Unobservable Gauge Fields to Explain Single Photon and Electron Interference
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We show single photon and electron interferences can be calculated without quantum-superposition states assuming
that the states are expressed as a localized optical or electron beam and unobservable potentials. From the analysis
results, the unobservable potentials can be identified as indefinite metric vectors with zero probability amplitude. The
results insist there is no concept of quantum-superposition states, which leads to an improved understanding of the
uncertainty principle and resolution of paradox of reduction of the wave packet, elimination of infinite zero-point energy
and derivation of spontaneous symmetry breaking. The results insist Quantum theory is a kind of statistical physics.

1. Introduction damental sense in nature. Only the concept of mixed states

Basic concept of the quantum theory is the quantumyvhose prqbqbilitieg are statistical sense is valid in nature.
superposition states. Arbitrary states of a system can be ddle new insight gives us novel and important results, i.e.,
scribed by pure states which are superposition of eigenstatB¥roved understanding of the uncertainty principle non-
of the system. Calculation results by the concept agree wéglated to measurements, elimination of infinite zero-point en-
with experiment. Without the concept, single photon or ele&ray without artificial subtraction, derivation of spontaneous
tron interference could not be explained. In addition to theYymmetry breaking without complexity and knowledge that
interference, entangle states also could not be explained. Quantum theory is a kind of statistical physics.

However the concept leads to the paradox of the reduction!n addition, new insight can conclude that the concept
of the wave packet typified by "Scbdinger’s cat” and "Ein- of entangle state is also not valid in nature though there
stein, Podolsky and Rosen (EPR)®) have been reported the validity of the concept of entangle

In order to interpret the quantum theory without paraStatest’?? We will discuss the entangle state by using the
doxes, de Broglie and Bohm had proposed so called *hiddéf#W insight in other letter? .
variables” theory:4 Although, "hidden variables” has been In section 2, we show easy example of Gaussian photon
negated) the theory has been extended to consistent with rék€am to explain that single photon can be described by sub-
ativity and ontology?~1? However the extension has not peerstantial (localized) photon and unobservable potentials. In ad-
completed so far. dition, more general description by using gauge invariance

Although there were a lot of arguments about the pards offered. In section 4, we also show easy explanation that
doxes, recent paper related to the quantum interferences c¥f shoul_d recognize the existence of the_ potentials in two-slit
vince us of the validity of the concept. For example, quanturﬁlectron interference experiment. In section 3 and 5, we show
mechanical superpositions by some experiments have bdBg calculation of the interferences by using states represent
reviewed!?) The atom interference by using Bose-Einsteifthe substantial photon or electron and the unobservable po-
condensates (BECs) has been reported experimentally dg@tials, which does not require quantum-superposition states.
theoretically!21® The coherence length of an electron of" sectioq 6, we discuss the.paradoxes related to quantum-
electron-electron interference by using the Aharonov-BohSHPErposition states, zero-point energy, spontaneous symme-
oscillations in an electronic MZI has been discussed theorefly breaking and general treatment of single particle interfer-
cally1415 A plasmonic modulator utilizing an interference of€NCes. In section 7, we summarize the findings of this work.
coherent electron waves through the Aharonov-Bolfifece ~ Aharonov and Bohm had pointed out the unobservable po-
has been studied by the autA®rThe entangle states havet€ntials can ffect the electron wave interferences and the
been widely discussed experimentally and theoretidatfp  effect had been experimentally identified by Tonomura et.
The photon interference by using nested MZIs and vibra@-zmg)
mirrors has been measured and analyZed) The double-slit The findings has pointed out the unobservable potentials,
electron difraction has been experimentally demonstrdgéd. Which can be identified as gauge fields, generate not only
According to our analysis, BECs, condensate and bosoniZit@ronov-Bohm &ect but also single photon, electron or an
tion systems correspond to mixed states with or without c@vrbitrary particle field interferences and fluctuation of the uni-
herence rather than pure states, and no paper can solve YRES€ as will be described later in this paper.
paradoxes. The discussions in this paper are very simple to the same

In this paper, we fier a new insight of the single photon level as an introductory of quantum theory, because the quan-
and electron interference that can solve the paradoxes. A#M theory has a misunderstanding in such a fundamental
cording to the new insight, there is no concept of quantunfOncept and nature of nature will be simple.
superposition and pure states whose probabilities are fun-
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Therefore,E andB are localized in the free space in the

. — input. In contrast, the vector and scaler potentials, which can
y© 50:50 not be observed alone, are not necessarily localized.
BS Note that, the Gaussian beam radius will be spatially ex-

Input b N\ Path 1 \Mirror panded due to the free space _propagation: However, the radius
of the propagated beam(z) will be approximately 10.5mm
50:50

Gaussian beam . _ .
when the beam with the initial radiusy = 10mm propa-

BS gatesz = 100m in free space. This value can be calculated

2
: 0} t 1 — Az — H
Mirror \ Path 2 utpul by w(2) = wp 4 /1 + (—2) when the wavelength = 1um is

0
applied. Then the spatially expansion of the beam will be neg-
Output 2 ligible small when the paths of the MZI are less than several
tens meters.
The above localized form (1) is one example, other forms
can be employed as follows.
Let examine the following Maxwell equations.

