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We show single photon and electron interferences can be calculated without quantum-superposition states assuming
that the states are expressed as a localized optical or electron beam and unobservable potentials. From the analysis
results, the unobservable potentials can be identified as indefinite metric vectors with zero probability amplitude. The
results insist there is no concept of quantum-superposition states, which leads to an improved understanding of the
uncertainty principle and resolution of paradox of reduction of the wave packet, elimination of infinite zero-point energy
and derivation of spontaneous symmetry breaking. The results insist Quantum theory is a kind of statistical physics.

1. Introduction

Basic concept of the quantum theory is the quantum-
superposition states. Arbitrary states of a system can be de-
scribed by pure states which are superposition of eigenstates
of the system. Calculation results by the concept agree well
with experiment. Without the concept, single photon or elec-
tron interference could not be explained. In addition to the
interference, entangle states also could not be explained.

However the concept leads to the paradox of the reduction
of the wave packet typified by ”Schrödinger’s cat” and ”Ein-
stein, Podolsky and Rosen (EPR)”.1,2)

In order to interpret the quantum theory without para-
doxes, de Broglie and Bohm had proposed so called ”hidden
variables” theory.3,4) Although, ”hidden variables” has been
negated,5) the theory has been extended to consistent with rel-
ativity and ontology.6–10) However the extension has not been
completed so far.

Although there were a lot of arguments about the para-
doxes, recent paper related to the quantum interferences con-
vince us of the validity of the concept. For example, quantum
mechanical superpositions by some experiments have been
reviewed.11) The atom interference by using Bose-Einstein
condensates (BECs) has been reported experimentally and
theoretically.12,13) The coherence length of an electron or
electron-electron interference by using the Aharonov-Bohm
oscillations in an electronic MZI has been discussed theoreti-
cally.14,15)A plasmonic modulator utilizing an interference of
coherent electron waves through the Aharonov-Bohm effect
has been studied by the author.16) The entangle states have
been widely discussed experimentally and theoretically.17–22)

The photon interference by using nested MZIs and vibrate
mirrors has been measured and analyzed.23,24)The double-slit
electron diffraction has been experimentally demonstrated.25)

According to our analysis, BECs, condensate and bosoniza-
tion systems correspond to mixed states with or without co-
herence rather than pure states, and no paper can solve the
paradoxes.

In this paper, we offer a new insight of the single photon
and electron interference that can solve the paradoxes. Ac-
cording to the new insight, there is no concept of quantum-
superposition and pure states whose probabilities are fun-
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damental sense in nature. Only the concept of mixed states
whose probabilities are statistical sense is valid in nature.
The new insight gives us novel and important results, i,e.,
improved understanding of the uncertainty principle non-
related to measurements, elimination of infinite zero-point en-
ergy without artificial subtraction, derivation of spontaneous
symmetry breaking without complexity and knowledge that
Quantum theory is a kind of statistical physics.

In addition, new insight can conclude that the concept
of entangle state is also not valid in nature though there
have been reported the validity of the concept of entangle
states.17–22) We will discuss the entangle state by using the
new insight in other letter.26)

In section 2, we show easy example of Gaussian photon
beam to explain that single photon can be described by sub-
stantial (localized) photon and unobservable potentials. In ad-
dition, more general description by using gauge invariance
is offered. In section 4, we also show easy explanation that
we should recognize the existence of the potentials in two-slit
electron interference experiment. In section 3 and 5, we show
the calculation of the interferences by using states represent
the substantial photon or electron and the unobservable po-
tentials, which does not require quantum-superposition states.
In section 6, we discuss the paradoxes related to quantum-
superposition states, zero-point energy, spontaneous symme-
try breaking and general treatment of single particle interfer-
ences. In section 7, we summarize the findings of this work.

Aharonov and Bohm had pointed out the unobservable po-
tentials can effect the electron wave interferences and the
effect had been experimentally identified by Tonomura et.
al.27–29)

The findings has pointed out the unobservable potentials,
which can be identified as gauge fields, generate not only
Aharonov-Bohm effect but also single photon, electron or an
arbitrary particle field interferences and fluctuation of the uni-
verse as will be described later in this paper.

The discussions in this paper are very simple to the same
level as an introductory of quantum theory, because the quan-
tum theory has a misunderstanding in such a fundamental
concept and nature of nature will be simple.
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Fig. 1. Schematic view of MZI. BS:Beam Splitter.

2. Classical Electromagnetic field of MZI - potentials
and photon

Figure 1 shows schematic view of the Mach-Zehnder Inter-
ferometer (MZI) and coordinate system.

First we examine the input beam. Assume that an x-
polarized optical beam propagates in z-direction with angular
frequencyω and propagation constantβ, the electric fieldE
of the optical beam is well localized in the free space, e.g.,
the cross section profile of the electric field is expressed as
Gaussian distribution.

Then, the electric field of the optical beam in the input can
be expressed as follows.

E = ex ·CE · exp

− x2 + y2

w2
0

 · cos(ωt − βz) (1)

Where,ex is unit vector parallel to the x-axis.CE is an ar-
bitrary constant of which squared is proportional to the field
intensity.w0 is the radius of the optical beam.E andB are
expressed by vector and scalar potentials as follows.

E = − ∂
∂t

A − ∇ϕ

B = ∇ × A (2)

From (1) and (2),A is expressed by introducing a vector func-
tion C as follows.

A = − 1
ω

ex ·CE · exp

− x2 + y2

w2
0

 · sin(ωt − βz) + C

∂

∂t
C = −∇ϕ (3)

By taking C as an irrotational vector function∇ × C = 0 in
order forB to localize in the space, for example,C andϕ can
be expressed by introducing an arbitrary scalar functionλ as
C = ∇λ and∇

(
∂
∂tλ + ϕ

)
= 0 respectively.

ThenB is expressed as follows

B = ∇ × A

=
β

ω
ey ·CE · exp

− x2 + y2

w2
0

 · cos(ωt − βz)

− 2y

ω·w2
0

ez·CE ·exp

− x2 + y2

w2
0

·sin(ωt − βz) (4)

Therefore,E andB are localized in the free space in the
input. In contrast, the vector and scaler potentials, which can
not be observed alone, are not necessarily localized.

