
the unobservable potentials (7) exist. Therefore the un-
observable potentials can eternally populate the whole
of space as waves defined by Maxwell equations, which
propagate at the speed of light. If the Lorentz condition
is applied to (7), the unobservable potentials can exist in
whole space as harmonic oscillators.

(7) expresses the gauge invariance of the localized elec-
tro magnetic field or electron flows and the unobservable
potentials are well-known gauge field introduced by gauge
transformation of the second kind.

III. INTERFERENCE OF SINGLE PHOTON

If Maxwell equations are deemed to be classical wave
equations whose electro-magnetic fields obey the super-
position principle, then we can express the electric field
of the interference by the superposition fields (superpo-
sition of divided fields of the input) Equt = %El + %EQ.

However, we can express the electric field of the inter-
ference without superposition by using the unobservable
potentials as follows.

0 0
Eout EAI V(bl - 87Au0 V¢u0
0
= El - aAUO - V(buo (8)

If the unobservable potentials configure the following
electric field, the interference by one side MZI path can
be produced in cooperation with a photon field passes
through path 1.

where subscripts 1 and 2 stand for the MZI path 1 and
2 respectively.

The above discussion is based on classical description.
However, applying the superposition principle to parti-
cle image, e.g., inseparable single photon, leads to quan-
tum paradoxes. Then we translate the above classical de-
scription using the unobservable potentials to quantum
description without paradoxes.

In a quantum mechanical description, the photon in-
terference is calculated by 1ntroducing the electric field
operator = ﬁal exp (10) + ﬁag and the number state

|n) as follows. [30] Where @102 is the electric field oper-
ator in path 1 or 2 respectively, 0 is the phase difference.

. 1, .+ 1 . At a
(I) x §<n\aJ{a1|n> + §<n|a§a2|n> + cos 9<n|aia2|n> (10)
Where (I) is expectation value of the field mtenSlty which

is proportional to photon number. @02 and (110]r2 are

al+al

defined as @ = ‘“4'7“2 and af = —5~ by using the electric

field operators @ and a' at the input with (n|ala,|n) =
(n|abas|n) = (n]alag|n) = in. When photon number is
one (n =1), i.e., single photon, the above expectation
value is calculated to be (I) o< 2+1 41 cosf = 141 cosd.
In this traditional treatment, the electric field operators
are obtained from quantization of (5) by using Coulomb
gauge under assumption of i =0 and p = 0.

However we can make a different description by us-
ing the concept of the above unobservable potentials as
follows.

Photon number will be proportional to Cr squared
in equation (3). In contrast, the unobservable poten-
tials C and ¢ or (7) are not necessarily proportional to
photon number. When there are a large number of pho-
tons, it is reasonable to suppose that half of photons pass
through path 1 and the rest pass through path 2 by law
of large numbers because the probability of ”which path
does each photon select” should be % This concept corre-
sponds to mixed state instead of quantum-superposition
state whose probabilities are statistical and fundamental
sense respectively.

However when there are only a few photons, which
correspond to the localized vector potential expressed as
first term of equation (3) is comparable with the unob-
servable potentials expressed as the rest terms or (7),
we should consider greater probability that only the lo-
calized vector potential which represent a photon selects
and passes through path 1 and the unobservable poten-
tials pass through path 2. This description can also be
applied to (6) and (7).

According to this debcription, the operator £ =
1 exp (29)—1—(12 with (1]ala;|1) = 1 and (1]alas|1) # 1 in-
stead of £ = fal exp (10) + \}5&2 should be introduced
because the photon passes through only path 1. Note
that ap is the electric field operator in path 1 obtained
from the traditional quantization as mentioned above us-
ing (6) instead of (5). In contrast, ao is a purely-formal
operator in path 2 obtained from the traditional quanti-
zation using (7) instead of (5), which is not the electric
field operator but provides some quantity related to the
unobservable potentials in path 2.

Therefore the expectation value of output 1 (3 phase
difference will correspond to output 2) can be expressed
as follows.

