Gravitation as the result of the reintegration of migrated electrons and positrons to their atomic nuclei.

Osvaldo Domann
odomann@yahoo.com

First publication 2003 and last revision November 2016
(This paper is an extract of [6] listed in section Bibliography.) Copyright. All rights reserved.

Abstract

This paper presents the mechanism of gravitation based on an approach where the energies of electrons and positrons are stored in fundamental particles (FPs) that move radially and continuously through a focal point in space, point where classically the energies of subatomic particles are thought to be concentrated. FPs store the energy in longitudinal and transversal rotations which define corresponding angular momenta. Forces between subatomic particles are the product of the interactions of their FPs. The laws of interactions between fundamental particles are postulated in that way, that the linear momenta for all the basic laws of physics can subsequently be derived from them, linear momenta that are generated out of opposed pairs of angular momenta of fundamental particles.

The flattening of Galaxies' Rotation Curve is derived without the need of the definition of Dark Matter, and the repulsion between galaxies is shown without the need of Dark Energy.

The mechanism of the dragging between neutral moving masses is explained (Thirring-Lense-effect) and how gravitation affects the precision of atomic clocks is presented (Hafele-Keating experiment).

Finally, the quantification of the gravitation force is derived.

1 Introduction.

Our "Standard Model" describes a particle as a point-like entity with the energy concentrated on one point in space. The mechanism how forces between charged particles are generated is not explained. This limitation of our Standard Model results from the introduction of a series of artificial particles and constructions like Gluons, Gravitons, particle's wave, dark matter, dark energy, etc., to explain the mechanism of interaction between particles.

The proposed approach postulates that a particle is formed by rays of Fundamental Particles (FPs) that move through a focal point in space. The relativistic energy of the particle is stored by the FPs as longitudinal and transversal rotations. Interactions between two particles are now the result of the interactions between FPs of the two particles.

The steps followed to describe mathematically the new model are:

1. Definition of a distribution function $d \kappa$ that assigns to each volume $d V$ in space a differential energy $d E$ of the total relativistic energy of the particle.
2. Definition of a field magnitude $d \bar{H}$ associated with the angular momenta of FPs.
3. Definition of interaction laws between $d \bar{H}$ fields of FPs in that way, that all forces between particles can be mathematically derived.

In what follows electrons and positrons are called "Basic Subatomic Particles" (BSPs).

The total relativistic energy of a BSP is

$$
\begin{equation*}
E_{e}=\sqrt{E_{o}^{2}+E_{p}^{2}}=E_{s}+E_{n} \quad \text { with } \quad E_{s}=\frac{E_{o}^{2}}{\sqrt{E_{o}^{2}+E_{p}^{2}}} \quad E_{n}=\frac{E_{p}^{2}}{\sqrt{E_{o}^{2}+E_{p}^{2}}} \tag{1}
\end{equation*}
$$

The differential energies for each differential volume are:

$$
\begin{equation*}
d E_{e}=E_{e} d \kappa=\nu J_{e} \quad d E_{s}=E_{s} d \kappa=\nu J_{s} \quad d E_{n}=E_{n} d \kappa=\nu J_{n} \tag{2}
\end{equation*}
$$

with $d \kappa$ the distribution function, ν the angular frequency and J the angular momenta.

$$
\begin{equation*}
d \kappa=\frac{1}{2} \frac{r_{o}}{r_{r}^{2}} d r \sin \varphi d \varphi \frac{d \gamma}{2 \pi} \quad d V=d r r d \varphi r \sin \varphi d \gamma \tag{3}
\end{equation*}
$$

$d \kappa$ is inverse proportional to the square distance to the focal point and gives the fraction of the relativistic energy for the volume $d V$ of the FP.

FPs leaving the focal point (emitted FPs) have only longitudinal angular momenta J_{e} and associated to it a longitudinal emitted field $d \bar{H}_{e}$ defined as

$$
\begin{equation*}
d \bar{H}_{e}=H_{e} d \kappa \bar{s}_{e}=\sqrt{\nu J_{e} d \kappa} \bar{s}_{e} \quad \text { with } \quad H_{e}^{2}=E_{e} \tag{4}
\end{equation*}
$$

FPs moving to the focal point (regenerating FPs) have longitudinal J_{s} and transversal J_{n} angular momenta and associated to them respectively a longitudinal emitted field
$d \bar{H}_{s}$ defined as

$$
\begin{equation*}
d \bar{H}_{s}=H_{s} d \kappa \bar{s}=\sqrt{\nu J_{s} d \kappa} \bar{s} \quad \text { with } \quad H_{s}^{2}=E_{s} \tag{5}
\end{equation*}
$$

and a transversal emitted field $d \bar{H}_{n}$ defined as

$$
\begin{equation*}
d \bar{H}_{n}=H_{n} d \kappa \bar{n}=\sqrt{\nu J_{n} d \kappa} \bar{n} \quad \text { with } \quad H_{n}^{2}=E_{n} \tag{6}
\end{equation*}
$$

For the total field magnitude H_{e} it is $H_{e}^{2}=H_{s}^{2}+H_{n}^{2}$.

Figure 1: Unit vector \bar{s}_{e} for an emitted FP and unit vectors \bar{s} and \bar{n} for a regenerating FP of a BSP moving with $v \neq c$

Fig. 1 shows at the origin of the Cartesian coordinates the focus of a BSP moving with speed \bar{v}. The vector \bar{s}_{e} is an unit vector in the moving direction of the emitted fundamental particle (FP). The vector \bar{s} is an unit vector in the moving direction of the regenerating FP. The vector \bar{n} is an unit vector transversal to the moving direction of the regenerating FP and oriented according the right screw rule relative to the velocity \bar{v} of the BSP.

The differential linear momentum $d p$ of a moving BSP is generated out of pairs of opposed transversal fields $d \bar{H}_{n}$ at the regenerating FPs of the BSP. Opposed pairs of transversal fields $d \bar{H}_{n}$ are generated because of the axial symmetry relative to the velocity \bar{v} of the BSP as shown in Fig. 1.

Conclusion: Basic subatomic particles (BSPs) are structured particles with longitudinal and transversal angular momenta. The sign of the angular momenta of emitted FPs define the sign of the BSP (electron or positron). The transversal field $d \bar{H}_{n}$ gives the kinetic linear moment.

Interaction laws between FPs of two BSPs are defined as products between their $d \bar{H}$ fields.

- Coulomb law: The close path integration of the cross product between longitudinal $d \bar{H}_{s}$ fields gives the Coulomb equation.
- Ampere law: The close path integration of the cross product between transversal $d \bar{H}_{n}$ fields gives the Lorentz, Ampere and Bragg equations.
- Induction law: The close path integration of the product between the transversal field $d \bar{H}_{n}$ and the absolute value of the longitudinal $d \bar{H}_{s}$ field of a static BSP gives the Maxwell equations and the gravitation equations.

The fundamental equation to calculate the differential force between two BSPs is

$$
\begin{equation*}
d F=\frac{d p}{\Delta t}=\frac{1}{c \Delta t} d E_{p}=\frac{1}{c \Delta t}\left|d \bar{H}_{1} \times d \bar{H}_{2}\right| \tag{7}
\end{equation*}
$$

2 Mechanism of Gravitation.

To explain the mechanism of gravitation, the concept of reintegration of BSPs that have migrated out of their nuclei is required.

Because of $d \bar{H}_{s}=d H_{s} \bar{s}$ and $\bar{J}_{s}=J_{s} \bar{s}$ the interaction law between FPs of static BSPs (Coulomb) follows the cross product between longitudinal angular momenta $\mid \bar{J}_{e_{1}} \times$ $\bar{J}_{s_{2}} \mid=J_{e_{1}} J_{s_{2}} \sin \beta=J_{n}$ of the FPs, cross product which is zero for the distance $d=0$ between BSPs because of $\beta=\pi / 2$.