Fig. 1. Schematic view of MZI. BS:Beam Splitter.

2
2. Classical Electromagnetic field of MZI - potentials (A _ iza_)A v (V A+ £5_¢) = —uoi
and photon c? ot c? ot

Figure 1 shows schematic view of the Mach-Zehnder Inter- 1 2 0 v.A 1o\ p 5
ferometer (MZI) and coordinate system. T 2o ¢+ Mt 2E] T & ()
First we examine the input beam. Assume that an x- . o . .
) . ; S . wherepg is the permeability angd is the electric charge den-
polarized optical beam propagates in z-direction with anguI%Et
frequencyw and propagation constagt the electric fielde -

. . . . Here, we divide the potentiaks, ¢ into localizedA,, ¢, and
of the optical beam is well localized in the free space, €.9nobservabla Then the equations (5) can be divided
the cross section profile of the electric field is expressed a uo: Puo- q

Gaussian distribution. fito following equations

s ; ; ; 2
Then, the electric field of the optical beam in the input can (A 1 a_)Al ~ V(V A 1 8¢|)

be expressed as follows. T2 ot2 2 ot ~Hol
X2 + y2] 18 0 1 96
E = e.-Cg -expl- - cos(wt — 8Z 1 Ao =2 I lyv.A+=222 - _P 6
x * CE p( W(z) ( ﬂ) ( ) ( Czﬁt2)¢|+6t( |+02 ot . (6)
Where, g, is unit vector parallel to the x-axi€g is an ar- and
bitrary constant of which squared is proportional to the field 2
: : : ) : 10 1 9¢uo
intensity. wp is the radius of the optical beark. andB are T2 Auw = V|V -Auw+ 2ol ~ 0
expressed by vector and scalar potentials as follows.
0 A_ia_z(lg +2 V-A +£a¢“° = 0 (7)
E = —5A-V8 2oz ot re ot ) T
B = VxA 2) Wheni = 0 andp = 0, the equations (6) can express the

] . ) localized electromagnetic fields in free space as described in
From (1) and (2)A is expressed by introducing a vector functne apove.

tion C as follows. In contrast, the equations (7) are independent of (6). Note

1 X +y?) that even if we study a wave packet like optical beam instead

A= o Ce- exp(— W2 ] sin(wt=F2)+C o continuous one in z-axis as (1), unobservable potentials (7)

0 are independent of the beam configuration. In addition, even if

ﬁc = -V¢ (3) there are no optical beam, the unobservable potentials (7) ex-
ot ist. Therefore the unobservable potentials can eternally pop-

By taking C as an irrotational vector functioi x C = 0 in  ulate the whole of space as waves defined by Maxwell equa-
order forB to localize in the space, for exampl@,and¢ can tions, which propagate at the speed of light. If the Lorentz
be expressed by introducing an arbitrary scalar funcii@s condition is applied to (7), the unobservable potentials can
C =VaiandVv (%A + ¢) = 0 respectively. exist in whole space as harmonic oscillators.
ThenB is expressed as follows (7) expresses the gauge invariance of the localized electro
B - UxA magnetic field or electron flows and the unobservable poten-
tials are well-known gauge field introduced by gauge trans-

X%+ y? formation of the second kind.

= B .coexpl- . _
= wey Ce exp( W ) cos(wt — B2)
2

3. Interference of single photon

—iezCE-ex —ﬂ]«sin(wt -B2) (4) If Maxwell equations are deemed to be classical wave equa-

W5 wg tions whose electro-magnetic fields obey the superposition



principle, then we can express the electric field of the interesent a photon selects and passes through path 1 and the un-
ference by the superposition fields (superposition of dividedbservable potentials pass through path 2. This description
fields of the inputEou = 3E1 + 3E2. can also be applied to (6) and (7). i

However, we can express the electric field of the interfer- According to this description, the operatoe &; exp(i9)+
ence without superposition by using the unobservable poteg with (1jai&;|1) = 1 and(1jaj&|1) # 1 instead ofE =

tials as follows. %él exp(if) + \/liéz should be introduced because the pho-
ton passes through only path 1. Note thgisthe electric field

E B —QA Ve — QA _v operator in path 1 obtained from the traditional quantization

out = at i o v Puo as mentioned above using (6) instead of (5). In contgst, ~

9 is a purely-formal operator in path 2 obtained from the tradi-

= Ei-ZAw—Vouw (8) tional quantization using (7) instead of (5), which is not the

electric field operator but provides some quantity related to
e unobservable potentials in path 2.

Therefore the expectation value of outpuglphase dier-
ence will correspond to output 2) can be expressed as follows.