Note that, the Gaussian beam radius will be spatially ex-
panded due to the free space propagation. However, the radius
of the propagated beamw (z) will be approximately 10.5mm
when the beam with the initial radiusw0 = 10mm propa-
gatesz = 100m in free space. This value can be calculated

by w (z) = w0

√
1+

(
λz
πw2

0

)2
when the wavelengthλ = 1µm is

applied. Then the spatially expansion of the beam will be neg-
ligible small when the paths of the MZI are less than several
tens meters.

The above localized form (1) is one example, other forms
can be employed as follows.

Let examine the following Maxwell equations.

(
∆ − 1

c2

∂2

∂t2

)
A − ∇

(
∇ · A + 1

c2

∂ϕ

∂t

)
= −µ0i(

∆ − 1
c2

∂2

∂t2

)
ϕ +

∂

∂t

(
∇ · A + 1

c2

∂ϕ

∂t

)
= − ρ

ε0
(5)

whereµ0 is the permeability andρ is the electric charge den-
sity.

Here, we divide the potentialsA, ϕ into localizedA l , ϕl and
unobservableAuo, ϕuo. Then the equations (5) can be divided
into following equations(

∆ − 1
c2

∂2

∂t2

)
A l − ∇

(
∇ · A l +

1
c2

∂ϕl

∂t

)
= −µ0i(

∆ − 1
c2

∂2

∂t2

)
ϕl +

∂

∂t

(
∇ · A l +

1
c2

∂ϕl

∂t

)
= − ρ

ε0
(6)

and (
∆ − 1

c2

∂2

∂t2

)
Auo − ∇

(
∇ · Auo +

1
c2

∂ϕuo

∂t

)
= 0(

∆ − 1
c2

∂2

∂t2

)
ϕuo +

∂

∂t

(
∇ · Auo +

1
c2

∂ϕuo

∂t

)
= 0 (7)

When i = 0 andρ = 0, the equations (6) can express the
localized electromagnetic fields in free space as described in
the above.

In contrast, the equations (7) are independent of (6). Note
that even if we study a wave packet like optical beam instead
of continuous one in z-axis as (1), unobservable potentials (7)
are independent of the beam configuration. In addition, even if
there are no optical beam, the unobservable potentials (7) ex-
ist. Therefore the unobservable potentials can eternally pop-
ulate the whole of space as waves defined by Maxwell equa-
tions, which propagate at the speed of light. If the Lorentz
condition is applied to (7), the unobservable potentials can
exist in whole space as harmonic oscillators.

(7) expresses the gauge invariance of the localized electro
magnetic field or electron flows and the unobservable poten-
tials are well-known gauge field introduced by gauge trans-
formation of the second kind.

3. Interference of single photon

If Maxwell equations are deemed to be classical wave equa-
tions whose electro-magnetic fields obey the superposition
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principle, then we can express the electric field of the inter-
ference by the superposition fields (superposition of divided
fields of the input)Eout =

1
2E1 +

1
2E2.

However, we can express the electric field of the interfer-
ence without superposition by using the unobservable poten-
tials as follows.

Eout = − ∂
∂t

A l − ∇ϕl −
∂

∂t
Auo − ∇ϕuo

= E1 −
∂

∂t
Auo − ∇ϕuo (8)

If the unobservable potentials configure the following electric
field, the interference by one side MZI path can be produced
in cooperation with a photon field passes through path 1.

− ∂
∂t

Auo − ∇ϕuo =
1
2

E2 −
1
2

E1 (9)

where subscripts 1 and 2 stand for the MZI path 1 and 2 re-
spectively.

The above discussion is based on classical description.
However, applying the superposition principle to particle im-
age, e.g., inseparable single photon, leads to quantum para-
doxes. Then we translate the above classical description using
the unobservable potentials to quantum description without
paradoxes.

In a quantum mechanical description, the photon interfer-
ence is calculated by introducing the electric field operator
Ê = 1√

2
â1 exp(iθ) + 1√

2
â2 and the number state|n⟩ as fol-

lows.30) Whereâ1or2 is the electric field operator in path 1 or
2 respectively,θ is the phase difference.

⟨Î⟩ ∝ 1
2
⟨n|â†1â1|n⟩ +

1
2
⟨n|â†2â2|n⟩ + cosθ⟨n|â†1â2|n⟩ (10)

Where⟨Î⟩ is expectation value of the field intensity which is
proportional to photon number. ˆa1or2 andâ†1or2 are defined as

â = â1+â2√
2

andâ† =
â†1+â†2√

2
by using the electric field operators ˆa

andâ† at the input with⟨n|â†1â1|n⟩ = ⟨n|â†2â2|n⟩ = ⟨n|â†1â2|n⟩ =
1
2n. When photon number is one (n = 1 ), i.e., single photon,
the above expectation value is calculated to be⟨Î⟩ ∝ 1

4 +
1
4 +

1
2 cosθ = 1

2 +
1
2 cosθ. In this traditional treatment, the electric

field operators are obtained from quantization of (5) by using
Coulomb gauge under assumption ofi = 0 andρ = 0.

However we can make a different description by using the
concept of the above unobservable potentials as follows.

Photon number will be proportional toCE squared in equa-
tion (3). In contrast, the unobservable potentialsC andϕ or
(7) are not necessarily proportional to photon number. When
there are a large number of photons, it is reasonable to sup-
pose that half of photons pass through path 1 and the rest pass
through path 2 by law of large numbers because the proba-
bility of ”which path does each photon select” should be1

2.
This concept corresponds to mixed state instead of quantum-
superposition state whose probabilities are statistical and fun-
damental sense respectively.

However when there are only a few photons, which corre-
spond to the localized vector potential expressed as first term
of equation (3) is comparable with the unobservable potentials
expressed as the rest terms or (7), we should consider greater
probability that only the localized vector potential which rep-

resent a photon selects and passes through path 1 and the un-
observable potentials pass through path 2. This description
can also be applied to (6) and (7).