(I) oc (1]ajas|1) + (1|adas|1)
+e(1)alag|1) + e~ (1]ada, 1)
= 1+ (1]abas1)
+e(1]alag|1) + e

“jaban) (11)
If (1|ajas|1) + e (1lajas|1) + e <1|a2&1\1> =-14+
cos 0, the same interference (I) o
served.
More precise calculation is as follows. The electric field
operators obtained from traditional quantization proce-

% 5 L cos@ can be ob-



dure for quantum optics with Coulomb gauge have rela-
tionships with harmonic oscillator as follows.

&:

(wq +ip)

HSH

it = (wg — ip) (12)
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where ¢ and p are position and momentum operators
obeying the commutation relation [§,p] = ¢h. Hamil-
tonian of harmonic oscillator is expressed as follows.

A 1
A= (5 +e) (13)

Then following relations are obtained.

aTa:%(p2+w2q2+zwqp—zwpq)
1 |
= — (H - chw
i (- )
1 A1
aasz(HJrzm) (14)

The above traditional operators correspond to the local-
ized potentials, i.e., the operators of (6).

Here we can find the following operators for the unob-
servable potentials can generate the interference.

dg _ 57619/2611 _ 5’76_19/2&,1

1 ) 1 .
ab = 576_19/2@; - 5’7610/2&11- (15)
where 42 = —1 which stands for requirement of indefi-

nite metric and 6 is a phase difference between the local-
ized and unobservable potentials. These operators can
be identified as a quantization of (9). The unobservable
potentials also exist in pathl with the localized poten-
tials in-phase, i. e., a1 = a+ a2 (0 =0) = @ = ;. Then
we can obtain

by = —i&}al — ia{al + iei‘)aia + ie 04l
= *%&J{dl + %Cﬂ&l cos @
ilay = T4e2ala; — Sye 404,
d;&l = —ye 02414, — Zyeala, (16)

(Lafa 1) =1
(1adas|1) = —= + = cosd
- 1
(1]ajas|1) = Sye'?/? e 2
) 1 .
(1ladar 1) = e/ 576”/2

(1atay|1) + (1|alas|1) + (1)alas|1) + (1]aday 1)
11
=3 + §c030(17)

Note that when we don’t introduce indefinite metric
in (15), (I) = 2 — $cosf ot 5 £ 1cosf. In addition,
when there only exist the unobservable potentials, i. e.,
no phase difference 6 = 0, (|alas|) = 0 which means we
can not observe any physical entity at all. Where |) is
arbitrary states. This relation corresponds to (¢|¢) = 0
as described later.

The above calculation is based on Heisenberg pic-
ture. We can calculate the same interference based on
Schrodinger picture. In Schrédinger picture, the inter-
ference can be calculated by using the output 1 (or 2:
% phase difference) state |1)s 4 [¢) and the electric field
operator £ = ag at the output 1 (or 2). Where |1)g
and |¢) represent the states of a photon passes through
path 1 and unobservable potentials passes through path
2 respectively. Because nothing is observed in path 2,
we should recognize (¢|¢) = 0. More precise defini-
tion is as follows. The operators a1, as and states |1),
[1)s can be translated by using the Hamiltonian H as
ay = et/ ge= M/ and |1)g = e~ /1) respectively.
Then é2|1) can be expressed by using (15) as follows.

d|1) = ei?—lt/hds (;,yeie/Qei?:Lt/h _ ;,yei(i/Qei?:Lt/h> 1)

s 1 ) 1 .
— 61Ht/hds (2’)/619/2 _ 276_19/2) |1>S (18)
Here we define
(1 e 1 g2
IO = { 57" = 57e 1)s (19)

Hence (1]abas|1) = (¢akas|¢). When 6 = 0, [¢) = 0, i.
e., (€|¢) = 0. In this picture, the expectation value can
be expressed as follows.