If the unobservable potentials configure the following electri
field, the interference by one side MZI path can be produce
in cooperation with a photon field passes through path 1.

d 1 1 . i
—tAu0 — Vduo = SE2 - 51 9 (o (uajall) + (U85R0I1)
where subscripts 1 and 2 stand for the MZI path 1 and 2 re- +e(1jal 8|1y + e'(1)a}3|1)
spectively. 14 (1A B
The above discussion is based on classical description. - + (11831
However, applying the superpaosition principle to particle im- +é9<1|3132|1> + e—i9<1|é;él|1> (11)

age, e.g., inseparable single photon, leads to quantum para- ' .

doxes. Then we translate the above classical description usindf (1&82(1) + €%(1/ala,/1) + e¥(1ja}a|1) = -1 + cosy,

the unobservable potentials to quantum description withothe same interferenag) « 2 + 1 cosg can be observed.

paradoxes. More precise calculation is as follows. The electric field
In a quantum mechanical description, the photon interfepperators obtained from traditional quantization procedure for

ence is calculated by introducing the electric field operatauantum optics with Coulomb gauge have relationships with

E=1Llgy exp(if) + izég and the number state) as fol- harmonic oscillator as follows.

\2 V2
lows 39 Whered,» is the electric field operator in path 1 or 4 - 1 (i +ip)
2 respectivelyd is the phase dierence.  \2ho
~ 1 .. 1 . At . 1
(Iy o S¢nlagauln) + >(njafagln) + cosa(naja;In)  (10) & = ——(wg-ip) 12

Where(f) is eXpeCtatiOﬂ value of the flele intenSity-WhiCh iSWhereq"and Fj‘are position and momentum operators Obey_
proportional to photon numbeaiy o> andé, ,, are defined as jng the commutation relatiomy[p] = iz. Hamiltonian of har-

a= a%az andd = 2‘3;\/;5 by using the electric field operataas ~ Mmonic oscillator is expressed as follows.

Ata

. . o ata _ niata _ ~ 1
zindaﬁ atthe input W|th<n|a1§11|n) = <n|a2a2_|n> = _(nlalazln) = o = 5 (ﬁz + wzqz) (13)
5N. When photon number is onen(= 1), i.e., sAlngIe photon, . ' .

the above expectation value is calculated tdibex  + 2 +  Then following relations are obtained.

1 cost = § + 1 cosd. In this traditional treatment, the electric in L o orp o mm o a
field operators are obtained from quantization of (5) by using aa = - (P + 0’6 +iwdp - iwpa)
Coulomb gauge under assumption ef 0 andp = 0. 1/ 1
However we can make aftirent description by using the = — (7{ - —hw)
concept of the above unobservable potentials as follows. hw 2
Photon number will be proportional @ squared in equa- aat 1/(~ 1
tion (3). In contrast, the unobservable potenti@land¢ or aa = iw (7{ + §h‘”) (14)

there are a large number of photons, it is reasonable to su ne apove_traditional operators correspond to the localized
pose that half of photons pass through path 1 and the rest p géentlals, €., the operators 9f (6).
Here we can find the following operators for the unobserv-

through path 2 by law of large numbers because the probaBI ol he interf
bility of "which path does each photon select” should %)e able potentials can generate the interference.

(7) are not necessarily proportional to photon number. Wh?1

This concept corresponds to mixed state instead of quantum- s _ 1 o125, _ 1 i,
superposition state whose probabilities are statistical and fun- & = 27 A 27/e &
damental sense respectively. at ezat 1 iejzat
However when there are only a few photons, which corre- a = 579 4 - §7el & (15)
spond to the localized vector potential expressed as first term ) )
ereys = -1 (i. e.,y corresponds to the square root

of equation (3) is comparable with the unobservable potentia h . ¢ Minkowski . _
expressed as the rest terms or (7), we should consider greaﬁ ghe determinant o M_'n OWSKI metrlc_tensomgw =
probability that only the localized vector potential which rep/@ = V-1 = y. Appendix shows more rigorous treatment



using tensor form.) which stands for requirement of indefipressed as follows.
nite metric and is a phase dierence between the localized

N At
and unobservable potentials. These operators can be identi- (e ((Us + (&) 8s8s (Ds + 10))
fied as a quantization of (9). The unobservable potentials also = 1+ <§|a;as|§> + AD)s + (s
exist in pathl with the localized potentials in-phase, i. e.,
3 =a+a (9 =0)=4a= 3. Then we can obtain = 1_%+%C059:%+%COSQ (20)
AT Looa _Laia o Liosia 1 ioats : -
L = —Zala - Zalal + Ze‘ aq + Ze EIEY In thg gbove mathemat|cgl formula for the mterfelren(.:e
by Schibdinger picture, there is no mathematical solution in
- _3311'31 + }é}:al cosf usual Hilbert space. Therefore the unobservable potentials,
2 2 which can not be observed alone, must be regarded as a vec-
O | 91251 3 i0/2a7 A tor in indefinite metric Hilbert space as can be seen from (19).
G = FyETAA - S5YE A A Although the explicit expression such as (19) has not been re-
i i ported, the same kind of unobservable vector has been intro-
G = Syeaa - E)’e' a& (16)  duced as "ghost” in quantum field theddy3We also cal|¢)