In Fig. 2 the differential linear momentum $d p_{2}$ at BSP 2 is generated by pairs of opposed angular momentum $\bar{J}_{n_{2}}$ of regenerating FPs.

Fig. 3 gives the linear momentum between two BSPs as a function of the distance d. The variable r_{o} represents the radii of the focus of the BSPs, which are constant for non relativistic speeds.

Nucleons are composed of electrons and positrons which are concentrated in the range of $0 \leq \gamma \leq 0.1$ of the curve of Fig. 3 where the attractions and repulsions between them are zero.

Figure 2: Generation of angular momentum J_{n} at regenerating fundamental particles of two static basic subatomic particles at the distance d

Figure 3: Linear momentum $p_{\text {stat }}$ as function of $\gamma=d / r_{o}$ between two static BSPs with equal radii $r_{o_{1}}=r_{o_{2}}$

Electrons and positrons of a nucleon migrate slowly into the range of $0.1 \leq \gamma \leq 1.8$ polarizing the nucleon, and are subsequently reintegrated with high speed when their FPs cross with FPs of the remaining electrons and positrons of the nucleon because of $\beta<\pi / 2$ (Neutron 1 at Fig. 4). Opposed linear momenta $d \bar{p}_{a}$ and $d \bar{p}_{b}$ are generated at BSPs a and b.

Figure 4: Transmission of momentum $d p_{b}$ from neutron 1 to neutron 2

The movement of BSP b generates the $d H_{n}$ field shown in Fig. 4, field that is passed to the static BSP p of neutron 2 according the induction law of sec. 1. The final result is that neutron 1 moves with the linear momentum $-d \bar{p}_{a}$ and neutron 2 with the opposed linear momentum $d \bar{p}_{p}$. The mechanism is independent of the sign of the interacting BSPs explaining the attracting force of gravitation. It is important to note that as BSPs a and b generate opposed $d H_{n}$ fields that are passed to BSP p of neutron 2, the field of BSP b is closer to $\operatorname{BSP} p$ and has a higher probability to be passed to BSP p.

3 Newton gravitation force.

To calculate the gravitation force induced by the reintegration of migrated BSPs, we need to know the number of migrated BSPs in the time Δt for a neutral body with mass M.

The following equation was derived in $|6|$ for the induced gravitation force gen-
erated by one reintegrated electron or positron

$$
\begin{equation*}
F_{i}=\frac{d p}{\Delta t}=\frac{k c \sqrt{m} \sqrt{m_{p}}}{4 K d^{2}} \iint_{\text {Induction }} \quad \text { with } \quad \iint_{\text {Induction }}=2.4662 \tag{8}
\end{equation*}
$$

with m the mass of the reintegrating BSP, m_{p} the mass of the resting BSP, $k=$ $7.4315 \cdot 10^{-2}$. It is also

$$
\begin{equation*}
\Delta t=K r_{o}^{2} \quad r_{o}=3.8590 \cdot 10^{-13} \mathrm{~m} \quad \text { and } \quad K=5.4274 \cdot 10^{4} \mathrm{~s} / \mathrm{m}^{2} \tag{9}
\end{equation*}
$$

The direction of the force F_{i} on BSP p of neutron 2 in Fig. 4 is independent of the sign of the BSPs and is always oriented in de direction of the reintegrating BSP b of neutron 1 .

Figure 5: Net momentum transmitted from neutron 1 to neutron 2

Fig. 5 shows reintegrating BSPs a and d at Neutron 1 that transmit respectively opposed momenta p_{g} and p_{e} to neutron 2. Because of the grater distance from neutron 2 of BSP a compared with BSP d, the probability for BSP d to transmit his momentum is grater than the probability for $\operatorname{BSP} a$. Momenta are quantized and have all equal absolute value independent if transmitted or not. The result computed over a mass M gives a net number of transmitted momentum to neutron 2 in the direction of neutron 1 , what explains the attraction between neutral masses.

For two bodies with masses M_{1} and M_{2} and where the number of reintegrated BSPs in the time Δt is respectively $\Delta_{G_{1}}$ and $\Delta_{G_{2}}$ it must be

$$
\begin{equation*}
F_{i} \Delta_{G_{1}} \Delta_{G_{2}}=G \frac{M_{1} M_{2}}{d^{2}} \quad \text { with } \quad G=6.6726 \cdot 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \mathrm{~s}^{2}} \tag{10}
\end{equation*}
$$

As the direction of the force F_{i} is the same for reintegrating electrons Δ_{G}^{-}and positrons Δ_{G}^{+}it is

$$
\begin{equation*}
\Delta_{G}=\left|\Delta_{G}^{-}\right|+\left|\Delta_{G}^{+}\right| \tag{11}
\end{equation*}
$$

We get that

$$
\begin{equation*}
\Delta_{G_{1}} \Delta_{G_{2}}=G \frac{4 K M_{1} M_{2}}{m k c \iint_{\text {Induction }}} \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta_{G_{1}} \Delta_{G_{2}}=2.8922 \cdot 10^{17} M_{1} M_{2}=\gamma_{G}^{2} M_{1} M_{2} \tag{13}
\end{equation*}
$$

The number of migrated BSPs in the time Δt for a neutral body with mass M is thus

$$
\begin{equation*}
\Delta_{G}=\gamma_{G} M \quad \text { with } \quad \gamma_{G}=5.3779 \cdot 10^{8} \mathrm{~kg}^{-1} \tag{14}
\end{equation*}
$$

Calculation example: The number of migrated BSPs that are reintegrated at the sun and the earth in the time Δt are respectively, with $M_{\odot}=1.9891 \cdot 10^{30} \mathrm{~kg}$ and $M_{\dagger}=5.9736 \cdot 10^{24} \mathrm{~kg}$

$$
\begin{equation*}
\Delta_{G_{\odot}}=1.0697 \cdot 10^{39} \quad \text { and } \quad \Delta_{\dagger}=3.2125 \cdot 10^{33} \tag{15}
\end{equation*}
$$

The power exchanged between two masses due to gravitation is

$$
\begin{equation*}
P_{G}=F_{i} c=\frac{E_{p}}{\Delta t}=\frac{k m c^{2}}{4 K d^{2}} \Delta_{G_{1}} \Delta_{G_{2}} \iint_{\text {Induktion }} \tag{16}
\end{equation*}
$$

The power exchanged between the sun and the earth is, with $d_{\odot \dagger}=1.49476 \cdot 10^{11} \mathrm{~m}$

$$
\begin{equation*}
P_{G}=F_{G} c=G \frac{M_{\odot} M_{\dagger}}{d_{\odot \dagger}^{2}} c=1.0646 \cdot 10^{31} \mathrm{~J} / \mathrm{s} \tag{17}
\end{equation*}
$$

4 Ampere gravitation force.

In the previous sections we have seen that the induced gravitation force is due to the reintegration of migrated BSPs in the direction d of the two gravitating bodies
(longitudinal reintegration). When a BSP is reintegrated to a neutron, the two BSPs of different signs that interact produce an equivalent current i_{m} in the direction of the positive BSP as shown in Fig. 6.

