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Abstract 

In contrast with the paradigm of effective Quantum Field Theory (EFT), realistic 

Renormalization Group (RG) flows approaching fixed points are neither perturbative nor linear. 

We argue that overlooking these limitations is necessarily linked to many unsolved puzzles 

challenging the Standard Model of particle physics (SM). Here we show that the analysis of non-

linear attributes of RG flows near the electroweak scale can recover the full mass and flavor 

structure of the SM. It is also shown that this analysis brings closure to the “naturalness” puzzle 

without impacting the cluster decomposition principle of EFT. 
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 1. Introduction 

In his 1979 seminal paper on “Phenomenological Lagrangians” [1], Steven Weinberg has 

formulated the fundamental principles that any sensible EFT must comply with in order to 

successfully explain the physics of the subatomic realm: Quantum Field Theory (QFT) has no 

content besides unitarity, analyticity, cluster decomposition and symmetries. This conjecture 

implies that, in order to compute the S-matrix for any field theory below some scale, one must 

use the most general effective Lagrangian consistent with these principles expressed in terms of 

the appropriate asymptotic states [2].  
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Closely related to Weinberg’s conjecture are two key aspects of EFT that deal with the 

separation of heavy degrees of freedom from the light ones [3]. One is the Decoupling Theorem 

(Appelquist-Carrazone) stating that the effects of heavy particles go into local terms in a field 

theory, either renormalizable couplings or in non-renomalizable effective interactions suppressed 

by powers of the heavy scale. The other is Wilson’s Perturbative Renormalization Program [4] 

who teaches how to separate the degrees of freedom above and below a given scale and then to 

integrate out all the high-energy effects and form a low-energy field theory with the remaining 

degrees of freedom below the separation scale. 

The idea of scale separation in EFT is typically illustrated by considering the perturbative 

expansion of amplitudes in powers of momenta Q  over a large scale UV , the latter setting the 

upper limit of validity for the EFT [2, 5] 

 ( , , ) ( ) ( , )n UV n
UV

Q Q Q
M g f g
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Here,   represents the RG scale, ng  are the low-energy couplings, the function f  is of order 

unity (1)O (expressing the “naturalness” of the theory) and the summation index  is bounded 

from below. The contribution of the large scale is naturally suppressed as UV  >> Q . 

In this work we re-examine Wilson’s Renormalization ideas as traditionally viewed from the 

standpoint of EFT. The motivation stems from the fact that, although a fully consistent and well 

supported theoretical framework, the SM continues to be plagued by numerous conceptual 

challenges [6, 7]. Our basic premise is that realistic Renormalization Group (RG) flows 

approaching fixed points cannot be restricted to be either perturbative or linear. We argue herein 

that imposing these upfront restrictions is inevitably linked to the many challenges left 
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unanswered within the SM. It is shown that the analysis of non-linear attributes of RG flows near 

the electroweak scale can recover the complete mass and flavor structure of the SM. It is also 

shown that this analysis brings closure to the “naturalness” puzzle without impacting the 

principle of scale separation of EFT. 

The structure of the paper is as follows: Section two details the general construction and 

limitations of the RG program, with emphasis on the conclusion that non-renormalizable 

interactions vanish at the low energy scale. The idea of dimensional regularization and its 

implications on the emergence of fractal space-time in QFT form the topic of section three. A 

pointer to references that discuss the utility of fractal space-time in solving some of the main 

challenges confronting the SM is included in the last section. 