According to this description, the operatorÊ = â1 exp(iθ)+
â2 with ⟨1|â†1â1|1⟩ = 1 and⟨1|â†2â2|1⟩ , 1 instead ofÊ =

1√
2
â1 exp(iθ) + 1√

2
â2 should be introduced because the pho-

ton passes through only path 1. Note that ˆa1 is the electric field
operator in path 1 obtained from the traditional quantization
as mentioned above using (6) instead of (5). In contrast, ˆa2

is a purely-formal operator in path 2 obtained from the tradi-
tional quantization using (7) instead of (5), which is not the
electric field operator but provides some quantity related to
the unobservable potentials in path 2.

Therefore the expectation value of output 1 (π
2 phase differ-

ence will correspond to output 2) can be expressed as follows.

⟨Î⟩ ∝ ⟨1|â†1â1|1⟩ + ⟨1|â†2â2|1⟩

+eiθ⟨1|â†1â2|1⟩ + e−iθ⟨1|â†2â1|1⟩

= 1+ ⟨1|â†2â2|1⟩

+eiθ⟨1|â†1â2|1⟩ + e−iθ⟨1|â†2â1|1⟩ (11)

If ⟨1|â†2â2|1⟩ + eiθ⟨1|â†1â2|1⟩ + e−θ⟨1|â†2â1|1⟩ = − 1
2 ± cosθ,

the same interference⟨Î⟩ ∝ 1
2 ±

1
2 cosθ can be observed.

More precise calculation is as follows. The electric field
operators obtained from traditional quantization procedure for
quantum optics with Coulomb gauge have relationships with
harmonic oscillator as follows.

â =
1
√

2ℏω
(ωq̂+ i p̂)

â† =
1
√

2ℏω
(ωq̂− i p̂) (12)

whereq̂ and p̂ are position and momentum operators obey-
ing the commutation relation [ ˆq, p̂] = iℏ. Hamiltonian of har-
monic oscillator is expressed as follows.

Ĥ = 1
2

(
p̂2 + ω2q̂2

)
(13)

Then following relations are obtained.

â†â =
1

2ℏω

(
p̂2 + ω2q̂2 + iωq̂p̂− iωp̂q̂

)
=

1
ℏω

(
Ĥ − 1

2
ℏω

)
ââ† =

1
ℏω

(
Ĥ + 1

2
ℏω

)
(14)

The above traditional operators correspond to the localized
potentials, i.e., the operators of (6).

Here we can find the following operators for the unobserv-
able potentials can generate the interference.

â2 =
1
2
γeiθ/2â1 −

1
2
γe−iθ/2â1

â†2 =
1
2
γe−iθ/2â†1 −

1
2
γeiθ/2â†1 (15)

where γ2 = −1 ( i. e., γ corresponds to the square root
of the determinant of Minkowski metric tensor

√
|gµν| ≡√

g ≡
√
−1 = γ. Appendix shows more rigorous treatment
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using tensor form.) which stands for requirement of indefi-
nite metric andθ is a phase difference between the localized
and unobservable potentials. These operators can be identi-
fied as a quantization of (9). The unobservable potentials also
exist in path1 with the localized potentials in-phase, i. e.,
â1 = â+ â2 (θ = 0) = â ≡ â1. Then we can obtain

â†2â2 = −1
4

â†1â1 −
1
4

â†1â1 +
1
4

eiθâ†1â1 +
1
4

e−iθâ†1â1

= −1
2

â†1â1 +
1
2

â†1â1 cosθ

â†1â2 =
1
2
γeiθ/2â†1â1 −

1
2
γe−iθ/2â†1â1

â†2â1 =
1
2
γe−iθ/2â†1â1 −

1
2
γeiθ/2â†1â1 (16)

Finally the following interference is obtained.

⟨1|â†1â1|1⟩ = 1

⟨1|â†2â2|1⟩ = −1
2
+

1
2

cosθ

⟨1|â†1â2|1⟩ =
1
2
γeiθ/2 − 1

2
γe−iθ/2

⟨1|â†2â1|1⟩ =
1
2
γe−iθ/2 − 1

2
γeiθ/2

⟨1|â†1â1|1⟩ + ⟨1|â†2â2|1⟩ + ⟨1|â†1â2|1⟩ + ⟨1|â†2â1|1⟩

=
1
2
+

1
2

cosθ (17)

Note that when we don’t introduce indefinite metricγ in (15),
⟨Î⟩ = 3

2 −
1
2 cosθ ̸∝ 1

2 ±
1
2 cosθ. In addition, when there only

exist the unobservable potentials, i. e., no phase difference
θ = 0, ⟨|â†2â2|⟩ = 0 which means we can not observe any
physical entity at all. Where|⟩ is arbitrary states. This relation
corresponds to⟨ζ |ζ⟩ = 0 as described later.

The above calculation is based on Heisenberg picture. We
can calculate the same interference based on Schrödinger pic-
ture. In Schr̈odinger picture, the interference can be calculated
by using the output 1 (or 2:π2 phase difference) state|1⟩S+ |ζ⟩
and the electric field operator̂E = âS at the output 1 (or 2).
Where |1⟩S and |ζ⟩ represent the states of a photon passes
through path 1 and unobservable potentials passes through
path 2 respectively. Because nothing is observed in path 2,
we should recognize⟨ζ |ζ⟩ = 0. More precise definition is as
follows. The operators ˆa1, âS and states|1⟩, |1⟩S can be trans-
lated by using the Hamiltonian̂H asâ1 = eiĤ t/ℏâSe−iĤ t/ℏ and
|1⟩S = e−iĤ t/ℏ|1⟩ respectively. Then ˆa2|1⟩ can be expressed by
using (15) as follows.

â2|1⟩ = eiĤ t/ℏâS

(
1
2
γeiθ/2e−iĤ t/ℏ − 1

2
γe−iθ/2e−iĤ t/ℏ

)
|1⟩

= eiĤ t/ℏâS

(
1
2
γeiθ/2 − 1

2
γe−iθ/2

)
|1⟩S (18)

Here we define

|ζ⟩ ≡
(
1
2
γeiθ/2 − 1

2
γe−iθ/2

)
|1⟩S (19)

Hence⟨1|â†2â2|1⟩ = ⟨ζ |â†SâS|ζ⟩. Whenθ = 0, |ζ⟩ = 0, i. e.,
⟨ζ |ζ⟩ = 0. In this picture, the expectation value can be ex-

pressed as follows.