Neutron 1

Neutron 2

Figure 6: Resulting current i_{m} due to reintegration of migrated BSPs

As the numbers of positive and negative BSPs that migrate during the time Δt in one direction at one neutron are equal, it is

$$
\begin{equation*}
\Delta_{R}=\Delta_{R}^{+}+\Delta_{R}^{-}=0 \tag{18}
\end{equation*}
$$

where Δ_{R} represents the number of migrated BSPs in the time Δt.
No average current I_{m} should exist in that direction in the time Δt to generate a force between parallel currents of the two neutrons according to the Ampere law

$$
\begin{equation*}
\frac{F}{\Delta l} \propto \frac{I_{m_{1}} I_{m_{2}}}{d} \tag{19}
\end{equation*}
$$

Fig. 7 shows a mass M_{2} moving with v_{2} in an orbit relative to mass M_{1}. Longitudinal reintegrating electrons and positrons at M_{2} generate currents i_{m} relative to M_{2}. Because of the speed v_{2} the longitudinal currents i_{m} of M_{2} have transversal components i_{2} relative to M_{1} which interact with the transvetrsal reintegrating electrons and positrons at M_{1} in that way that $\Delta R \neq 0$ at M_{1} and M_{2}.

We conclude that because of the power exchange (16) between the two neutral

Figure 7: Ampere gravitation due to orbital speed.
bodies M_{1} and M_{2} a synchronization between the reintegration of BSPs of equal sign in the direction orthogonal to the axis defined by the two bodies is generated, resulting in parallel currents of equal sign that generate an attracting force between the bodies. The synchronization is generated by the relative movement between the gravitating bodies and is zero between static bodies. Thus the total attracting force between the two neutral bodies is produced first by the induced (Newton) force and second by the force due to parallel currents of reintegrating BSPs (Ampere), which like the Newton force is proportional to the masses of the bodies.

$$
\begin{equation*}
F_{T}=F_{G}+F_{R} \quad \text { with } \quad F_{G}=G \frac{M_{1} M_{2}}{d^{2}} \quad \text { and } \quad F_{R}=R \frac{M_{1} M_{2}}{d} \tag{20}
\end{equation*}
$$

To derive an equation we start with the following equation from $|6|$ derived for the total force density due to Ampere interaction.

$$
\begin{equation*}
\frac{F}{\Delta l}=\frac{b}{c \Delta_{o} t} \frac{r_{o}^{2}}{64 m} \frac{I_{m_{1}} I_{m_{2}}}{d} \int_{\gamma_{2_{\text {min }}}}^{\gamma_{2_{\max }}} \int_{\gamma_{1_{\min }}}^{\gamma_{1_{\max }}} \frac{\sin ^{2}\left(\gamma_{1}-\gamma_{2}\right)}{\sqrt{\sin \gamma_{1} \sin \gamma_{2}}} d \gamma_{1} d \gamma_{2} \tag{21}
\end{equation*}
$$

with $\iint_{\text {Ampere }}=5.8731$.
It is also for $v \ll c$

$$
\begin{equation*}
\rho_{x}=\frac{N_{x}}{\Delta x}=\frac{1}{2 r_{o}} \quad I_{m}=\rho m v \quad \Delta_{o} t=K r_{o}^{2} \quad I_{m}=\frac{m}{q} I_{q} \tag{22}
\end{equation*}
$$

We have defined a density ρ_{x} of BSPs for the current so that one BSP follows
immediately the next without space between them. As we want the force between one pair of BSPs of the two parallel currents we take $\Delta l=2 r_{o}$.

For one reintegrating BSP it is $\rho=1$. The current generated by one reintegrating BSP is

$$
\begin{equation*}
I_{m_{1}}=i_{m}=\rho m v_{m}=\rho m k c \quad \text { with } \quad v_{m}=k c \quad k=7.4315 \cdot 10^{-2} \tag{23}
\end{equation*}
$$

We get for the force between one transversal reintegrating BSP at the body with mass M_{1} and one longitudinal reintegrating BSP at M_{2} moving parallel with the speed v_{2}

$$
\begin{equation*}
d F_{R}=5.8731 \frac{b}{\Delta_{o} t} \frac{2 r_{o}^{3}}{64} \rho^{2} m k \frac{v_{2}}{d}=2.2086 \cdot 10^{-50} \frac{v_{2}}{d} N \tag{24}
\end{equation*}
$$

with $I_{m_{2}}=i_{2}=\rho m v_{2}$.
The concept is shown in Fig. 7.
Note: The currents i_{m} and i_{2} of the bodies respectively M_{1} and M_{2} may synchronize with equal or opposed signs resulting in an attraction or repulsion force F_{R}.

In sec. 3 we have derived the mass density γ_{G} of reintegrating BSPs. At Fig. 5 we have seen that half of the longotudinal reintegrating BSPs of a neutron 1 induce momenta on neutron 2 in one direction while the other half of longitudinal reintegrating BSPs induce momenta in the opposed direction on neutron 2. In Fig. 7 we see, that all longitudinal reintegrating BSPs at M_{2} generate a current component i_{2} in the direction of the speed v_{2}. This means that we have to take for the density γ_{A} of reintegrating BSPs for the Ampere gravitation force approximately twice the value of the density γ_{G} of the Newton gravitation force

$$
\begin{equation*}
\gamma_{A} \approx 2 \gamma_{G}=2 \cdot 5.3779 \cdot 10^{8}=1.07558 \cdot 10^{9} \mathrm{~kg}^{-1} \tag{25}
\end{equation*}
$$

resulting for the total Ampere gravitation force between M_{1} and M_{2}

$$
\begin{equation*}
F_{R}=5.8731 \frac{b}{\Delta_{o} t} \frac{2 r_{o}^{3}}{64} \rho^{2} m k v_{2} \gamma_{A}^{2} \frac{M_{1} M_{2}}{d}=2.5551 \cdot 10^{-32} v_{2} \frac{M_{1} M_{2}}{d} N \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{R}=R \frac{M_{1} M_{2}}{d} \quad \text { with } \quad R=2.5551 \cdot 10^{-32} v_{2}=R\left(v_{2}\right) \tag{27}
\end{equation*}
$$

The total gravitation force gives

$$
\begin{equation*}
F_{T}=F_{G}+F_{R}=\left[\frac{G}{d^{2}}+\frac{R}{d}\right] M_{1} M_{2} \tag{28}
\end{equation*}
$$

The concept is shown in Fig. 8.

Figure 8: Gravitation forces at sub-galactic and galactic distances.

4.1 Flattening of galaxies' rotation curve.

For galactic distances the Ampere gravitation force F_{R} predominates over the induced gravitation force F_{G} and we can write eq. (28) as

$$
\begin{equation*}
F_{T} \approx F_{R}=\frac{R}{d} M_{1} M_{2} \tag{29}
\end{equation*}
$$

The equation for the centrifugal force of a body with mass M_{2} is

$$
\begin{equation*}
F_{c}=M_{2} \frac{v_{o r b}^{2}}{d} \quad \text { with } v_{\text {orb }} \text { the tangential speed } \tag{30}
\end{equation*}
$$

For steady state mode the centrifugal force F_{c} must equal the gravitation force F_{T}. For our case it is

$$
\begin{equation*}
F_{c}=M_{2} \frac{v_{o r b}^{2}}{d}=F_{T} \approx F_{R}=\frac{R}{d} M_{1} M_{2} \tag{31}
\end{equation*}
$$

We get for the tangential speed

$$
\begin{equation*}
v_{\text {orb }} \approx \sqrt{R M_{1}} \quad \text { constant } \tag{32}
\end{equation*}
$$

The tangential speed $v_{\text {orb }}$ is independent of the distance d what explains the flattening of galaxies' rotation curves.

Calculation example

In the following calculation example we assume that the transition distance $d_{g a l}$ is much smaller than the distance between the gravitating bodies and that the Newton force can be neglected compared with the Ampere force.