"ghost” in this paper though this "ghost” has dfdrent defi-

Finally the following interference is obtained. nition. The traditional "ghost” was introduced mathematically

<1|a;a1|1> = 1 as an auxiliary field for consistent with relativistic covariance
i 1 1 of the theory and had ndfect on physical phenomena. How-
1ajally = -3 + > cosf ever, the above "ghost” is a physical field which causes the
interferences or is essential for the interferences instead of
AEaD = %yeiG/Z _ %ye—ie/Z the mathematical auxiliary field.
From the equation (11) and (20), the unobservable poten-
At 1 e 1 /2 tials pass through path 2 produce the single photon interfer-
Ll = Yoy ence as if the photon passes through the both paths in cooper-

ation with a photon field passes through path 1.
(1alayl1) + (11ab8el1) + (1Al a1y + (1aja 1) The photon number should be proportionalde squared
1 1 as can be seen in equation (3). However unobservable poten-
=5 + > cost (17) tials C and¢ or (7), which express "ghost”, are not propor-
] . o - tional to it as mentioned above. Therefore, the interference
Note that when we don'tintroduce indefinite metyin (15),  efect will be drop ¢ when there are a large number of pho-

(I = 3 — 3 cosd ¢ 3 + 3 cose. In addition, when there only {ons. This will be the reason why quantutieets are hardly

exist the unobservable potentials, i. e., no phasiemince spserved in macroscopic scale.

6 = 0, (|&j&l) = 0 which means we can not observe any Npote that the superposition principle may be used as a nice

physical entity at all. Wherp is arbitrary states. This relation yathematical tool to simplify analyses in mixed states. How-

corresponds teClf) = 0 as described later. . ever when we use the superposition principle in single pho-
The above calculation is based on Heisenberg picture. Wgn, case and fail to understand the mechanism of the single

can calculate the same interference based ord8iaiger pic- photon interference as described above, we may plunge into

ture. In Schadinger picture, the interference can be calculategepigple engineering applications based on reduction of wave
by using the output 1 (or Z phase dierence) statf)s + 1) packet.

and the electric field operat@ = &g at the output 1 (or 2).

Where|1)s and|¢) represent the states of a photon passés Potentials and electron

through path 1 and unobservable potentials passes throughn this section, we first consider two pinholes electron wave
path 2 respectively. Because nothing is observed in path j&terference in classical manner. Figure 2 shows schematic
we should recogniz&|¢) = 0. More precise definition is as view of a typical setup for the 2-slits (2-pinholes) single elec-
follows. The operatoray; &s ang statefl), [1)s can be trans- tron interference experimeft.3%

lated by using the Hamiltonia# as&; = &/"age""/" and The propagating electron can be identified as an electron
I1)s = e"/7|1y respectively. Themy]1) can be expressed by beam whose space current density is Nqv, whereN is the

using (15) as follows. number of electron per unit voluma,is the electron charge
B 1 B 1 . andv is the electron velocity. When the radius of the electron
Bll) = &Mihag (Eye'e/ 2giHUR _ Eye"g/ze"“/h) 1) beam iswo, the current can be expressed &s= mw2j. Ac-

cording to Biot-Savart Law, the propagation generates mag-
netic fields and potentials around the propagation path.

Assume that the electron propagates parallel to z-axis at a
constant velocity. Then, the vector potentials around the prop-
agation path are expressed®a®)

Mg (3= S ms @
Here we define
1 1
1) = (Eyéo/z - é«ye—'H/Z) |1)s (19) Ac = A=0

Hence(1|&j8,l1) = ({lalasl¢). Whend = 0,1) = 0, i. e., A, = In - (21)
12y = 0. In this picture, the expectation value can be ex-
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where,y; andy/, are the electron wave functions on the
screen passing through pinhole 1 and 2 with the unobservable
potentials respectively:; andy, are the electron wave func-
tions heading to pinhole 1 and 2 at the electron source without
the dfects of the unobservable potentialge andA, include
not only the unobservable potentials expressed as (7) but also
the unobservable part of the potentials generated by localized
potentials such as (3) and (21).

Then the probability of finding the electron on the screen
by using these wave functions can be described as follows,

W2 = 1wy + ol
= |l + ol
_2Re(exp[i;—q_l 95 (duodt — Ao - dx)} z//{://z) (24)

1-screer>2—s

P o

Fig. 2. Schematic view of a typical setup for the 2-slits (2-pinholes) single

electron interference experiment.

where 1 and 2 of the integration path denote pinhole 1 and 2
respectively. This description is identical to Aharonov-Bohm
effect?”)

In case of single electron interference, we can find the

wherer = X2 + V2, & is the permittivity anct is the speed €lectron at pinhole 1 without fail but not at pinhole 2, i.e.,

of light.

Y112 = 1 and|y,|* = 0. Although the exact expression should

Therefore the vector potential clearly passes through nBe | |'/’19r2|2dV = 1 or O instead of the probability densities,
only the pinhole the electron passes through but also the dgge continue analysis witfy1|* = 1 andly|* = 0 for simpli-

posite pinhole.

fication.