⟨Î⟩ ∝ (⟨1|S + ⟨ζ |) â†SâS (|1⟩S + |ζ⟩)

= 1+ ⟨ζ |â†SâS|ζ⟩ + ⟨1|ζ⟩S + ⟨ζ |1⟩S

= 1− 1
2
+

1
2

cosθ =
1
2
+

1
2

cosθ (20)

In the above mathematical formula for the interference
by Schr̈odinger picture, there is no mathematical solution in
usual Hilbert space. Therefore the unobservable potentials,
which can not be observed alone, must be regarded as a vec-
tor in indefinite metric Hilbert space as can be seen from (19).
Although the explicit expression such as (19) has not been re-
ported, the same kind of unobservable vector has been intro-
duced as ”ghost” in quantum field theory.31–34)We also call|ζ⟩
”ghost” in this paper though this ”ghost” has a different defi-
nition. The traditional ”ghost” was introduced mathematically
as an auxiliary field for consistent with relativistic covariance
of the theory and had no effect on physical phenomena. How-
ever, the above ”ghost” is a physical field which causes the
interferences or is essential for the interferences instead of
the mathematical auxiliary field.

From the equation (11) and (20), the unobservable poten-
tials pass through path 2 produce the single photon interfer-
ence as if the photon passes through the both paths in cooper-
ation with a photon field passes through path 1.

The photon number should be proportional toCE squared
as can be seen in equation (3). However unobservable poten-
tials C andϕ or (7), which express ”ghost”, are not propor-
tional to it as mentioned above. Therefore, the interference
effect will be drop off when there are a large number of pho-
tons. This will be the reason why quantum effects are hardly
observed in macroscopic scale.

Note that the superposition principle may be used as a nice
mathematical tool to simplify analyses in mixed states. How-
ever when we use the superposition principle in single pho-
ton case and fail to understand the mechanism of the single
photon interference as described above, we may plunge into
deniable engineering applications based on reduction of wave
packet.

4. Potentials and electron

In this section, we first consider two pinholes electron wave
interference in classical manner. Figure 2 shows schematic
view of a typical setup for the 2-slits (2-pinholes) single elec-
tron interference experiment.25,35)

The propagating electron can be identified as an electron
beam whose space current density isj = Nqv, whereN is the
number of electron per unit volume,q is the electron charge
andv is the electron velocity. When the radius of the electron
beam isw0, the currentI can be expressed asI = πw2

0 j. Ac-
cording to Biot-Savart Law, the propagation generates mag-
netic fields and potentials around the propagation path.

Assume that the electron propagates parallel to z-axis at a
constant velocity. Then, the vector potentials around the prop-
agation path are expressed as35,36)

Ax = Ay = 0

Az =
I

2πε0c2
ln

1
r

(21)
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Fig. 2. Schematic view of a typical setup for the 2-slits (2-pinholes) single
electron interference experiment.

wherer =
√

x2 + y2, ε0 is the permittivity andc is the speed
of light.

Therefore the vector potential clearly passes through not
only the pinhole the electron passes through but also the op-
posite pinhole.

Even if we apart from this easy consideration, the elec-
tron motion definitely generates potentials. Therefore, when
we consider the electron motion, we must take the potentials.

In next section, we consider the two pinholes interference
in quantum mechanical manner with consideration for the po-
tentials.

5. Interference of single electron

In a quantum mechanical description, the 2-slits (pinholes)
single electron interference is typically explained by the prob-
ability (density) of finding the electron on the screen.35)

P12 = |ϕ1 + ϕ2|2 (22)

Whereϕ1 = ⟨x|1⟩⟨1|s⟩ andϕ2 = ⟨x|2⟩⟨2|s⟩, which are com-
posed of probability amplitudes
⟨1or2|s⟩: ” ⟨electron arrives at pinhole 1 or 2|electron leaves

s (electron source)⟩” and
⟨x|1or2⟩: ” ⟨electron arrives at screenx|electron leaves pin-

hole 1 or 2⟩”.
When either pinhole 1 or 2 is closed, the each and total

probabilities are calculated to beP1 = |ϕ1|2, P2 = |ϕ2|2 and
P = P1 + P2 , P12. Therefore we must admit the electron
passes through both pinholes at the same time despite an elec-
tron can not be split off, which forces us to introduces a con-
cept of quantum-superposition states .

However we can examine the states of the localized elec-
tron propagation and unobservable potentials instead of the
quantum-superposition state as mentioned above.

In such a case, the electron wave functions should be ex-
pressed as follows.

ψ′1 = ψ1 · exp

[
i
q
ℏ

∫
s→Pinhole1→screen
(ϕuodt− Auo · dx)

]
ψ′2 = ψ2 · exp

[
i
q
ℏ

∫
s→Pinhole2→screen
(ϕuodt− Auo · dx)

]
(23)

where,ψ′1 andψ′2 are the electron wave functions on the
screen passing through pinhole 1 and 2 with the unobservable
potentials respectively.ψ1 andψ2 are the electron wave func-
tions heading to pinhole 1 and 2 at the electron source without
the effects of the unobservable potentials.ϕuo andAuo include
not only the unobservable potentials expressed as (7) but also
the unobservable part of the potentials generated by localized
potentials such as (3) and (21).

Then the probability of finding the electron on the screen
by using these wave functions can be described as follows,

P12 ∝ |ψ′|2 = |ψ′1 + ψ′2|2

= |ψ1|2 + |ψ2|2

−2Re

(
exp

[
i
q
ℏ

∮
s→1→screen→2→s

(ϕuodt− Auo · dx)

]
ψ∗1ψ2

)
(24)

where 1 and 2 of the integration path denote pinhole 1 and 2
respectively. This description is identical to Aharonov-Bohm
effect.27)

In case of single electron interference, we can find the
electron at pinhole 1 without fail but not at pinhole 2, i.e.,
|ψ1|2 = 1 and|ψ2|2 = 0. Although the exact expression should
be

∫
|ψ1or2|2dV = 1 or 0 instead of the probability densities,

we continue analysis with|ψ1|2 = 1 and|ψ2|2 = 0 for simpli-
fication.