For the Sun with $v_{2}=v_{o r b}=220 \mathrm{~km} / \mathrm{s}$ and $M_{2}=M_{\odot}=2 \cdot 10^{30} \mathrm{~kg}$ and a distance to the core of the Milky Way of $d=25 \cdot 10^{19} \mathrm{~m}$ we get a centrifugal force of

$$
\begin{equation*}
F_{c}=M_{2} \frac{v_{o r b}^{2}}{d}=3.872 \cdot 10^{20} \mathrm{~N} \tag{33}
\end{equation*}
$$

With

$$
\begin{equation*}
R\left(v_{2}\right)=2.5551 \cdot 10^{-32} v_{2}=5.6212 \cdot 10^{-27} \mathrm{Nm} / \mathrm{kg}^{2} \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{c} \approx R \frac{M_{1} M_{2}}{d} \tag{35}
\end{equation*}
$$

we get a Mass for the Milky Way of

$$
\begin{equation*}
M_{1}=F_{c} d \frac{1}{R M \odot}=4.3 \cdot 10^{6} M \odot \tag{36}
\end{equation*}
$$

and with

$$
\begin{equation*}
F_{G}=F_{R} \quad \text { we get } \quad d_{g a l}=\frac{G}{R}=1.1870 \cdot 10^{16} \mathrm{~m} \tag{37}
\end{equation*}
$$

justifying our assumption for $F_{T} \approx F_{R}$ because the distance between the Sun and the core of the Milky Way is $d \gg d_{\text {gal }}$.

Note: The mass of the Milky Way calculated with the Newton gravitation law gives $M_{1} \approx 1.5 \cdot 10^{12} M \odot$ which is huge more than the bright matter and therefore called dark matter. The mass calculated with the present approach corresponds to the bright matter and there is no need to introduce virtual masses in space.

For sub-galactic distances the induced force F_{G} is predominant, while for galactic distances the Ampere force F_{R} predominates, as shown in Fig. 8.

$$
\begin{equation*}
d_{\text {gal }}=\frac{G}{R} \tag{38}
\end{equation*}
$$

Note: The flattening of galaxies' rotation curve was derived based on the assumption that the gravitation force is composed of an induced component and a component due to parallel currents generated by reintegrating BSPs and, that for galactic distances
the induced component can be neglected.

4.2 Current induced on a rotating body.

In sec. 4 we have analysed the interactions between reintegrating BSPs of two bodies that move relative with the speed v_{2}. Now we analyse the case of two bodies where one of them rotates relative to the other.

The concept is shown in Fig. 9

Figure 9: Induced current I_{M} and field $d H_{n}$ on a rotating neutral body.

Comparing with Fig. 7 all BSPs at the distance d_{1} move with $-v_{2}$ and all BSPs at the distance d_{2} move with v_{2}. Reintegrating BSPs at M_{2} that are at the distance d_{1} from M_{1} define the direction of the currents i_{m} at M_{1} because they are closer than reintegrating BSPs of M_{2} at the distance d_{2}. The net result is a closed loop of currents i_{2} at M_{2} giving the current I_{M} which generates the transversal field $d H_{n}$. Please see also subsection Permanent magnetism at $|6|$.

5 Precession of the perihelion.

The total gravitation force is

$$
\begin{equation*}
F_{T}=F_{G}+F_{R}=\left[\frac{G}{d^{2}}+\frac{R}{d}\right] M_{1} M_{2} \quad \text { with } \quad G=G=6.6726 \cdot 10^{-11} \frac{m^{3}}{k g s^{2}} \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
R\left(v_{2}\right)=2.5551 \cdot 10^{-32} v_{2} \mathrm{Nm} / \mathrm{kg}^{2} \tag{40}
\end{equation*}
$$

The first term F_{G} gives the elliptic shape of the planet orbit while the second term F_{R} gives the precession of the orbit.

6 Quantification of gravitation forces.

In sec. 8.1 from $|6|$ "Induction between an accelerated and a probe BSP expressed as closed path integration over the whole space" the elementary linear momentum $p_{\text {elem }}$ is derived which with

$$
\begin{equation*}
\Delta t(v=0)=\Delta_{o} t=8.082110^{-21} \quad s \quad \text { and } \quad k=7.4315 \cdot 10^{-2}<1 \tag{41}
\end{equation*}
$$

gives

$$
\begin{equation*}
p_{\text {elem }}=m c k=\frac{h}{c \Delta_{o} t} k=2.0309 \cdot 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \tag{42}
\end{equation*}
$$

The elementary linear momentum $p_{\text {elem }}$ is now used to quantize the two components of the gravitation force.

6.1 Quantification of the induced gravitation force.

From sec. 2 eq. (8) we have that the gravitation force for one aligned reintegrating BSPs is

$$
\begin{equation*}
F_{i}=\frac{k m c}{4 K d^{2}} \iint_{\text {Induction }} \quad \text { with } \quad \iint_{\text {Induction }}=2.4662 \tag{43}
\end{equation*}
$$

which we can write with $\Delta_{o} t=K r_{o}^{2}$ and $p_{\text {elem }}=k m c$ as

$$
\begin{equation*}
F_{i}=N_{i} \nu_{o} p_{\text {elem }} \quad \text { with } \quad N_{i}=\frac{r_{o}^{2}}{4 d^{2}} \iint_{\text {Induction }} \tag{44}
\end{equation*}
$$

Considering that $\Delta G_{1} \Delta G_{2}=\gamma_{G}^{2} M_{1} M_{2}$ we can write for the total force between two masses M_{1} and M_{2}

$$
\begin{equation*}
F_{G}=F_{i} \Delta G_{1} \Delta G_{2}=N_{G} \nu_{o} p_{\text {elem }} \quad \text { with } \quad N_{G}=N_{i} \Delta G_{1} \Delta G_{2} \tag{45}
\end{equation*}
$$

where N_{G} represents the probability of elementary forces $f_{\text {elem }}=\nu_{o} p_{\text {elem }}$ in the time $\Delta_{o} t=K r_{o}^{2}$.

Finally we get

$$
\begin{equation*}
F_{G}=N_{G}\left(M_{1}, M_{2}, d\right) \nu_{o} p_{\text {elem }} \quad \text { with } \quad N_{G}=2.6555 \cdot 10^{-8} \frac{M_{1} M_{2}}{d^{2}} \tag{46}
\end{equation*}
$$

The frequency with which elementary momenta are generated is

$$
\begin{equation*}
\nu_{G}=N_{G}\left(M_{1}, M_{2}, d\right) \nu_{o}=3.2856 \cdot 10^{12} \frac{M_{1} M_{2}}{d^{2}} \tag{47}
\end{equation*}
$$

For the earth with a mass of $M_{\oplus}=5.974 \cdot 10^{24} \mathrm{~kg}$ and the sun with a mass of $M_{\odot}=1.9889 \cdot 10^{30} \mathrm{~kg}$ and a distance of $d=147.1 \cdot 10^{9} \mathrm{~m}$ we get a frequency of $\nu_{G}=1.8041 \cdot 10^{45} \mathrm{~s}^{-1}$ for aligned reintegrating BSPs.