(I) o ((1]s + (¢]) akas (11)s + 1))
=1+ (Clakas|¢) + (1)s + (¢I1)s

1 1 1 1
=1 2+2COSH—2+2COSG (20)

In the above mathematical formula for the interfer-
ence by Schrodinger picture, there is no mathematical
solution in usual Hilbert space. Therefore the unobserv-
able potentials, which can not be observed alone, must
be regarded as a vector in indefinite metric Hilbert space
as can be seen from (19). Although the explicit expres-
sion such as (19) has not been reported, the same kind
of unobservable vector has been introduced as ”ghost” in
quantum field theory. [31-34] We also call |¢) ”ghost”
in this paper though this ”ghost” has a different defini-
tion. The traditional ”ghost” was introduced mathemat-
ically as an auxiliary field for consistent with relativistic
covariance of the theory and had no effect on physical
phenomena. However, the above ”ghost” is a physical



field which causes the interferences or is essential for the
interferences instead of the mathematical auxiliary field.

From the equation (11) and (20), the unobservable po-
tentials pass through path 2 produce the single photon in-
terference as if the photon passes through the both paths
in cooperation with a photon field passes through path
1.

The photon number should be proportional to Cg
squared as can be seen in equation (3). However unob-
servable potentials C and ¢ or (7), which express ”ghost”,
are not proportional to it as mentioned above. There-
fore, the interference effect will be drop off when there
are a large number of photons. This will be the reason
why quantum effects are hardly observed in macroscopic
scale.

Note that the superposition principle may be used as
a nice mathematical tool to simplify analyses in mixed
states. However when we use the superposition prin-
ciple in single photon case and fail to understand the
mechanism of the single photon interference as described
above, we may plunge into deniable engineering applica-
tions based on reduction of wave packet.

IV. POTENTIALS AND ELECTRON

In this section, we first consider two pinholes elec-
tron wave interference in classical manner. Figure 2
shows schematic view of a typical setup for the 2-slits (2-
pinholes) single electron interference experiment. [25, 35]

The propagating electron can be identified as an elec-
tron beam whose space current density is j = Nquv, where
N is the number of electron per unit volume, ¢ is the
electron charge and v is the electron velocity. When the
radius of the electron beam is wg, the current I can be
expressed as I = mwdj. According to Biot-Savart Law,
the propagation generates magnetic fields and potentials
around the propagation path.

Assume that the electron propagates parallel to z-axis
at a constant velocity. Then, the vector potentials around
the propagation path are expressed as [35, 36]

Ay, =A,=0
I 1
- - 21
2meqc? . r (21)

z

where r = /22 + y2, &g is the permittivity and c is the
speed of light.

Therefore the vector potential clearly passes through
not only the pinhole the electron passes through but also
the opposite pinhole.

Even if we apart from this easy consideration, the elec-
tron motion definitely generates potentials. Therefore,
when we consider the electron motion, we must take the
potentials.

In next section, we consider the two pinholes interfer-
ence in quantum mechanical manner with consideration
for the potentials.
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FIG. 2. Schematic view of a typical setup for the 2-slits (2-
pinholes) single electron interference experiment.

V. INTERFERENCE OF SINGLE ELECTRON

In a quantum mechanical description, the 2-slits (pin-
holes) single electron interference is typically explained
by the probability (density) of finding the electron on
the screen. [35]

Py = |1 + ¢2|? (22)

Where ¢1 = (z|1)(1]s) and ¢2 = (2]|2)(2|s), which are
composed of probability amplitudes

(1os2|s): "(electron arrives at pinhole 1 or 2|electron
leaves s (electron source))” and

(x]16r2): 7 (electron arrives at screen x|electron leaves
pinhole 1 or 2)”.

When either pinhole 1 or 2 is closed, the each and total
probabilities are calculated to be Py = |¢1]?, Py = |$2]?
and P = P, + P, # P5. Therefore we must admit the
electron passes through both pinholes at the same time
despite an electron can not be split off, which forces us
to introduces a concept of quantum-superposition states

However we can examine the states of the localized
electron propagation and unobservable potentials instead
of the quantum-superposition state as mentioned above.

In such a case, the electron wave functions should be
expressed as follows.