When we introduce a phase differenceθ betweenψ1 and
ψ2, P12 expresses the interference as follows,

P12 ∝ 1− 2Re
(
expi

[
ϕ + θ

]
ψ∗1ψ2

)
(25)

whereϕ =
q
ℏ

∮
s→1→screen→2→s

(ϕuodt− Auo · dx).

Note that whenθ is fixed, the interference can be observed
on the screen as a function ofϕ, i.e., position on the screen.
Whenϕ is fixed, the interference can be observed on a fixed
position of the screen as a function ofθ.

However, the wave functionψ2 as a probability density
must satisfy incoherent expressions, i.e.,ψ∗1ψ2 , 0 and|ψ2|2 =
0.

Then in order to clarify the exact probability representation,
we introduce the electron number states|n⟩ that means there
are n electrons and charge operatorQ ≡

∫
d3x j0(x) defined

by a conserved currentjµ = (q, i), i.e.,∂µ jµ =
∂q
∂t + ∇ · i = 0.

The charge operator satisfiesQ|n⟩ = nq|n⟩, which means the
n electron state is the eigenstate ofQ.37,38)

Because the charge operator is defined by a conserved cur-
rent which satisfies the Maxwell equations andQ will corre-
sponds to the expression of photon number operatorn = â†â,
we can regardQ as combinations of indefinite metric opera-
tors similar to (15), i. e.,

Q = q̂†1q̂1

q̂2 =
1
2
γeiθ/2q̂1 −

1
2
γe−iθ/2q̂1

q̂†2 =
1
2
γe−iθ/2q̂†1 −

1
2
γeiθ/2q̂†1 (26)

Then we can obtain the single electron interference as same
manner as (17) in Heisenberg picture, i. e.,

⟨I⟩ = ⟨ψ|
(
q̂†1 + q̂†2

)
(q̂1 + q̂2) |ψ⟩ = q

{
1
2
+

1
2

cosθ

}
(27)
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where⟨I⟩ is the expectation value of charge intensity.
Similarly, the interference of Schrödinger picture can be

calculated as follows.

⟨I⟩ = (⟨ψ1| + ⟨ψ2|) QS (|ψ1⟩ + |ψ2⟩)

= q+ ⟨ψ2|QS|ψ2⟩ + q⟨ψ1|ψ2⟩ + q⟨ψ2|ψ1⟩

= q

{
1
2
+

1
2

cosθ

}
(28)

where the charge operatorQS and state|ψ1⟩ of Schr̈odinger
picture are obtained fromQ = q̂†1q̂1 = eiĤ t/ℏQSe−iĤ t/ℏ

and e−iĤ t/ℏ|ψ⟩ = |ψ⟩S ≡ |ψ1⟩ respectively. Because
QS = e−iĤ t/ℏq̂†1q̂1eiĤ t/ℏ = e−iĤ t/ℏQeiĤ t/ℏ, we define ˆqS ≡
e−iĤ t/ℏq̂1eiĤ t/ℏ. ThenQS = q̂†Sq̂S and

q̂2|ψ⟩ = eiĤ t/ℏq̂S

(
1
2
γeiθ/2 − 1

2
γe−iθ/2

)
e−iĤ t/ℏ|ψ⟩

= eiĤ t/ℏq̂S

(
1
2
γeiθ/2 − 1

2
γe−iθ/2

)
|ψ⟩S

≡ eiĤ t/ℏq̂S|ψ2⟩ (29)

Therefore state of|ψ1⟩ and|ψ2⟩ can be recognized as follows.
”an electron passes through pinhole 1 with the unobserv-

able potentials” as|ψ1⟩ with P1 = ⟨ψ1|ψ1⟩ =
∫
|ψ1|2dV = 1

and
”no electron passes through pinhole 2 with the unobserv-

able potentials” as|ψ2⟩ with P2 = ⟨ψ2|ψ2⟩ =
∫
|ψ2|2dV = 0.

In the above treatment, we introduce the new charge oper-
ator (26) to emphasize the same expression as (15). However,
when we use direct product of the electron state|ψ⟩ and the
vacuum photon state|0⟩+|ζ⟩ in Schr̈odinger picture, a straight-
forward approach can be made as follows.

Traditional direct product of the electron state|ψ⟩ and the
vacuum photon state|0⟩ is expressed as|ψ⟩|0⟩ ≡ |ψ,0⟩ ≡
|ψ⟩S ≡ |ψ1⟩.

From the above discussion, the vacuum photon state should
be replaced by|0⟩ + |ζ⟩ in Schr̈odinger picture. Therefore the
direct product becomes|ψ⟩ (|0⟩ + |ζ⟩) = |ψ,0⟩+ |ψ, ζ⟩ ≡ |ψ⟩S+
|ψ, ζ⟩. Because|ψ, ζ⟩ = |ψ2⟩, then the direct product becomes
|ψ⟩ (|0⟩ + |ζ⟩) = |ψ1⟩ + |ψ2⟩ which is identical expression with
(28).

When|ψ2⟩ ≡
(

1
2γeiθ/2 − 1

2γe−iθ/2
)
|ψ⟩S, (26) and (27) can be

obtained as follows.

⟨I⟩ = (⟨ψ1| + ⟨ψ2|) QS (|ψ1⟩ + |ψ2⟩)

=

{
⟨ψ1| + ⟨ψ1|

(
1
2
γe−iθ/2 − 1

2
γeiθ/2

)}
QS

·
{
|ψ1⟩ +

(
1
2
γeiθ/2 − 1

2
γe−iθ/2

)
|ψ1⟩

}
= ⟨ψ1|

(
1+

1
2
γe−iθ/2 − 1

2
γeiθ/2

)
QS

·
(
1+

1
2
γeiθ/2 − 1

2
γe−iθ/2

)
|ψ1⟩

= ⟨ψ1|
(
q̂†1 + q̂†2

)
(q̂1 + q̂2) |ψ1⟩ (30)

When we introduce the phase terms of (23) and (24) asϕ1,
ϕ2 andϕ = ϕ1−ϕ2, the interference (28) is calculated to be as

follows.