Even if we apart from this easy consideration, the elec- When we introduce a phasefigirences betweeny; and
tron motion definitely generates potentials. Therefore, whete, P12 expresses the interference as follows,

we consider the electron motion, we must take the potentials.
In next section, we consider the two pinholes interference

P1 o 1 — 2Re(expi [¢ + 6] ¥iv2) (25)

in quantum mechanical manner with consideration for the PQihereg = g é‘(qbuodt— Ao - dX).
S

tentials.

5. Interference of single electron

In a quantum mechanical description, the 2-slits (pinholedyhené is fixed, the interference can be observed on a fixed
single electron interference is typically explained by the prod20Sition of the screen as a functionébf
ability (density) of finding the electron on the scregh.

P12 = Iy + ¢al®
Whereg¢; = (X|1)(1]|s) and¢, = (X|2){2|s), which are com-

posed of probability amplitudes 3. : .
(1or2ls): "(electron arrives at pinhole 1 ofedectron leaves @€ N electrons and charge opera@r= J &xjo(x) defined

s (electron sourcé) and

(22)

loscreerr2—-s .
Note that wher is fixed, the interference can be observed

on the screen as a function ¢f i.e., position on the screen.

However, the wave functiog, as a probability density
must satisfy incoherent expressions, ygy> # 0 andy,? =
0.

Thenin order to clarify the exact probability representation,
we introduce the electron number stafi@sthat means there

by a conserved currenj = (9,i), i.e.,d"j, = % +V-i=0.

(X|1or2): "(electron arrives at screeqelectron leaves pin- The charge operator satisfi@gn) = ngn), which means the

hole 1 or 2".

n electron state is the eigenstateQf’-38)

When either pinhole 1 or 2 is closed, the each and total Because the charge operator is defined by a conserved cur-

probabilities are calculated to B = |¢1]%, P = |$2*> and

rent which satisfies the Maxwell equations aDavill corre-

P = P, + P, # P1,. Therefore we must admit the electronsponds to the expression of photon number operato@’3,
passes through both pinholes at the same time despite an el&e-can regar@ as combinations of indefinite metric opera-
tron can not be splitfd, which forces us to introduces a con-tors similar to (15), i. e.,

cept of quantum-superposition states .

However we can examine the states of the localized elec- Q = &b
tron propagation and unobservable potentials instead of the ~ 1 d9/2g, _ 1 ios
" . G = Y€ L ve
guantum-superposition state as mentioned above. 2 2
In such a case, the electron wave functions should be ex- 1 . 1 .
) AT —i0/2aF /247
pressed as follows. G = ye "0 - 579' a; (26)

PR
v, = w2~exp[ig

(¢U0dt - AUO : dX):|

s—Pinholel»screen

(buodt — Ao dx)] (23)

s—Pinhole2»screen

Then we can obtain the single electron interference as same
manner as (17) in Heisenberg picture, i. e.,

. 1 1
) = (6 + ) @+ ) = af 3 + o] (2)



where(l) is the expectation value of charge intensity. follows.
Similarly, the interference of Schdinger picture can be
calculated as follows.

Iy = (el + € (Yal) Qs (€ lya) + €71y2))
(= (Wl + W2l) Qs (1) + 2)) i ;
= Q-+ WalQslv2) + qe " (Walp2) + q€(Walyn)
= q+Y2lQsl2) + Aaly2) + Kal1) 11
= q{— + = cos@}
= q{% + %cos@} (28) 2 2
2 g’ 31
where the charge operatQs and statdy;) of Schiddinger A€ Wilvz) + A Waly) (31)
picture are obtained fron@ = G = dHUnQge i Then,¢ does not seem to be the origin of the single electron
and e“‘f“/hw/) = s = Il!/1>l respectively. Because interference. Aharonov-Bohmffect will be observed when

there are substantial electrons in both pinholes. The single

- elHtngtg dHE — oiHYEOdHLR neas = - it
Qs = e 0yhe =€ Qe™™", we definegs = gjocron interference will originate from the unobservable po-

e Mg MU ThenQs = 658s and tentials in vacuuniy, ) = |y») which can be defined similar
. . to (19).
. idina (1 1 . T . .
Gelyy = €"gs (579'9/2 -5 '0/2)6 My The above discussion suggests that the state "no electron
passes through pinhole 2 with the unobservable potentials”
iditna (1 1 tes the phaseffdirence for the interference without
_ Ht/hy £ 4002 L i60/2 genera p
= & (Zyel 27° )WS electron charges.

i In the above expression fay,), there is no mathemati-
e " qsly2) (29)  cal solution in usual Hilbert space. Therefore the state of "no