1/1/1 = 1)1 - exp |:Z;]i / (¢uodt - A dx):|
s—Pinholel—screen
Pl = 1) - exp [z’q / (Puodt — Ao - dx)] (23)
h s—Pinhole2—screen

where, 9] and 9, are the electron wave functions on
the screen passing through pinhole 1 and 2 with the unob-
servable potentials respectively. 11 and - are the elec-
tron wave functions heading to pinhole 1 and 2 at the
electron source without the effects of the unobservable



potentials. ¢, and A, include not only the unobserv-
able potentials expressed as (7) but also the unobservable
part of the potentials generated by localized potentials
such as (3) and (21).

Then the probability of finding the electron on the
screen by using these wave functions can be described
as follows,

Py o [@')? =[] + ¢4
= |th1|* + |1

—2Re (exp |:ZZ ]{(qﬁuodt - Ay dx)} 7/’1%2) (24)

—1—screen—2—s

where 1 and 2 of the integration path denote pinhole
1 and 2 respectively. This description is identical to
Aharonov-Bohm effect. [27]

In case of single electron interference, we can find the
electron at pinhole 1 without fail but not at pinhole 2, i.e.,
|¥1|?> = 1 and |¢p2|> = 0. Although the exact expression
should be [ |10r2)2dV = 1 or 0 instead of the probability
densities, we continue analysis with |11]?> = 1 and |t/5]? =
0 for simplification.

When we introduce a phase difference 6 between v,
and o, Pio expresses the interference as follows,

P13 oc 1 —2Re (expi [¢p + 0] i)2) (25)

where ¢ = a 7{(¢uodt — Ay - dx).
h s—1—screen—2—s
Note that when @ is fixed, the interference can be ob-

served on the screen as a function of ¢, i.e., position on
the screen. When ¢ is fixed, the interference can be ob-
served on a fixed position of the screen as a function of
0.

However, the wave function v as a probability density
must satisfy incoherent expressions, i.e., ¥ # 0 and
2] = 0.

Then in order to clarify the exact probability represen-
tation, we introduce the electron number states |n) that
means there are n electrons and charge operator Q =
[ d®zjo(z) defined by a conserved current j, = (g,1i),
ie., O*j, = % + V -i=0. The charge operator satisfies
Q|n) = ng|n), which means the n electron state is the
eigenstate of Q. [37, 38]

Because the charge operator is defined by a conserved
current which satisfies the Maxwell equations and Q will
corresponds to the expression of photon number operator
n = a'a, we can regard Q as combinations of indefinite
metric operators similar to (15), i. e.,

Q= Cﬁél

q _ l,yeie/?q o 1’}/6_10/2@

2 2 1 2 1

. 1 _om. 1 0/,

@b = gyve R4 - 5e?a] (26)

Then we can obtain the single electron interference as

same manner as (17) in Heisenberg picture, i. e.,

R 1 1
(I) = (¢| (QI + qg) (G1+d2) |¥) =q {2 + 2(:080}
(27)
where (I) is the expectation value of charge intensity.

Similarly, the interference of Schréodinger picture can
be calculated as follows.

(1) = (1] + (¥2]) Qs (|91) + [¥2))
= q+ (P2|Qsh2) + q(¥1]h2) + q(h2|v1)

:q{;—l—;cosﬁ} (28)

where the charge operator Qg and state [¢71) of

Schrodinger picture are obtained from Q = §¢¢1 =
eth/ﬁQSe—th/h and e—i?—tt/ﬁ|,¢}> _ |'¢>S = ‘w1> re-
spectively. Because Qg = e_mt/h(jiqlemt/h =

e—mt/thmt/h

Qs = Ghds and

, we define jg = e~ t/hg,ei"t/h Then

o 1 . 1 . o
@2WJ> _ ez’Ht/th <2,}/616/2 _ 2"}/629/2> efz’Ht/h|w>

o (1 1,
T <276 o2 37 9/2> )s

= /MG o) (29)

Therefore state of |1)1) and [i2) can be recognized as
follows.

“an electron passes through pinhole 1 with the un-
observable potentials” as [i1) with P, = (1)) =
[1nPdv =1

and

"no electron passes through pinhole 2 with the un-
observable potentials” as [io) with Py = (ialie) =
[ 2[?dV =o0.