6.2 Quantification of Ampere force between parallel reintegrating BSPs.

From sec. 4 eq. (24) we have for a pair of parallel reintegrating BSPs that

$$
\begin{equation*}
d F_{R}=5.8731 \frac{b}{\Delta_{o} t} \frac{2 r_{o}^{3}}{64} \rho^{2} m k \frac{v_{2}}{d}=2.2086 \cdot 10^{-50} \frac{v_{2}}{d} N \tag{48}
\end{equation*}
$$

which we can write as

$$
\begin{equation*}
d F_{R}=N \nu_{o} p_{\text {elem }} \quad \text { with } \quad N=8.7893 \cdot 10^{-48} \frac{v_{2}}{d} \tag{49}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{\text {elem }}=k m c \quad \text { and } \quad k=7.4315 \cdot 10^{-2} \tag{50}
\end{equation*}
$$

The total Ampere force between masses M_{1} and m_{2} is given with eq. (26)

$$
\begin{equation*}
F_{R}=2.5551 \cdot 10^{-32} v_{2} \frac{M_{1} M_{2}}{d} N \tag{51}
\end{equation*}
$$

We now write the equation in the form

$$
\begin{equation*}
F_{R}=N_{R}\left(M_{1}, M_{2}, d\right) \nu_{o} p_{\text {elem }} \quad \text { with } \quad N_{R}=1.01682 \cdot 10^{-29} v_{2} \frac{M_{1} M_{2}}{d} \tag{52}
\end{equation*}
$$

The frequency with which pairs of FPs cross in space is

$$
\begin{equation*}
\nu_{R}=N_{R}\left(M_{1}, M_{2}, d\right) \nu_{o}=1.25811 \cdot 10^{-9} v_{2} \frac{M_{1} M_{2}}{d} s^{-1} \tag{53}
\end{equation*}
$$

For the earth with a mass of $M_{\oplus}=5.974 \cdot 10^{24} \mathrm{~kg}$ and the sun with a mass of $M_{\odot}=1.9889 \cdot 10^{30} \mathrm{~kg}$ and a distance of $d=1.5 \cdot 10^{8} \mathrm{~m}$ and a tangential speed of the earth around the sun of $v_{2}=30 \mathrm{~m} / \mathrm{s}$ we get a frequency of $\nu_{R}=2.9896 \cdot 10^{39} \mathrm{~s}^{-1}$ for parallel reintegrating BSPs. The frequency ν_{G} for aligned BSPs is nearly 10^{6} times grater than the frequency for parallel reintegrating BSPs and so the corresponding forces.

6.3 Quantification of the total gravitation force.

The total gravitation force is given by the sum of the induced force between aligned reintegrating BSPs and the force between parallel reintegrating BSPs.

$$
\begin{equation*}
F_{T}=F_{G}+F_{R}=\left[N_{G}\left(M_{1}, M_{2}, d\right)+N_{R}\left(M_{1}, M_{2}, d\right)\right] p_{\text {elem }} \nu_{o} \tag{54}
\end{equation*}
$$

or

$$
\begin{equation*}
F_{T}=F_{G}+F_{R}=p_{\text {elem }} \nu_{o}\left[\frac{2.6555 \cdot 10^{-8}}{d^{2}}+\frac{1.01682 \cdot 10^{-29}}{d} v_{2}\right] M_{1} M_{2} \tag{55}
\end{equation*}
$$

We define the distance $d_{g a l}$ as the distance for which $F_{G}=F_{R}$ and get

$$
\begin{equation*}
d_{g a l}=\frac{2.6555 \cdot 10^{-8}}{1.01682 \cdot 10^{-29} v_{2}}=2.6116 \cdot 10^{21} \frac{1}{v_{2}} \mathrm{~m} \tag{56}
\end{equation*}
$$

7 Precession of a gyroscope due to the Ampere gravitation force.

To derive the precession of a gyroscope in the presence of a massive body we start with the following equation from $|6|$ derived for the total force density due to Ampere interaction.

$$
\begin{equation*}
\frac{F}{\Delta l}=\frac{b}{c \Delta_{o} t} \frac{r_{o}^{2}}{64 m} \frac{I_{m_{1}} I_{m_{2}}}{d} \int_{\gamma_{2_{\text {min }}}}^{\gamma_{2_{\max }}} \int_{\gamma_{1_{\text {min }}}}^{\gamma_{1_{\max }}} \frac{\sin ^{2}\left(\gamma_{1}-\gamma_{2}\right)}{\sqrt{\sin \gamma_{1} \sin \gamma_{2}}} d \gamma_{1} d \gamma_{2} \tag{57}
\end{equation*}
$$

with $\iint_{\text {Ampere }}=5.8731$.
It is also for $v \ll c$

$$
\begin{equation*}
\rho_{x}=\frac{N_{x}}{\Delta x}=\frac{1}{2 r_{o}} \quad I_{m}=\rho m v \quad \Delta_{o} t=K r_{o}^{2} \quad I_{m}=\frac{m}{q} I_{q} \tag{58}
\end{equation*}
$$

We have defined a density ρ_{x} of BSPs for the current so that one BSP follows immediately the next without space between them. As we want the force between one pair of BSPs of the two parallel currents we take $\Delta l=2 r_{o}$.

The concept is shown in Fig. 10

Figure 10: Gyroscopic precession.
For one reintegrating BSP it is $\rho=1$. The current generated by one reintegrating BSP is

$$
\begin{equation*}
i_{m}=\rho m v_{m}=\rho m k c \quad \text { with } \quad v_{m}=k c \quad k=7.4315 \cdot 10^{-2} \tag{59}
\end{equation*}
$$

The currents at the rotating gyroscope that are parallel to the current i_{m} of M_{1} are

$$
\begin{equation*}
i_{\omega}= \pm \rho m v_{\omega} \quad \text { with } \quad v_{\omega}=\omega R_{2} \tag{60}
\end{equation*}
$$

For the two opposed forces that give the momentum at the gyroscope and which generate the precession we get

$$
\begin{equation*}
F_{\omega_{1}} \propto+\frac{v_{m} v_{\omega}}{d-R_{\omega}} \quad F_{\omega_{2}} \propto-\frac{v_{m} v_{\omega}}{d+R_{\omega}} \tag{61}
\end{equation*}
$$

From eq. (57) with $v_{1}=v_{m}=k c$ we get for a pair of moving BSPs

$$
\begin{equation*}
d F_{R}=5.8731 \frac{b}{c \Delta_{o} t} \frac{2 r_{o}^{3}}{64} \rho^{2} m \frac{v_{1} v_{2}}{d} N \tag{62}
\end{equation*}
$$

and $d \gg R_{2}$ we get the total force

$$
\begin{gather*}
F_{R}=5.8731 \frac{b}{c \Delta_{o} t} \frac{2 r_{o}^{3}}{64} \rho^{2} m v_{m} v_{\omega} \gamma_{A}^{2} \frac{M_{1} M_{2}}{d} N \tag{63}\\
F_{R}=2.551 \cdot 10^{-32} v_{\omega} \frac{M_{1} M_{2}}{d} N \tag{64}
\end{gather*}
$$

with M_{1} and M_{2} the masses of the bodies.
Note: For distances d between gravitating masses smaller than $d_{g a l}$ the precession due to the Ampere force is neglect able compared with the precession due to the Newton gravitation force.

8 Thirring-Lense-Effect.

The Thirring-Lense-Effect is an effect that is based on the induction law and on the Doppler effect.

In [6] about induction bending the following equation was deduced for the force induced on a probe BSP by a BSP moving with speed v.