⟨I⟩ =
(
e−iϕ1⟨ψ1| + e−iϕ2⟨ψ2|

)
QS

(
eiϕ1 |ψ1⟩ + eiϕ2 |ψ2⟩

)
= q+ ⟨ψ2|QS|ψ2⟩ + qe−iϕ⟨ψ1|ψ2⟩ + qeiϕ⟨ψ2|ψ1⟩

= q

{
1
2
+

1
2

cosθ

}
+qe−iϕ⟨ψ1|ψ2⟩ + qeiϕ⟨ψ2|ψ1⟩ (31)

Then,ϕ does not seem to be the origin of the single electron
interference. Aharonov-Bohm effect will be observed when
there are substantial electrons in both pinholes. The single
electron interference will originate from the unobservable po-
tentials in vacuum|ψ, ζ⟩ ≡ |ψ2⟩ which can be defined similar
to (19).

The above discussion suggests that the state ”no electron
passes through pinhole 2 with the unobservable potentials”
generates the phase difference for the interference without
electron charges.

In the above expression for|ψ2⟩, there is no mathemati-
cal solution in usual Hilbert space. Therefore the state of ”no
electron passes through pinhole 2 with the unobservable po-
tentials” must also be regarded as a vector with zero probabil-
ity amplitude in indefinite metric Hilbert space as can be seen
from (28), (29) and we can express the quantum state of the
interference without quantum-superposition state.

Note that the calculation using the superposition state of
(24) is valid in case of mixed state whose probability is statis-
tical sense. The superposition states are convenient for appli-
cation to interference phenomena, however the states do not
reflect the right mechanism of nature, which means there are
great possibility the quantum application using wave packet
reduction of single photon and electron interference will be
unavailable.

6. Discussion

6.1 uncertainty principle and the reduction of the wave
packet

By the existence of the unobservable potentials, Heisen-
berg’s uncertainty principle can be explained independently
of measurements. In addition, the paradox of the reduction
of the wave packet typified by ”Schrödinger’s cat” and ”Ein-
stein, Podolsky and Rosen (EPR)”1,2) can be solved, because
the origins of both are quantum-superposition state.

Former results insist the states of path 1 and 2 or pinhole 1
and 2 by Schr̈odinger picture are defined when the system is
prepared expressed as a substantial single photon or electron
and the unobservable potentials respectively and each state
does not split off such as quantum-superposition state, which
means there is no reduction of the wave packet.

”When the system is prepared” corresponds to immediately
after the branching point of the optical MZI or the pinholes.
Which path or pinhole does the photon or electron select is
unpredictable but after the selection, the state is fixed instead
of quantum-superposition state. The concept of these states is
identical with mixed states rather than pure states formed by
quantum-superposition, which suggests there is no concept of
quantum-superposition state.

As for Heisenberg’s uncertainty principle, we can clearly
recognize it as trade-offs derived from Fourier transform non-
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related to measurement, which correspond to the canonical
commutation relation.

6.2 zero-point energy
From (14) and⟨0|â†1â1|0⟩ = 0, traditional zero-point energy

has been recognized as⟨0|Ĥ |0⟩ = 1
2ℏω, i. e.,

⟨0|â†1â1|0⟩ =
1
ℏω
⟨0|

(
Ĥ − 1

2
ℏω

)
|0⟩

=
1
ℏω

(
⟨0|Ĥ |0⟩ − 1

2
ℏω

)
= 0 (32)

This traditional fixed zero-point energy originates from the
definition of the electric field operators in (12) without the
unobservable potentials. However we have obtained the idea
that there are unobservable potentials in whole space. Then
we should replace (12) with followings.

â1 + â2 =
1
√

2ℏω
(ωq̂+ i p̂)

â†1 + â†2 =
1
√

2ℏω
(ωq̂− i p̂) (33)

Therefore Hamiltonian will be the same expression of the
interference as follows.

Ĥ = ℏω
(
â†1â1 + â†2â2 + â†1â2 + â†2â1

)
+

1
2
ℏω (34)

Then the energy of single photon state also fluctuates.

⟨1|Ĥ |1⟩ = 1
2
ℏω⟨1|â†1â1|1⟩+

1
2
ℏω⟨1|â†1â1|1⟩ cosθ+

1
2
ℏω (35)

Because a single photon can be observed whenθ = ±Nπ, (N :
even numbers), then

⟨1|Ĥ |1⟩ =
1
2
ℏω⟨1|â†1â1|1⟩ +

1
2
ℏω⟨1|â†1â1|1⟩ +

1
2
ℏω

= ⟨1|â†1â1|1⟩ℏω +
1
2
ℏω = ℏω (36)

Therefore⟨1|â†1â1|1⟩ = 1
2 which leads to the replacement of

expectation value of photon numbers as follows

⟨0|â†1â1|0⟩ = −
1
2
, ⟨1|â†1â1|1⟩ =

1
2
, ⟨2|â†1â1|2⟩ =

3
2
, · · · (37)

Traditionally,⟨0|â†1â1|0⟩ has been considered to be 0. However
we should recognize⟨0|â†1â1|0⟩ = − 1

2 which requires indefi-
nite metric.

Then absolute value of the single photon interference
moves depending on the selection of⟨0|â†1â1|0⟩. However
⟨Î⟩ ∝ 1

2 ±
1
2 cosθ is maintained.

By using the expectation value, zero-point energy is calcu-
lated to be

⟨0|Ĥ |0⟩ =
1
2
ℏω⟨0|â†1â1|0⟩ +

1
2
ℏω⟨0|â†1â1|0⟩ cosθ +

1
2
ℏω

=
1
4
ℏω − 1

4
ℏω cosθ (38)

The zero-point energy also fluctuates. Note that if ˆa2 = γâ1,

â†2â2 = −â†1â1 = −
1
ℏω

(
Ĥ − 1

2
ℏω

)
(39)

Hence the isolate indefinite metric potentials may possess

negative energies.31) Howeverâ2 , γâ1 as can be seen from
(15) and can not be isolated but combined instead such as
(33), the negative energies can only appear through the in-
terference with the localized potentials. Therefore (38) can
eliminate infinite zero-point energy due to the sum of infinite
degree of freedom.