In the above treatment, we introduce the new charge
operator (26) to emphasize the same expression as (15).
However, when we use direct product of the electron state
|t)) and the vacuum photon state |0) + |¢) in Schrodinger
picture, a straightforward approach can be made as fol-
lows.

Traditional direct product of the electron state |¢) and
the vacuum photon state |0) is expressed as |¢)]0) =
¥,0) = [¢)s = |¢hr).

From the above discussion, the vacuum photon state
should be replaced by |0) + |¢) in Schrodinger picture.
Therefore the direct product becomes [¢) (]0) + [¢)) =
6,0)+ 115, ) = [16)s +116, ). Because [, C) = [¢a), then
the direct product becomes [¢) (|0) + [C)) = |11) + [1)2)
which is identical expression with (28).

When [1hs) = (3702 — 1ye=9/2) |4) 5, (26) and (27)



can be obtained as follows.

(1) = ((¥1| + (¥2]) Qs (|91) + [12))

= {<'¢)1| + <’¢)1| <;fyei0/2 o ;Pyew/2> } QS

'{Iwﬁ + (;76“’/2 - ;%wm) |¢1>}
= (¢1] (1 T dqei/2 17&"/2) Qs

2 2
. (1 T %76'“9/2 _ ;,ye—iG/Q) |,(/}1>
= (1] (QI + q;) (41 + G2) [¢1) (30)

When we introduce the phase terms of (23) and (24) as
@1, 2 and ¢ = ¢y — ¢g, the interference (28) is calculated
to be as follows.

(I) = (e (1| + "2 (1ha]) Qg (" [01) + €92 (1))
= q+ (2| Qs|h2) + g (P1|tha) + qe™ (alir)

=q 5 2cos

+qe” (1 lpa) + qe? (halip) (31)

Then, ¢ does not seem to be the origin of the sin-
gle electron interference. Aharonov-Bohm effect will be
observed when there are substantial electrons in both
pinholes. The single electron interference will originate
from the unobservable potentials in vacuum |¢, () = |¢)2)
which can be defined similar to (19).

The above discussion suggests that the state "no elec-
tron passes through pinhole 2 with the unobservable po-
tentials” generates the phase difference for the interfer-
ence without electron charges.

In the above expression for |¢)9), there is no mathe-
matical solution in usual Hilbert space. Therefore the
state of "no electron passes through pinhole 2 with the
unobservable potentials” must also be regarded as a vec-
tor with zero probability amplitude in indefinite metric
Hilbert space as can be seen from (28), (29) and we can
express the quantum state of the interference without
quantum-superposition state.

Note that the calculation using the superposition state
of (24) is valid in case of mixed state whose probability
is statistical sense. The superposition states are conve-
nient for application to interference phenomena, however
the states do not reflect the right mechanism of nature,
which means there are great possibility the quantum ap-
plication using wave packet reduction of single photon
and electron interference will be unavailable.

VI. DISCUSSION

A. uncertainty principle and the reduction of the
wave packet

By the existence of the unobservable potentials,
Heisenberg’s uncertainty principle can be explained in-
dependently of measurements. In addition, the para-
dox of the reduction of the wave packet typified by
”Schrodinger’s cat” and ”Einstein, Podolsky and Rosen
(EPR)” [1, 2] can be solved, because the origins of both
are quantum-superposition state.

Former results insist the states of path 1 and 2 or pin-
hole 1 and 2 by Schrodinger picture are defined when the
system is prepared expressed as a substantial single pho-
ton or electron and the unobservable potentials respec-
tively and each state does not split off such as quantum-
superposition state, which means there is no reduction of
the wave packet.

”When the system is prepared” corresponds to imme-
diately after the branching point of the optical MZI or
the pinholes. Which path or pinhole does the photon
or electron select is unpredictable but after the selec-
tion, the state is fixed instead of quantum-superposition
state. The concept of these states is identical with
mixed states rather than pure states formed by quantum-
superposition, which suggests there is no concept of
quantum-superposition state.