The concept is shown in Fig. 11

Figure 11: Force induced on a BSP at a bending edge by a BSP moving with speed v.

$$
\begin{equation*}
d^{\prime} \bar{F}_{i_{n}}=\frac{1}{8 \pi} \sqrt{m_{p}} r_{o_{p}} \operatorname{rot} \bar{C}_{n}^{\prime} \tag{65}
\end{equation*}
$$

with

$$
\begin{gather*}
\operatorname{rot} \bar{C}_{n}^{\prime}=\frac{1}{2 \pi} \sqrt{m} v^{2} \frac{r_{o}}{r_{r}^{3}}\left[2 \cos ^{2} \theta-\sin ^{2} \theta\right] \bar{e}_{r}+0 \cdot \bar{e}_{\gamma} \tag{66}\\
\frac{1}{2 \pi} \sqrt{m} v^{2} \frac{r_{o}}{r_{r}^{3}} \sin \theta \cos \theta \bar{e}_{\theta}
\end{gather*}
$$

For the analysis of the dragging produced by a rotating mass on a probe mass placed in the equatorial plane, the components of the induced force in the direction \bar{e}_{r} and the direction \bar{e}_{θ} are required.

$$
\begin{gather*}
d^{\prime} F_{i_{n}} \bar{e}_{r}=\frac{1}{16 \pi^{2}} m v^{2} \frac{r_{o}^{2}}{r_{r}^{3}}\left[2 \cos ^{2} \theta-\sin ^{2} \theta\right] \bar{e}_{r} \tag{67}\\
d^{\prime \prime} F_{i_{n}} \bar{e}_{\theta}=\frac{1}{16 \pi^{2}} m v^{2} \frac{r_{o}^{2}}{r_{r}^{3}} \sin \theta \cos \theta \bar{e}_{\theta} \tag{68}
\end{gather*}
$$

Figure 12: Plotting of the trigonometric relation for the analysis of Dragging.
For equal speed v and distance r_{r} the components of the forces in the direction of the speed v are equal but opposed for the angles θ and $2 \pi-\theta$. This means that two BSPs located at θ and $2 \pi-\theta$ induce on the probe BSP forces in the direction of v that compensate each other.

Fig. 13 shows two BSPs from the surface of the earth that moves with the speed v relative to a probe $B S P_{p}$ located at the distance d. Each moving BSP emittes rays of FPs with light speed c relative to the BSP, with a constant interval λ between them. The speed of the FPs relative to a probe $B S P_{p}$ located at the ray is

$$
\begin{equation*}
c+v \cos \theta=\lambda \nu \tag{69}
\end{equation*}
$$

FPs located at the proximity of the probe $B S P_{p}$ have a higher probability to contribute to the generation of the force on the probe $B S P_{P}$. The angle $\theta=\arcsin (d / r)$ of the probe $B S P_{p}$ is therefore used to calculate the force.

For the two BSPs located at the angles $\theta_{1}=\theta$ and $\theta_{2}=2 \pi-\theta$ we get the frequencies

Figure 13: Dragging due to Doppler effect.
of FPs at the probe $B S P_{P}$

$$
\begin{equation*}
\nu_{1}=\frac{c+v \cos \theta_{1}}{\lambda} \quad \nu_{2}=\frac{c+v \cos \theta_{2}}{\lambda} \quad \nu_{o}=\frac{c}{\lambda} \tag{70}
\end{equation*}
$$

With eqs. (67) and (68) we get for the components of the forces in the direction of the speed v taking into consideration the Doppler effect

$$
\begin{array}{ll}
d^{\prime} \bar{F}_{v}=\frac{\nu}{\nu_{o}} d^{\prime} F_{i_{n}} \cos \theta \bar{e}_{r} & \theta=\arcsin (d / r) \\
d^{\prime \prime} \bar{F}_{v}=\frac{\nu}{\nu_{o}} d^{\prime \prime} F_{i_{n}} \sin \theta \bar{e}_{\theta} & \theta=\arcsin (d / r) \tag{72}
\end{array}
$$

The dragging forces in the direction of the speed v on the probe $B S P_{p}$ are

$$
\begin{align*}
& d^{\prime} \bar{F}_{d r a g}=\left(d^{\prime} \bar{F}_{v_{1}}-d^{\prime} \bar{F}_{v_{2}}\right)=\frac{\nu_{1}-\nu_{2}}{\nu_{o}} d^{\prime} \bar{F}_{i_{n}} \cos \theta e_{r} \tag{73}\\
& d^{\prime \prime} \bar{F}_{d r a g}=\left(d^{\prime \prime} \bar{F}_{v_{1}}-d^{\prime \prime} \bar{F}_{v_{2}}\right)=\frac{\nu_{1}-\nu_{2}}{\nu_{o}} d^{\prime \prime} \bar{F}_{i_{n}} \sin \theta e_{\theta} \tag{74}
\end{align*}
$$

The total dragging force is

$$
\begin{equation*}
\bar{F}_{d r a g}=\frac{2}{\pi} \int_{\theta=0}^{\pi / 2}\left(d^{\prime} \bar{F}_{d r a g}+d^{\prime \prime} \bar{F}_{d r a g}\right) d \theta \tag{75}
\end{equation*}
$$

9 Atomic clocks and gravitation.

Oscillations of mechanical instruments like a pendulum have been used in the past to define the time units. Big efforts were made to minimise the influence of factors like temperature, vibrations, humidity, gravitation, etc. on the precision, stability and reliability of the instruments. Modern clocks make use of the quantized change of states of atoms which takes place at a much higher frequency leading to better precisions. When comparing the precision of clocks it is very important to compare them under the same conditions of temperature, vibrations, humidity, gravitation, etc. If this is not possible, corrections for each deviation must be made. The origin of the variation of the precision of atomic clocks due to gravitation is unknown and can be attributed to changes in the energy levels of the atoms itself what would produce changes in the frequencies of the emitted photons.

The present section shows a possible mechanism for the variation of the precision of atomic clocks based on the approach that gravitation is generated by the reintegration of migrated BSP to their nuclei. According to the approach, the energies of level electrons are given by stable dynamic configurations of BSPs in their nuclei, which is different for each atom and its ions. The number of regenerating FPs with opposed angular momenta that arrive to a nucleus is a function of the distance to the other gravitating nucleus. They influence the stable dynamic configuration of BSPs in the nucleus changing the energy levels of electrons.

The approach is based on the assumption that the transition between two hyperfine levels of the ground state of atoms used in atomic clocks (Caesium-133, Rubidium87, Thalium-205, etc.) is influenced by the Newton and Ampere gravitation forces. Because of the different mechanism for the generation of these two forces the strength of the influence is different.

The gravitation components are due to:

- Reintegration of BSPs in the direction of the distance between the gravitating bodies (induction, Newton).

$$
\begin{equation*}
F_{G}=G \frac{M_{1} M_{2}}{r^{2}} \tag{76}
\end{equation*}
$$

- Reintegration of BSPs perpendicular to the distance between the gravitating bodies (Ampere).

$$
\begin{equation*}
F_{R}= \pm R(v) \frac{M_{1} M_{2}}{r} \quad \text { with } \quad R(v)=2.551 \cdot 10^{-32} v \tag{77}
\end{equation*}
$$

9.1 Hafele-Keating Experiment.

We assume that the atomic transition frequencies of the atoms used in atomic clocks change proportional to the gravitation force and so the gains and losses expressed in $n s$. Each Caesium atom C_{s}^{133} of an atomic clock changes its frequency with the gravitation force.

The following measured data were obtained during the Hafele-Keating Experiment:
The concept is shown on Fig. 14.

Figure 14: Influence of gravitation on clocks frequency.
a) Flying eastwards a total loss of $\Delta t^{E}=-59 n s$ was measured during a flight of 41.2 hours at a hight of $h^{E}=8.900 \mathrm{~m}$ and a speed of $v=950 \mathrm{~km} / \mathrm{h}$ relative to the earth surface.
b) Flying westwards a total gain of $\Delta t^{W}=273 n s$ was measured during a flight of 48.6 hours at a hight of $h^{W}=9.400 \mathrm{~m}$ and a speed of $v=950 \mathrm{~km} / \mathrm{h}$ relative to the earth surface.

The gain or loss was measured relative to an equivalent atomic clock based on the earth.

At Fig. 14 we have the earth with mass M_{1} and the mass M_{2} of an Caesium atom C_{s}^{133} moving with the speed v east or westwards relative to the surface of the earth at an altitude h. The current I_{M} due to the interaction of reintegrating BSPs of the earth and the sun has the same direction as the rotation ω of the earth on its axis relative to the sun (see sec.4.2).