The zero-point energy has been measured through Casimir
effect.39–43)

The above new insight explains there are energy fluctuation
in vacuum due to the phase difference. The attractive force
from this kind of fluctuation is identical with the basic concept
of Van der Waals force which will be the origin of Casimir
effect.44)

Therefore the above calculation will not be inconsistent
with Casimir effect.

6.3 spontaneous symmetry breaking
Traditional treatment of the spontaneous symmetry break-

ing, which explores the possibility ofQ|0⟩ , 0 or generally
” |0⟩ is not an eigenstate ofQ”, needs an intricate discussion
using Goldstone boson or Higgs boson.38,45)Where|0⟩ is vac-
uum state.

However, the unobservable potentials eternally populate
the whole of space as mentioned above and there are no
electron at pinhole 2. Therefore the state of pinhole 2,|ψ2⟩,
can be identified as vacuum instead of|0⟩. From the rela-
tion ⟨ψ2|ψ2⟩ = 0 as described above, if|ψ2⟩ is an eigenstate
of Q, i.e., Q|ψ2⟩ = α|ψ2⟩, then⟨ψ2|Q|ψ2⟩ = α⟨ψ2|ψ2⟩ = 0,
whereα is an eigenvalue. However from the discussion under
(28),⟨ψ2|Q|ψ2⟩ fluctuates between−q and 0 depending on the
phase difference. Hence the vacuum|ψ2⟩ is not an eigenstate
of Q, which expresses the spontaneous symmetry breaking.

The above discussion that the new vacuum is filled with po-
tentials (gauge fields) whose state exists under original ground
state is identical with the spontaneous symmetry breaking us-
ing the analogy of superconductivity when we replaceQ with
energy level reported by Y. Nambu and G. Jona-Lasinio.46,47)

When the phase difference is fixed, the one vacuum is selected
and the selection breaks symmetry of vacuum.

In addition, the spontaneous symmetry breaking by gauge
fields leads to mass acquire of gauge fields (Higgs mecha-
nism).48)

Therefore the above discussion will not be inconsistent
with traditional treatment of spontaneous symmetry breaking
and the mass acquire mechanism.

6.4 general treatment of single particle interferences
From (20) and (28), the single particle interferences can be

expressed as following manner.

⟨I⟩ = (⟨ϕ| + ⟨ζ |) F (|ϕ⟩ + |ζ⟩)

= f + ⟨ζ |F|ζ⟩ + f ⟨ϕ|ζ⟩ + f ⟨ζ |ϕ⟩ (40)

Then when⟨ζ |F|ζ⟩+ f ⟨ϕ|ζ⟩+ f ⟨ζ |ϕ⟩ = − 1
2 f + 1

2 f cosθ, single

particle interferences ofF, i.e., ⟨I⟩ = f
{

1
2 +

1
2 cosθ

}
can be

generated. WhereF is an arbitrary observable operator of the
particle,|ϕ⟩ is an eigenstate ofF, f is the eigenvalue ofF un-
der state|ϕ⟩ and |ζ⟩ is an indefinite metric vector expressing
unobservable potentials. In case of Maxwell equations as de-
scribed in this paper,|ζ⟩ is identified as commutative gauge
fields (Abelian gauge fields). When we study multicompo-
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nent state|ϕ⟩, |ζ⟩ will be identified as non-commutative gauge
fields (non-Abelian gauge fields).49–52) However the above
general treatment can be applied in both cases.

WhenF is a number operatorn of the particle and|ϕ⟩ is
single particle state|ϕ⟩ = |1⟩ in (40), the existence probability
of the single particle fluctuates, i.e.,

(⟨1| + ⟨ζ |) n (|1⟩ + |ζ⟩) = 1+ ⟨ζ |n|ζ⟩ + ⟨1|ζ⟩ + ⟨ζ |1⟩

=
1
2
+

1
2

cosθ (41)

These kinds of self fluctuation of a particle will be consistent
with neutrino oscillation.53,54)

7. Summary

There are some unresolved paradoxes in quantum theory.
If we take advantage of the indefinite metric vectors as de-

scribed in this report, the paradoxes can be removed. In addi-
tion, it can explain the uncertainty principle independently of
measurements, eliminate infinite zero-point energy and cause
spontaneous symmetry breaking without complexity.

We should consistently introduce indefinite metric vectors
because Maxwell equations are wave equations in Minkowski
space. When we introduce state vectors in Minkowski space,
indefinite metric vectors are absolutely required. The required
vector should be recognized not only as an auxiliary field but
also as a real physical field which is the root cause of single
photon and electron interferences.

The results insist the vacuum space is filled with the un-
observable potentials which can eternally exist as waves and
correspond to gauge fields introduced by gauge transforma-
tion of the second kind.

This idea provides exactly the same calculation and ex-
perimental results by using quantum-superposition state be-
cause the phase difference between the photon or electron and
the unobservable potentials provide the interferences as if the
quantum-superposition state exists. In addition, the concept is
based on an analogy from the expression of substantial local-
ize electromagnetic fields or an electron and the unobservable
potentials instead of curious quantum-superposition state that
forces us to imagine a photon or an electron passes through
the both paths or pinholes despite a photon or an electron can
not be split off.

Furthermore, this idea will not be inconsistent with tra-
ditional treatment of Casimir effect, spontaneous symmetry
breaking, the mass acquire mechanism and can be applied to
non-Abelian gauge fields.

The superposition states are valid in case of mixed states
whose probabilities are statistical sense. However, quantum-
superposition state is not valid in case of pure state whose
probability is fundamental sense, though the superposition
principle may be used as a nice mathematical tool to sim-
plify analyses. Therefore, there is no concept of quantum-
superposition state in nature, which insists fulfillment of en-
gineering applications based on reduction of wave packet is
pessimistic conclusion and Quantum theory is a kind of sta-
tistical physics.

The incompleteness of ”Quantum theory”, which has been
alerted by A. Einstein, will originates from lack of introduc-
tion of indefinite metric. Quantum theory with introduction of
indefinite metric will be complete.

M. Arndt and K. Hornberger have reviewed some testing

of quantum mechanical superpositions,11) we hope the results
will be tested by those technologies.