As for Heisenberg’s uncertainty principle, we can
clearly recognize it as trade-offs derived from Fourier
transform non-related to measurement, which correspond
to the canonical commutation relation.

B. zero-point energy

From (14) and (0|€1J{&1\0> = 0, traditional zero-point
energy has been recognized as (0|#[0) = $hw, i. e.,

Olalanl0) = 5o 10] (- 5 10)

_ % (<0|7—2|0> - ;m) 0 (32)

This traditional fixed zero-point energy originates from
the definition of the electric field operators in (12) with-
out the unobservable potentials. However we have ob-
tained the idea that there are unobservable potentials in
whole space. Then we should replace (12) with follow-
ings.

. R 1 F
a1+a2:m(wq+2p)

1
al +al = (wd — ip) (33)

g

Therefore Hamiltonian will be the same expression of



the interference as follows.
’ A ata L ata o 1
H = hw (alal +alas + ajas + a2a1) + ihw (34)
Then the energy of single photon state also fluctuates.

N 1 1 1
(1[H|1) = 5m,J<1|cz§a1|1> + 5rw<1|eqal|1> cos 6 + -

(35)
Because a single photon can be observed when 6 =
+N7, (N : even numbers), then

. 1 . 1 ot 1
(1[H|1) = 5m<1|a}al|1> + 5m<1|a{al|1> + 5w

1
= (1]aday |1)hw + 5w = (36)

Therefore (1]ala|1) = 1 which leads to the replacement
of expectation value of photon numbers as follows

e 1 ot 1 o 3
Ofafaro) = -3, (lalailn) = 5, @lafaif) =,

(37)
Traditionally, <0|€1J{&1\0> has been considered to be 0.
However we should recognize (0|alay]0) = —2 which re-

quires indefinite metric.

Then absolute value of the single photon interference
moves depending on the selection of (0]ala;]0). However
(I) 1 =+ 1 cosf is maintained.

By using the expectation value, zero-point energy is
calculated to be

~ 1 1 1
(0]H|0) = 5m,J<0|cﬂa1|o> + 5rw<o|eqal|o> cos 0 + - hw

1 1
= Zhw— Zhwcosﬁ (38)
The zero-point energy also fluctuates. Note that if a; =

ya,
N - 1 (., 1
Yoy = —alay, = —— (7—[ - 277w> (39)

Hence the isolate indefinite metric potentials may pos-
sess negative energies. [31] However o # a1 as can be
seen from (15) and can not be isolated but combined in-
stead such as (33), the negative energies can only appear
through the interference with the localized potentials.

The zero-point energy has been measured through
Casimir effect. [39-43]

The above new insight explains there are energy fluc-
tuation in vacuum due to the phase difference. The at-
tractive force from this kind of fluctuation is identical
with the basic concept of Van der Waals force which will
be the origin of Casimir effect. [44]

Therefore the above calculation will not be inconsistent
with Casimir effect.

C. spontaneous symmetry breaking

Traditional treatment of the spontaneous symmetry
breaking, which explores the possibility of Q|0) # 0 or
generally 7]0) is not an eigenstate of Q”, needs an in-
tricate discussion using Goldstone boson or Higgs boson.
[38, 45] Where |0) is vacuum state.

However, the unobservable potentials eternally popu-
late the whole of space as mentioned above and there
are no electron at pinhole 2. Therefore the state of pin-
hole 2, |12}, can be identified as vacuum instead of |0).
From the relation (¢2|t)2) = 0 as described above, if
|tho) is an eigenstate of Q, i.e., Qi) = alws), then
(12|Qlv2) = a{iha|tha) = 0, where « is an eigenvalue.
However from the discussion under (28), (1)2|Q|y2) fluc-
tuates between —q and 0 depending on the phase differ-
ence. Hence the vacuum |i¢5) is not an eigenstate of Q,
which expresses the spontaneous symmetry breaking.