The results of the Hafele-Keating Experiment are better expressed in $n s$ loss or gain per day.

Eastwards the plane was flying during $41,2 h$ which is equivalent to 1,716 days and which gives a total loss eastwards of $\Delta t^{E}=-59 / 1.716=-34,38 \mathrm{~ns} /$ day .

Westwards the plane was flying during $48,6 h$ which is equivalent to 2,025 days and which gives a total loss westwards of $\Delta t^{W}=273 / 2,025=134,81 \mathrm{~ns} /$ day .

We get for the losses and gains in $n s / d a y$

$$
\begin{equation*}
\Delta t^{E}=-34,38 \mathrm{~ns} / \text { day } \quad \text { and } \quad \Delta t^{W}=134,81 \mathrm{~ns} / \text { day } \tag{78}
\end{equation*}
$$

The total gain or loss eastwards and westwards is

$$
\begin{equation*}
\Delta t^{E}=\Delta t_{G}^{E}+\Delta t_{R}^{E} \quad \text { and } \quad \Delta t^{W}=\Delta t_{G}^{W}+\Delta t_{R}^{W} \tag{79}
\end{equation*}
$$

The proportionality factors are not the same for the Newton and Ampere gravitation forces because of the different generation mechanism of the gravitation forces.

The proportionality factors are defined as

$$
\begin{equation*}
K_{G}=\frac{\Delta t_{G}}{\Delta F_{G}} \quad \text { and } \quad K_{R}=\frac{\Delta t_{R}}{\Delta F_{R}} \tag{80}
\end{equation*}
$$

where Δt_{G} are the $n s / d a y$ due to the Newton gravitation and Δt_{R} are the $n s /$ day due to the Ampere gravitation.

The difference between the Newton gravitation forces between the distances d_{1} and d_{2} from the centre of the earth is given by

$$
\begin{equation*}
\Delta F_{G}=F_{G_{2}}-F_{G_{1}}=G M_{1} M_{2}\left[\frac{1}{d_{2}^{2}}-\frac{1}{d_{1}^{2}}\right] \quad \text { where } \quad d_{2}<d_{1} \tag{81}
\end{equation*}
$$

The difference between the Ampere gravitation forces of a body moving with $v_{t o t}$ at the hight d_{1} and d_{2} from the centre of the earth is given by

$$
\begin{equation*}
\Delta F_{R}=R\left(v_{t o t}\right) M_{1} M_{2}\left[\frac{1}{d_{2}}-\frac{1}{d_{1}}\right] \quad \text { where } \quad d_{2}<d_{1} \tag{82}
\end{equation*}
$$

where $v_{t o t}$ is a velocity still to be deduced.

As the Hafele-Keating experiment doesn't give measured values of Δt_{G}, we calculate the proportionality factor K_{G} with measured values of an experiment made by Briatore and Leschiutto in 1976. The experiment concentrates exclusively on the influence of the Newton gravitation on the frequency of clocks. The measured data are:
a) Turin $h_{2}=250 \mathrm{~m}$ and Plateau Rosa $h_{1}=3.500 \mathrm{~m}$
b) $\Delta t_{G}=33,8-36,5 \mathrm{~ns} /$ day

For the calculation of ΔF_{G} we use
a) The mass of C_{s}^{133} with $M_{2}=2,2061 \cdot 10^{-25} \mathrm{~kg}$
b) The mass of the earth $M_{1}=5,972 \cdot 10^{24} \mathrm{~kg}$
c) For Plateau Rosa $d_{1}=R_{\oplus}+h_{1}=6.378,0 \mathrm{~km}+3,5 \mathrm{~km}=6.381,5 \mathrm{~km}$
d) For Turin $d_{2}=R_{\oplus}+h_{2}=6.378,0 \mathrm{~km}+0,25 \mathrm{~km}=6.378,25 \mathrm{~km}$

We get $\Delta F_{G}=2,2201 \cdot 10^{-27} N$ and for the proportionality factor

$$
\begin{equation*}
K_{G}=\frac{\Delta t_{G}}{\Delta F_{G}}=\frac{33,8}{2,2201 \cdot 10^{-27}}=1,5362 \cdot 10^{28} \frac{n s}{N \text { day }} \tag{83}
\end{equation*}
$$

Now we can calculate for the Hafele-Keating Experiment the clock variations that correspond to the Newton gravitation for the east flight with $d_{2}^{E}=8,9 \mathrm{~km}$ and the west flight with $d_{2}^{W}=9,4 \mathrm{~km}$. We get

$$
\begin{equation*}
\Delta t_{G}^{E}=92,45 \frac{n s}{d a y} \quad \text { and } \quad \Delta t_{G}^{W}=97,63 \frac{n s}{d a y} \tag{84}
\end{equation*}
$$

With

$$
\begin{equation*}
\Delta t^{E}=\Delta t_{G}^{E}+\Delta t_{R}^{E} \quad \text { and } \quad \Delta t^{W}=\Delta t_{G}^{W}+\Delta t_{R}^{W} \tag{85}
\end{equation*}
$$

we get

$$
\begin{equation*}
\Delta t_{R}^{E}=-126,83 \quad \text { and } \quad \Delta t_{R}^{W}=37,18 \tag{86}
\end{equation*}
$$

With

$$
\begin{equation*}
\Delta t_{R}=K_{R} R\left(v_{t o t}\right) M_{1} M_{2}\left[\frac{1}{d_{2}}-\frac{1}{d_{1}}\right] \quad R\left(v_{t o t}\right)=2.551 \cdot 10^{-32} v_{t o t} \tag{87}
\end{equation*}
$$

we get with $v_{t o t}=v_{E}$ in the east direction and $v_{t o t}=v_{W}$ in the west direction

$$
\begin{equation*}
\frac{\Delta t_{R}^{E}}{\Delta t_{R}^{W}}=-\frac{v_{E}}{v_{W}}\left[\frac{1}{d_{2}^{E}}-\frac{1}{d_{1}^{E}}\right] /\left[\frac{1}{d_{2}^{W}}-\frac{1}{d_{1}^{W}}\right] \tag{88}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\Delta t_{R}^{E}}{\Delta t_{R}^{W}}=-0,9468 \frac{v_{E}}{v_{W}} \quad \text { or } \quad \frac{v_{E}}{v_{W}}=k=3,6029 \tag{89}
\end{equation*}
$$

We define that

$$
\begin{equation*}
v_{E}=v_{S}+v \quad \text { and } \quad v_{w}=v_{S}-v \tag{90}
\end{equation*}
$$

where v is the velocity of the plane relative to the surface of the earth and v_{S} a velocity still to be determined. We get that

$$
\begin{equation*}
v_{S}=\frac{k+1}{k-1} v=1,7683 v \tag{91}
\end{equation*}
$$

If we assume that the velocity of the commercial plane used was $v=750 \mathrm{~km} / \mathrm{h}$ we get for $v_{S}=1.326 \mathrm{~km} / \mathrm{h}$ or $v_{S}=368 \mathrm{~m} / \mathrm{s}$.

The speed of the surface of the earth at the equator in a frame with centre at the sun and the earth placed at an axis of the frame is $v_{\text {center }}=463 \mathrm{~m} / \mathrm{s}$, which is not far from $v_{S}=368 \mathrm{~m} / \mathrm{s}$. The difference could come from the not very reliable data of the Hafele-Keating experiment.