2. Limitations of the RG program    

As local QFT residing on Minkowski spacetime is expected to break down at very short 

distances due to (at the very least) quantum gravity effects, any physically sensible theory must 

include a high-energy cutoff ( 0 ). The continuum limit is defined by a cutoff approaching 

infinity (
0  ). To simplify the presentation we follow [4] and consider a local scalar field 

theory in four dimensional spacetime where all field modes above some arbitrary momentum 

scale   < 
0  have been integrated out. The Lagrangian of such an effective theory assumes the 

form 

 ( ) ( )n n

n

L a O     (2) 
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where ( )nO  represent the set of local field operators, including their spacetime derivatives, and 

( )na  the set of coupling parameters. If ( )nO   have mass dimensions 4 nd , ( )na   carry mass 

dimensions 
nd  and one can cast all couplings in a dimensionless form as in 

 ( ) ( ) nd

n ng a


     (3) 

The behavior of local operators ( )nO  depends on their mass dimensions: relevant operators 

correspond to 0nd  , marginal operators to 0nd   and irrelevant operators to 0nd  . All mass 

dimensions are assumed to be scale independent. Since   is arbitrary, we may fix the 

dimensionless couplings (3) at some reference scale chosen to lie in the deep ultraviolet region 

and yet far enough to the cutoff, say UV  < 
0  

 ( )n n UVg g   (4) 

The flow of the coupling parameters with respect to a sliding RG scale   < UV  is then 

described by the system of partial differential equations 

 ( ) ( ; )n n n UVg g   



 


 (5) 

The above flow equations imply that the couplings measured at the sliding scale   depend on 

the high-energy parameters 
ng  and on the ratio UV  as in 

 ( ) ( ; )n n n UVg g g    (6) 
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We assume below that there are N relevant and marginal operators with mass dimensions less 

than or equal to 4 . The operators belonging to this set are denoted by the Roman indices , ,...a b  , 

whereas the irrelevant operators with dimension greater than 4 are indicated by Greek indices

, ...  . The Roman characters , , ...m n r  describe the general set of operators and couplings. 

It can be shown that in the regime of weakly coupled perturbation theory, the RG flow (5) 

projects an arbitrary initial surface in the UV coupling space { }ng  to a N - dimensional surface 

of { ( )}ng  , a given point of which is uniquely specified by N  low-energy parameters, up to 

corrections that decay as inverse powers of the ratio UV   [4]. The proof relies exclusively on 

a linear stability analysis of flow equations (5) and leads to the following relationships, valid for 

  << 
UV  

 ( )g   ~ 1 ( ) ( )a ab bG G g O g      (7) 

where 

 g   ~ ( )
d

UV





 (8) 

As mentioned above,   denotes the index of irrelevant couplings and operators present in the 

theory. Here, g   represents the set of first order variations in the irrelevant couplings 

 1( ) ( ) ( )a ab bg g G G g           (9) 

The matrix ( )nmG   defines the variation of the low-energy parameters ng  under variations of 

the initial high-energy parameters 
mg  specified by (4), that is,  
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The finite N N sub-matrix 
abG  contains rows and columns restricted to the marginal and 

relevant couplings. Relation (7) states that the contribution of irrelevant couplings and operators 

at low energy (indexed by ) may be entirely absorbed in variations of the marginal and 

relevant couplings (indexed by b).  

Despite being rigorously derived, (7) is founded on a set of simplifying assumptions which 

disqualifies it from being a universal result. In particular, 

1) The matrix 
abG  is constrained to be nonsingular, which fails to be true for isolated sets of 

measure zero in coupling space [4]. 

2) The theory is considered weakly coupled to make the perturbation analysis applicable [4]. 

3) The linear stability of the flow equations is assumed to hold true in general. With reference to 

planar flows, this is a legitimate approximation only if the fixed points do not fall in the category 

of borderline equilibria (such as centers, degenerate nodes, stars or non-isolated attractors or 

repellers) [8]. Examples of such non-isolated fixed points are discussed in [9-12] 

4) The flow equations are assumed to correspond to Markov processes, that is, they are immune 

to memory effects [13]. 