Therefore state df/1) and|y») can be recognized as follows. elegtron passes through pinhole 2 with the gnobservable pp-
"an electron passes through pinhole 1 with the unobserigntials” must also be regarded as a vector with zero probabil-

able potentials” agiy;) with Py = (1li1) = f|l//1|2dv -1 ity amplitude in indefinite metric Hilbert space as can be seen
and from (28), (29) and we can express the quantum state of the
"no electron passes through pinhole 2 with the unobseridterference without quantum-superposition state.

able potentials” agy,) with P = (Wolir2) = fllﬁledV - 0. Note that the calculation using the superposition state of

In the above treatment, we introduce the new charge opdg4) is valid in case of mixed state whose probability is statis-
ator (26) to emphasize the same expression as (15). Howe\}é}?l sense. The superposition states are convenient for appli-
when we use direct product of the electron steteand the cation to interference phenomena, however the states do not
vacuum photon state)+|¢) in Schibdinger picture, a straight- reflect the right mechanism of nature, which means there are

forward approach can be made as follows. great possibility the quantum application using wave packet
Traditional direct product of the electron state and the reduction of single photon and electron interference will be

vacuum photon stat{®) is expressed ag)l0) = |y,0) = unavailable.

s = ). 6., Discussion

From the above discussion, the vacuum photon state should ] o )
be replaced by0) + |¢) in Schibdinger picture. Therefore the 6.1 uncertainty principle and the reduction of the wave
direct product becomés) (10) + |)) = ¥, 0)+1, {) = )s+ packet
l, O). Becauséy, 0y = |i»), then the direct product becomes BY the existence of the unobservable potentials, Heisen-
) (10) + [2)) = [¥1) + =) Which is identical expression with berg’s uncertainty principle can be explained independently

(28). of measurements. In addition, the paradox of the reduction
When|y,) = (%ye‘g/z _ %ye—ie/Z) l¥)s, (26) and (27) can be ©f the wave packet typified by "Scbdinger’s cat” and "Ein-
obtained as follows. stein, Podolsky and Rosen (EPRY can be solved, because
the origins of both are quantum-superposition state.
M= (Yl + al) Qs (Y1) + 2)) Former results insist the states of path 1 and 2 or pinhole 1
B 1 o2 1 o and 2 by Schisdinger picture are defined when the system is
- {Wl' +l (éye - §7é )} Qs prepared expressed as a substantial single photon or electron
and the unobservable potentials respectively and each state
.{|¢,1> + (}yeie/z _ }ye—ie/Z) |!//1>} does not split § such as quantum-superposition state, which
2 2 means there is no reduction of the wave packet.
1 . 1 . "When the system is prepared” corresponds to immediately
= (il (1+ éye_'g/z - 576'9/2) Qs after the branching point of the optical MZI or the pinholes.
Which path or pinhole does the photon or electron select is

'(1 . }yeig/z B }ye_i@/z) W) unpredictable but after the selection, the state is fixed instead

2 2 of quantum-superposition state. The concept of these states is
A\ A identical with mixed states rather than pure states formed by
(Wl (ql + qz) (@ + Go) o) (30) quantum-superposition, which suggests there is no concept of
When we introduce the phase terms of (23) and (24has duantum-superposition state.

#> and¢ = ¢1 — ¢», the interference (28) is calculated to be as As for Heisenberg's uncertainty principle, we can clearly
recognize it as tradefis derived from Fourier transform non-



related to measurement, which correspond to the canonicadgative energie¥) Howevera, # ya; as can be seen from

commutation relation. (15) and can not be isolated but combined instead such as
(33), the negative energies can only appear through the in-

6.2 zero-point energy terference with the localized potentials. Therefore (38) can

From (14) and0|a§al|o> = 0, traditional zero-point energy eliminate infinite zero-point energy due to the sum of infinite
has been recognized H|0) = 3w, i. e., degree of freedom. .
L L The zero-point energy has been measured through Casimir

- 39-43
a0 = @ (7{ - —hw) 10) effect™ ) - . .
iw 2 The above new insight explains there are energy fluctuation

1 R 1 in vacuum due to the phasefidirence. The attractive force
= (<0|74|0> - zhw) =0 (32) from this kind of fluctuation is identical with the basic concept
of Van der Waals force which will be the origin of Casimir
This traditional fixed zero-point energy originates from theffect44
definition of the electric field operators in (12) without the Therefore the above calculation will not be inconsistent
unobservable potentials. However we have obtained the id@&&h Casimir dfect.
that there are unobservable potentials in whole space. Then

we should replace (12) with followings. 6.3 spontaneous symmetry breaking
L 1 o Traditional treatment of the spontaneous symmetry break-
ata = N (@G +ip) ing, which explores the possibility @|0) # 0 or generally

1 "|0) is not an eigenstate @”, needs s’;:;*g)rv\;ir(:atﬁ 0d)iscussion
alral = a—ip using Goldstone boson or Higgs bosort: ere|0) is vac-
R V2hw (£0-1p) (33) uum state.
Therefore Hamiltonian will be the same expression of the However, the unobservable potentials eternally populate
interference as follows. the whole of space as mentioned above and there are no