The above discussion that the new vacuum is filled
with potentials (gauge fields) whose state exists under
original ground state is identical with the spontaneous
symmetry breaking using the analogy of superconductiv-
ity when we replace Q with energy level reported by Y.
Nambu and G. Jona-Lasinio. [46, 47] When the phase
difference is fixed, the one vacuum is selected and the
selection breaks symmetry of vacuum.

In addition, the spontaneous symmetry breaking by
gauge fields leads to mass acquire of gauge fields (Higgs
mechanism). [48]

Therefore the above discussion will not be inconsis-
tent with traditional treatment of spontaneous symmetry
breaking and the mass acquire mechanism.

D. general treatment of single particle
interferences

From (20) and (28), the single particle interferences
can be expressed as following manner.

(I) = ({ol + KN F (o) + 1))
= [+ (IF[Q) + £{9[C) + f{Cl9) (40)

Then when (C[F[¢) + f(|C) + f{Cl¢) = —if +

1fcosd, single particle interferences of F, ie., (I) =
f {% + %COS 9} can be generated. Where F is an arbi-
trary observable operator of the particle, |¢) is an eigen-
state of F, f is the eigenvalue of F under state |¢) and
|¢) is an indefinite metric vector expressing unobservable
potentials. In case of Maxwell equations as described in
this paper, |¢) is identified as commutative gauge fields
(Abelian gauge fields). When we study multicomponent
state |¢), |¢) will be identified as non-commutative gauge
fields (non-Abelian gauge fields). [49-52] However the
above general treatment can be applied in both cases.
When F is a number operator n of the particle and
|¢) is single particle state |¢) = |1) in (40), the existence



probability of the single particle fluctuates, i.e.,

(1 + (D) +16)) = 1+ {{In|¢) + (1) + (¢[1)
1 1
= 5—&—50059 (41)

These kinds of self fluctuation of a particle will be con-
sistent with neutrino oscillation. [53, 54]

VII. SUMMARY

There are some unresolved paradoxes in quantum the-
ory.

If we take advantage of the indefinite metric vectors as
described in this report, the paradoxes can be removed.
In addition, it can explain the uncertainty principle inde-
pendently of measurements, eliminate zero-point energy
on certain conditions and cause spontaneous symmetry
breaking without complexity.

We should consistently introduce indefinite metric vec-
tors because Maxwell equations are wave equations in
Minkowski space. When we introduce state vectors in
Minkowski space, indefinite metric vectors are absolutely
required. The required vector should be recognized not
only as an auxiliary field but also as a real physical field
which is the root cause of single photon and electron in-
terferences.

The results insist the vacuum space is filled with
the unobservable potentials which can eternally exist as
waves and correspond to gauge fields introduced by gauge
transformation of the second kind.

This idea provides exactly the same calculation and ex-
perimental results by using quantum-superposition state
because the phase difference between the photon or elec-
tron and the unobservable potentials provide the inter-
ferences as if the quantum-superposition state exists. In

addition, the concept is based on an analogy from the
expression of substantial localize electromagnetic fields
or an electron and the unobservable potentials instead
of curious quantum-superposition state that forces us to
imagine a photon or an electron passes through the both
paths or pinholes despite a photon or an electron can not
be split off.

Furthermore, this idea will not be inconsistent with
traditional treatment of Casimir effect, spontaneous sym-
metry breaking, the mass acquire mechanism and can be
applied to non-Abelian gauge fields.

The superposition states are valid in case of mixed
states whose probabilities are statistical sense. However,
quantum-superposition state is not valid in case of pure
state whose probability is fundamental sense, though the
superposition principle may be used as a nice mathe-
matical tool to simplify analyses. Therefore, there is no
concept of quantum-superposition state in nature, which
insists fulfillment of engineering applications based on
reduction of wave packet is pessimistic conclusion and
Quantum theory is a kind of statistical physics.

The incompleteness of ”Quantum theory”, which has
been alerted by A. Einstein, will originates from lack of
introduction of indefinite metric. Quantum theory with
introduction of indefinite metric will be complete.

M. Arndt and K. Hornberger have reviewed some test-
ing of quantum mechanical superpositions, [11] we hope
the results will be tested by those technologies.
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