Acknowledgment

The author would like to thank K. Sato, Dr. S. Takasaka
and Dr. S. Matsushita for their helpful discussions.

Appendix: Tensor form of the electromagnetic fields

In section 3, we have introduced the operator ˆa2 which ex-
presses the unobservable potentials in heuristic method. When
we use tensor form of the electromagnetic fields, the operator
can be spontaneously introduced as following manner.

The electromagnetic potentials are expressed as following
four-vector in Minkowski space.

Aµ = (A0, A1, A2, A3) = (ϕ/c, A) (A·1)

The four-current are also expressed as following four-vector.

jµ = ( j0, j1, j2, j3) = (cρ, j ) (A·2)

Then Maxwell equations are expressed as

□Aµ = µ0 jµ

∂µA
µ = 0 (A·3)

In addition, the conservation of charge divj + ∂ρ/∂t = 0 is
expressed as∂µ jµ = 0.

The transformation between covariance vector and con-
travariance vector can be calculated by using the simplest
form of Minkowski metric tensorgµν as follows.

gµν = g
µν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Aµ = gµνA

ν

Aµ = gµνAν (A·4)

The one of characteristics of Lorentz transformation is the in-
variance of quadratic form of four-vectors.

(x0)2 − (x1)2 − (x2)2 − (x3)2 (A·5)

The above quadratic form can be expressed by using metric
tensor.

xµxµ = xµxµ = gµνx
µxν = gµνxµxν (A·6)

When we set the axises of space-time asx0 = ct, x1 = x, x2 =

y, x3 = z, the following equation expresses the wave front
equation.

−gµνxµxν = −xµxµ = x2 + y2 + z2 − c2t2 = 0 (A·7)

This quadratic form which includes minus sign is also intro-
duced to inner product of arbitrarily vectors and the commu-
tation relations in Minkowski space.

The four-vector potential satisfied Maxwell equations with
vanishing the four-vector current are expressed as following
Fourier expansion form.38)

Aµ(x) =
∫

dk̃
3∑
λ=0

[a(λ)(k)ϵ(λ)
µ (k)e−ik·x + a(λ)†(k)ϵ(λ)∗

µ (k)eik·x]

(A·8)
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k̃ =
d3k

2k0(2π)3
k0 = |k| (A·9)

where the unit vector of time-axis directionn and polarization
vectorsϵ(λ)

µ (k) are introduced asn2 = 1, n0 > 0 andϵ(0) = n,
ϵ(1) andϵ(2) are in the plane orthogonal tok andn

ϵ(λ)(k) · ϵ(λ′)(k) = −δλ,λ′ λ , λ′ = 1, 2 (A·10)

ϵ(3) is in the plane (k, n) orthogonal ton and normalized

ϵ(3)(k) · n = 0 , [ϵ(3)(k)]2 = −1 (A·11)

Then ϵ(0) can be recognized as a polarization vector of
scalar waves,ϵ(1) andϵ(2) of transversal waves andϵ(3) of a
longitudinal wave. Then we take these vectors as following
the easiest forms.

ϵ(0) =


1
0
0
0

 ϵ(1) =


0
1
0
0

 ϵ(2) =


0
0
1
0

 ϵ(3) =


0
0
0
1


(A·12)

For simplicity, photons are x-polarized transversal waves with
the scalar wave and we neglect the longitudinal wave which is
considered to be unphysical presence, i. e.,A2 = 0, A3 = 0.

Aµ = (A0, A1, 0, 0) (A·13)

The potentials will be divided when the potentials passes
through MZI interferometer. Here we consider the state that
a photon expressed as x-polarized transversal waves passes
through path 1 and unobservable potentials, i. e.,A0(x), is di-
vided into both path 1 and 2 with phase difference between
the two paths. In this state, the four-vector potentials in MZI
path 1A1µ and path 2A2µ can be expressed as follows.

A1µ = (
1
2

eiθ/2A0, A1, 0, 0)

A2µ = (
1
2

e−iθ/2A0, 0, 0, 0) (A·14)

When the Fourier coefficients of the four-vector potentials
are replaced by operators asÂµ ≡

∑3
λ=0 â(λ)(k)ϵ(λ)

µ (k), the com-
mutation relations are obtained as follows.

[Âµ(k), Â†ν(k
′)] = −gµνδ(k− k′) (A·15)

Hence, the time-axis component is the root cause of indefinite
metric. Let define the operator at MZI path 1 and 2 asÂ1
andÂ2 respectively. The products of these operators also obey
same relation.

Â†Â = −gµνÂµ†Âµ (A·16)

Then

Â1†Â1 = − 1
4 Â†0Â0 + Â†1Â1

Â1†Â2 = − 1
4e−iθÂ†0Â0

Â2†Â1 = − 1
4eiθÂ†0Â0

Â2†Â2 = − 1
4 Â†0Â0

Finally we can obtain the operator at the MZI output

{Â1+ Â2}†{Â1+ Â2}
= Â1†Â1+ Â1†Â2+ Â2†Â1+ Â2†Â2

= −1
2

Â†0Â0 + Â†1Â1 −
1
2

Â†0Â0 cosθ (A·17)

Applying the bra and ket vectors⟨1| and |1⟩, (17) is repro-

duced except sign of coefficient.
Therefore the operators ˆa1 and â2 in section 3 are corre-

spond to

â1 ≡ (0, Â1, 0, 0)

â2 ≡ (
1
2

eiθ/2Â0 −
1
2

e−iθ/2Â0, 0, 0, 0) (A·18)

When we try to calculate the inner product of the operators in
definite Hilbert space, we need to introduce curious notation
γ2 = −1 (γ , i) and take the inverse sign of coefficient such as
(A·18) to vanishγ in the cross term ˆa1â2 andâ2â1. Although
the both calculations give same result, the tensor form (A·14)
needs no curious notation and can offer more clear image that
substantial photon passes through one side path of MZI and
there are the unobservable potentials in both paths. As the
above calculation shows the unobservable potentials act as
if the local oscillator of homodyne detection systems which
retrieves phase information from a signal (photon) through
interference between the signal and the local oscillator.

Quantum theory should be re-formulated by using tensor
form.
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