5) Bound states are excluded from this approach, as they require an entirely non-perturbative 

treatment [4].  
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It is somehow surprising that many QFT textbooks do not explicitly point out the limitations that 

these assumptions place on the validity of field theories in general. The widespread belief is that 

they do not appear to directly impact the cluster decomposition principle and all SM predictions 

up to the low-TeV scale probed by the LHC. However, in light of all unsettled questions 

confronting the SM, one cannot help but wonder if some important piece of the puzzle is not lost 

in overlooking these limitations. For example, over past decades the prevailing consequence of 

the concept of “naturalness” for model building has been the cancellation of quadratic 

divergences to the SM Higgs mass [14]. According to this paradigm, the SM itself is an 

unnatural theory, mandating new physics somewhere near the low-TeV scale. At the same time 

the LHC, flavor physics, electroweak precision results and evaluation of the electron dipole 

moment all point to the absence of any new phenomena in this range, which is however 

necessary to accommodate the observation of both neutrino oscillations and cold Dark Matter 

[14]. 

It seems that a paradigm shift is clearly needed to understand both the SM and the physics lying 

beyond it. Tackling this challenge from a novel perspective on the RG program forms the topic 

of the next two sections. 

3. Continuum field theory as “effective” model of spacetime  

A rather counterintuitive outcome of field theory is that the exact continuum limit of a local QFT 

formulated on flat spacetime has, strictly speaking, no correlate to physical reality [4]. The 

Minkowski metric of Special Relativity underlies the most basic aspect of QFT, namely the 

space-like commutativity of local observables, yet is considered only an “emergent” 

phenomenon and an approximate description of an underlying fundamental theory.  But the basis 



8 
 

for such a theory is currently far from being settled, despite claims to the contrary made by 

asymptotically safe and UV complete models.  

It is instructive to recall that, in the context of perturbative RG, the idea of continuous dimension 

for a four-dimensional spacetime ( 4D   , with   << 1) was first introduced by Wilson and 

Fisher and initially used to compute physical quantities of interest as expansions in powers of the 

dimensional parameter  . Later on, Veltman and ’t Hooft have shown how this idea can be 

incorporated in QFT and developed into a reliable renormalization technique. The connection 

between dimensional and cutoff regularizations is given by      
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We find it convenient to present (11) is a slightly different form, that is, 

   ~ 
2

2

1

log ( )UV




 (12) 

It is apparent from (12) that the four-dimensional space-time is recovered in either one of these 

limits: 

a) UV   and 0 <  << UV , 

b) UV   and 0  .  

However, both limits are in conflict with our current understanding of the far UV and the far IR 

boundaries of field theory. Theory and experimental observations alike tell us that the notions of 

infinite or zero energy are, strictly speaking, meaningless. This is to say that either infinite 
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energies (point-like objects) or zero energy (infinite distance scales) lead to divergences whose 

removal requires the machinery of the RG program. Indeed, there is always a finite cutoff at both 

ends of either energy or energy density scale (far UV = Planck scale, far IR = finite radius of the 

observable Universe or the non-vanishing energy density of the vacuum set by cosmological 

constant). It follows from these considerations that the limit 0   works as a highly accurate 

approximation and realistic models near or beyond the SM scale must account for space-time 

geometries having continuous dimensionality. Fractal space-time defined by the continuous 

dimension 4D    asymptotically approaches ordinary space-time near or below the SM scale, 

that is, for   ≤ 
SM .  

4. Toward a resolution of the SM challenges  

Refs. [15-18] describe how the concept of fractal space-time defined by 4D   can be used to 

bring closure to some of the main challenges left open by the SM.  

We end our paper with the key observation that, since the continuum field theory is only an 

“effective” space-time model, the effects induced by the dimensional parameter 4 D   , with  

  << 1  , are not perceivable in the computation of scattering amplitudes (1) at the SM scale. 

With reference to (12), the condition   << 1  is equivalent to setting ( )SM O Q    << UV  

and the contribution of   becomes strongly suppressed by the power expansion (1). As a result, 

the cluster decomposition principle of EFT remains insensitive to the emergence of fractal 

space-time near or above the SM scale (   ≥ SM ).   
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