. ) 1 electron at pinhole 2. Therefore the state of pinholé/2),
H =how (éi_él + 88 + &% + 3\;31) + Shw (34) can be identified as vacuum instead|@f. From the rela-
. tion (y2l2) = 0 as described above, |if,) is an eigenstate
Then the energy of single photon state also fluctuates. of Q, i.e., Q) = als), then Qi) = alwalra) = O,
wherea is an eigenvalue. However from the discussion under
(28), (y2|Qlyr2) fluctuates betweeng and 0 depending on the

Because a single photon can be observed wherNx, (N : phase dierence. Hence the vacuun) is not an eigenstate

(AL = %hw<1|a}al|1>+ %hw<1|a§a1|1> cosf+ %hw (35)

even numbers), then of Q, which expresses the spontaneous symmetry breaking.
A 1 1 1 The above discussion that the new vacuum is filled with po-
QHID = —hw(lléiélll) + —hw<1|91511|1> + Zhw tentials (gauge fields) whose state exists under original ground
2 2 2 state is identical with the spontaneous symmetry breaking us-
_ <1|é}é1|1>hw " Ehw — hw (36) ing the analogy of superconductivity when we repl@ceith
2 energy level reported by Y. Nambu and G. Jona-Lasthity)

Therefore<1|éiél|1> = 1 which leads to the replacement of When the phase fierence is fixed, the one vacuum is selected
expectation value of photon numbers as follows and the selection breaks symmetry of vacuum.
In addition, the spontaneous symmetry breaking by gauge
<0|a}a1|o> = 1 (1alay (1) = 1 <2|31511|2> = 3 . (37) fields leads to mass acquire of gauge fields (Higgs mecha-
2’ ! 2’ 2’ nism)2#8)

Traditionally,(OléI_éulO) has been considered to be 0. However Therefore the above discussion will not be inconsistent
we should recognizéOléI_éﬂO) = —1 which requires indefi- with traditional treatment of spontaneous symmetry breaking
nite metric. 2 and the mass acquire mechanism.

Then absolute value of the single photon interference ] S
moves depending on the selection @éialloh However ©-4 general treatment of single particle interferences

(N « 1 +  cosg is maintained. From (20) and (28), the single particle interferences can be
By using the expectation value, zero-point energy is calc@Pressed as following manner.
lated to be Iy = (gl+LDF () +12))
~ 1 R 1 S 1
(OHI0) = Shw(0la) a0} + 5w (0fa; a0} cosh + Shw =+ FID + F(10) + F(Llp) (40)
1 1 Then when(|FIZ) + f(gl¢) + f({l¢) = -3 f + 1 f cosd, single
= —hw - -hwCcoso (38) . . . _ 11
4 4 particle interferences df, i.e.,(l) = f {5 + 5 Cosf; can be
The zero-point energy also fluctuates. Note tha i ya, generated. WherE is an arbitrary observable operator of the
particle,|¢) is an eigenstate df, f is the eigenvalue df un-
é.;éz _ _éqﬂl _ _i (7:( _ }hw) (39) der statgg) and|l) is an indefinite metric vector expressing
hiw 2 unobservable potentials. In case of Maxwell equations as de-

Hence the isolate indefinite metric potentials may posse§§fibed in this papei/) is identified as commutative gauge
fields (Abelian gauge fields). When we study multicompo-



nent statéy), |¢) will be identified as non-commutative gaugeof quantum mechanical superpositiddswe hope the results
fields (non-Abelian gauge field4j-5? However the above will be tested by those technologies.
general treatment can be applied in both cases.

WhenF is a number operatar of the particle andg) is ACknowledgment
single particle stat) = |1) in (40), the existence probability = The author would like to thank K. Sato, Dr. S. Takasaka
of the single particle fluctuates, i.e., and Dr. S. Matsushita for their helpful discussions.

U+ +10)) = L1+LInl) + (L) + (L11) Appendix: Tensor form of the electromagnetic fields
11 In section 3, we have introduced the operaowhich ex-
= -+ -cosf (41) oo o
2 2 presses the unobservable potentials in heuristic method. When
These kinds of self fluctuation of a particle will be consisteritve use tensor form of the electromagnetic fields, the operator
with neutrino oscillatior?®:54 can be spontaneously introduced as following manner.
The electromagnetic potentials are expressed as following
7. Summary four-vector in Minkowski space.

There are some unresolved paradoxes in quantum theory.