The conclusion is, that the speed $v_{S}=368 \mathrm{~m} / \mathrm{s}$ calculated on the basis of the variations of the frequencies of atomic clocks due to the influences of the Newton and Ampere gravitation forces based on the mass of the C_{s}^{133} atom, is not far from the speed $v_{\text {center }}=463 \mathrm{~m} / \mathrm{s}$ of the surface of the earth at the equator for a frame placed at the centre of the earth. This can be seen as a confirmation of the proposed approach for the gravitation mechanism as the result of the reintegration of migrated electrons and positrons to their nuclei.

Finally we calculate also the proportionality factor K_{R} for the Ampere gravitation.

$$
\begin{gather*}
K_{R}=\left.\frac{\Delta t_{R}}{\Delta F_{R}}\right|^{E}=\left.\frac{\Delta t_{R}}{\Delta F_{R}}\right|^{W} \tag{92}\\
\Delta F_{R}=R\left(v_{\text {tot }}\right) M_{1} M_{2}\left[\frac{1}{d_{2}}-\frac{1}{d_{1}}\right] \quad \text { where } \quad d_{2}<d_{1} \tag{93}
\end{gather*}
$$

with $v_{t o t}=v_{E}$ for the east direction and $v_{t o t}=v_{W}$ for the west direction. We get

$$
\begin{equation*}
K_{R}=\left.\frac{\Delta t_{R}}{\Delta F_{R}}\right|^{E}=\left.\frac{\Delta t_{R}}{\Delta F_{R}}\right|^{W}=2,9965 \cdot 10^{40} \frac{n s}{N d a y} \tag{94}
\end{equation*}
$$

For K_{G} we had

$$
\begin{equation*}
K_{G}=\frac{\Delta t_{G}}{\Delta F_{G}}=\frac{33,8}{2,2201 \cdot 10^{-27}}=1,5362 \cdot 10^{28} \frac{n s}{N d a y} \tag{95}
\end{equation*}
$$

Now we calculate the current I_{M} generated by the speed v_{S} of BSPs. From sec. 4
we have with v_{S} that $i_{S}=\rho_{x} m v_{S}$ and for the earth we get $I_{M}=i_{S} \gamma_{A} M_{\oplus}$.
We defined a density ρ_{x} of BSPs for the current I_{M} so that one BSP follows immediately the next without space between them and get

$$
\begin{equation*}
\rho_{x}=\frac{N_{x}}{\Delta x}=\frac{1}{2 r_{o}} \quad \text { with } \quad r_{o}=3,8590 \cdot 10^{-13} \mathrm{~m} \tag{96}
\end{equation*}
$$

With $\rho_{x}=1,2957 \cdot 10^{12} \mathrm{~m}^{-1}, m=9,1094 \cdot 10^{-31} \mathrm{~kg}, v_{S}=368 \mathrm{~m} / \mathrm{s}, \gamma_{A}=$ $1,07558 \cdot 10^{9} \mathrm{~kg}^{-1}$, and $M_{\oplus}=5,972 \cdot 10^{24} \mathrm{~kg}$ we get for the current I_{M} at the equator that generates the transversal field $d H_{n}$ of the earth.

$$
\begin{equation*}
I_{M}=\rho_{x} m v_{S} \gamma_{A} M_{\oplus}=2,7900 \cdot 10^{18} \mathrm{~kg} / \mathrm{s} \tag{97}
\end{equation*}
$$

10 Interpretation of Data in a theoretical frame.

A theory like our Standard Model was improved over time to match with experimental data introducing fictious entities (particle wave, gluons, gravitons, dark matter, dark energy, time dilation, length contraction, Higgs particle, Quarks, Axions, etc.) and helpmates (duality principle, equivalent principle, uncertainty principle, violation of energy conservation, etc.) taking care that the theory is as consistent and free of paradoxes as possible. The concept is shown in Fig. 15. These improvements were integrated to the existing model trying to modify it as less as possible what led, with the time, to a model that resembles a monumental patchwork. To return to a mathematical consistent theory without paradoxes (contradictions) a completely new approach is required that starts from the basic picture we have from a particle. "E \& R" UFT is such an approach representing particles as focal points in space of rays of FPs. This representation contains from the start the possibility to describe interactions between particles through their FPs, interactions that the SM with its particle representation attempts to explain with fictious entities.

Fig. 15 is an organigram where the main steps of the integration of fictious entities to the SM are shown. All experiments where the previously defined fictious entities are indirectly detected (point 7. of Fig. 15) are not a confirmation of the existence of the fictious entities (point 8. of Fig. 15), they are simply the confirmation that the model was made consistent with the fictious entities (point 3. of Fig. 15).

Fallacy used to conclude that the existence of

 fictious entities is experimentally proven1.

Detection of experimental data that don't fit with the SM
2.

Definition of fictious entities based on the experimental data that don't fit.
3.

Making the SM consistent with new fictious entities as good as possible
4.

Inventing justifications for remaining paradoxes and contradictions
5.

Becoming used over the years to the fictious entities and contradictions
6.

Glorifying and idolizing the fictious entities and their creators
7.

Fictious entities of the SM
Particle wave Gluons
Gravitons Dark matter
Dark energy Time dilation
Length contraction Higgs
Quarks Axions

Helpmates of the SM
Duality principle Equivalent principle Uncertainty principle Violation of energy conservation (Faynman)

Figure 15: Fallacy used to conclude that fictious entities really exist

All experiments where time dilation or length contraction are apparently measured are indirect measurements and where the experimental results are explained with time dilation or length contraction, which stand for the interactions between light and the measuring instruments, interactions that were omited.

In the case of the increase of the life time of moving muons the increase is because of the interactions between the FPs of the muons with the FPs of the matter that constitute the real frame relative to which the muons move. To explain it with time dilation only avoids that scientists search for the real physical origin of the increase of the life time.

11 Resume.

The work is based on particles represented as structured dynamic entities with the relativistic energy distributed over the whole space on FPs, contrary to the representation used in standard theory where particles are point-like entities with the energy concentrated on one point in space.

Fundamental parts of the mechanism of gravitation are the reintegration of migrated electrons and positrons to their nuclei, and the Induction and Ampere laws between FPs of BSPs.

The gravitation force has two components, one component due to the reintegration in the direction of the two gravitating bodies and one component due to the reintegration in the direction perpendicular to it.

For sub-galactic distances the first component, which is inverse proportional to the square distance, predominates, while for galactic distances the second component, which is inverse proportional to the distance is predominant.

The second component explains the flattening of galaxies' rotation curves without the need of additional virtual matter (dark matter).

The second component also explains the repulsive forces between galaxies without the need of additional virtual energies (dark energy).

The two components of the gravitation force are quantized with the help of the elementary linear momentum deduced for the reintegration of migrated electrons and positrons to their nuclei.

The present approach is based on a more physical description of nature when postulating that light is emitted with light speed relative to the emission source (Emission Theory). There are no incompatibilities with "Galilean Relativity with virtual speeds" deduced in $|6|$.

The dragging between two parallel moving neutral masses (Thirring-Lense-Effect) is the result of the induction law and the Doppler effect of FPs.

The time gain or loss of atomic clock due to the interaction with gravitation (Hafele-Keating-Experiment) is explained with the two components (Newton and Ampere) of the gravitation force.

12 Bibliograpy.

1. Albrecht Lindner. Grundkurs Theoretische Physik. Teubner Verlag, Stuttgart 1994.
2. Benenson • Harris • Stocker • Lutz. Handbook of Physics. Springer Verlag 2001.
3. Stephen G. Lipson. Optik. Springer Verlag 1997.
4. B.R. Martin \& G. Shaw. Particle Physics. John Wiley \& Sons 2003.
5. Max Schubert / Gerhard Weber. Quantentheorie, Grundlagen und Anwendungen. Spektrum, Akad. Verlag 1993.
6. Osvaldo Domann. "Emission \& Regeneration" Field Theory. June 2003. www.odomann.com.