If we take advantage of the indefinite metric vectors as de-
scribed in this report, the paradoxes can be removed. In add@ike four-current are also expressed as following four-vector.
tion, it can explam'th.e unc_ert'al.nty prmup!e independently of =0 P = (o) (A-2)
measurements, eliminate infinite zero-point energy and cause
spontaneous symmetry breaking without complexity. Then Maxwell equations are expressed as

We should consistently introduce indefinite metric vectors
because Maxwell equations are wave equations in Minkowski
space. When we introduce state vectors in Minkowski space, AN = 0 (A-3)

indefinite metric vectors are absolutely requwed.' The rgqqu% addition, the conservation of charge div dp/dt = 0 is
vector should be recognized not only as an auxiliary field bu ;
xpressed a8, j* = 0.

also as a real physical field which is the root cause of smgFe The transformation between covariance vector and con-

photon and electron interferences. . . .
ay I . travariance vector can be calculated by using the simplest
The results insist the vacuum space is filled with the un- . ) .
form of Minkowski metric tensog,, as follows.

observable potentials which can eternally exist as waves a

A= (A0, AL, A2 A%) = (¢/c, A) (A-1)

oA = ol

correspond to gauge fields introduced by gauge transforma- 1 0 0 O
tion of the second kind. Ly 0O -1 0 O
This idea provides exactly the same calculation and ex- G = 9 - O 0 -1 O
perimental results by using quantum-superposition state be- 0 O 0 -1
cause the phaseftiirence between the photon or electron and .
the unobservable potentials provide the interferences as if the A = guhA
guantum-superposition state exists. In addition, the concept is AL = gVA, (A-4)

based on an analogy from the expression of substantial loc

ize electromagnetic fields or an electron and the unobservagljge_ one of characteristics of Lorentz transformation is the in-

potentials instead of curious quantum-superposition state thay1ance of quadratic form of four-vectors.

forces us to imagine a photon or an electron passes through (X0)? = (x1)? = (@)% - (3)? (A5)

the both paths or pinholes despite a photon or an electron . . :

not be spFI)it P P P P CWalqe above quadratic form can be expressed by using metric
Furthermore, this idea will not be inconsistent with tra_tensor.

ditional treatment of Casimirfiect, spontaneous symmetry XX, = XX =g, XX = g X, X, (A-6)

breaking, the mass acquire mechanism and can be applieq t . . 1 2
non-Abelian gauge fields. ({N%en we set the axises of space-times: ct, x! = x, X% =

The superposition states are valid in case of mixed stat¥s X* = z, the following equation expresses the wave front

whose probabilities are statistical sense. However, quantuﬁlqua“on'
superposition state is not valid in case of pure state whose  —g,, XX’ = —x'x, = x* +y? + Z - 42 = 0 (A7)

robability is fundamental sense, though the superpositiqn . . L . L .
b y 9 perp rﬁ[]ms quadratic form which includes minus sign is also intro-

principle may be used as a nice mathematical tool to si . o
plify analyses. Therefore, there is no concept of quantu luced to inner product of arbitrarily vectors and the commu-
' ’ tation relations in Minkowski space.

superposition state in nature, which insists fulfillment of en- The f : tential satisfied M I i ith
gineering applications based on reduction of wave packet is € Tour-vector potential satistied Maxwell equations wi

pessimistic conclusion and Quantum theory is a kind of st anishing the four-vector current are expressed as following
fistical physics ourier expansion forr#)

The incompleteness of "Quantum theory”, which has been L3 _ _
alerted by A. Einstein, will originates from lack of introduc- Au(X) = fdk Z[aw(k)f,(f)(k)ef'k'x +a" (Kl (e ]
tion of indefinite metric. Quantum theory with introduction of 4=0 (A-8)
indefinite metric will be complete.

M. Arndt and K. Hornberger have reviewed some testing
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3
% ko = |K| (A-9) duced except sign of céiecient.

(27) Therefore the operatom and &; in section 3 are corre-
where the unit vector of time-axis directiorand polarization spond to
vectorse. (k) are introduced as” = 1, n° > 0 ande® = n,

k=

e ande® are in the plane orthogonal koandn a4 = (0. A,00
, . 1..,x 1 002
e“)(k) . e(“(k) =Gy A, =12 (A-10) a = (Eég/ZAO _ Ee_'g/zAm 0,0, 00 (A18)
¥ is in the planeK, n) orthogonal ton and normalized When we try to calculate the inner product of the operators in
K -n=0, [OK]? = -1 (A-11) definite Hilbert space, we need to introduce curious notation

o _ o ¥? = =1 (y # i) and take the inverse sign of dfieient such as
Then © CaT be regognlzed as a polarization vector ofa.18) to vanishy in the cross ternaa, andd,a;. Although
scalar waves¢® and e® of transversal waves and® of a  the both calculations give same result, the tensor forr4p
|Ongitudinal wave. Then we take these vectors as fO"OWingeedS no curious notation and cdfeo more clear image that
the easiest forms. substantial photon passes through one side path of MZI and

1 0 0 0 there are the unobservable potentials in both paths. As the
o_| 0 o_| 1 @_|0 @_| 0 above calculation shows the unobservable potentials act as
€ 7lo " Tlo €71 " 7lo if the local oscillator of homodyne detection systems which

0 0 0 1 retrieves phase information from a signal (photon) through

(A-12) interference between the signal and the local oscillator.
For simplicity, photons are x-polarized transversal waves with Quantum theory should be re-formulated by using tensor
the scalar wave and we neglect the longitudinal wave which ferm.
considered to be unphysical presence, i.%.= 0, Az = 0.

A= (Ao, A1, 0, 0) (A-13)
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