
1 

 

 

 

An Efficient Algorithm for 3-SAT 

 

 

Cristian Dumitrescu 

 

 

Abstract. In this article I describe an efficient, randomized algorithm (section 3) that 

I think solves the 3- SAT problem (known to be NP complete)  with high probability 

in polynomial time, and a bit of the history   of the problem under consideration. In 

the last section I present an interesting application, based on an idea that belongs to 

Godel.  
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Section 1. Useful notions that are used for the analysis of the algorithm. 

 

A Boolean expression is said to be in conjunctive normal form (CNF) if it is of the 

form   ⋀   ⋀    ⋀    ⋀   , and each Ei, called a clause (or conjunct), is of the 

form                                  , where each ij  is a literal, either x or  x, for 

some variable x.  

 

A Boolean expression is said to be in disjunctive normal form (DNF) if it is of the 

form                   , and each Fj, called a clause (or disjunct), is of the form                    

   ⋀    ⋀    ⋀    ⋀   , where each jk  is a literal, either y or  y, for some 

variable y.  

 

A Boolean expression in CNF form is called satisfiable if there is some assignment of 

0’s and 1’s to the variables that gives the expression the value 1.   

 

The satisfiability problem is to determine, given a Boolean expression, whether it is 

satisfiable.  

 

An expression is said to be 3 - CNF if each clause has exactly three distinct literals. 

 

Theorem 1 ( see reference [1] ). L3SAT, the satisfiability problem for 3 - CNF 

expressions, is NP - complete. 

 

The Hamming distance dH(x, y) between two vectors x, y is the number of 

components in which they differ. It is known that the Hamming distance dH(x, y) 

satisfies the conditions for a metric.  

 

Related to the theory of symmetric random walks (in one dimension), we have the 

following theorem. 

 

Theorem 2 ( see reference [2] ). Limit theorem for first passages. For fixed t, the 

probability that the first passage through r occurs before epoch        tends to               
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√ 

        (   (
 

√ 
)) , as        , where N is the normal 
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distribution function. We note that when       , then P tends to 1.  
 

Section 2. The description of Schoning’s algorithm. 

 

Input: a formula in 3-CNF with n variables. 

 

Guess an initial assignment for the n variables, uniform at random. 

 

Repeat 3n times: 

 

If the formula is satisfied by the actual assignment: stop and accept. 

 

Let C be some clause not being satisfied by the actual assignment. 

 

Pick one of the 3 literals in the clause at random, and flip its value in the 

current assignment. 

 

Schoning proves (see reference [3]) that the complexity of k-SAT (with this 

algorithm) is within a polynomial factor of  (    (   
 

 
))

 

. This means that this 

algorithm does not have direct practical value, since the expected time needed to hit a 

solution grows exponentially with the number of variables. 

 

Section 3. The proposed dual expression algorithm (DEA).  

 

We also notice that 2-SAT can be solved in linear time (one of the proofs is based on 

theorem 2 above). We can then look at any clause E in a 3 – CNF expression of the 

form          , where each xi  is a literal, either x or  x, for some variable x. If we 

then write           , then we can write E as                 . An unsatisfied 

clause has at most one of the    ’s  set to 1. In a satisfied clause, written as            

     , at least two of the     ‘s are 1. That means that if I choose at random one of the  

   ’s, and flip its values from 0 to 1, assign it the value 1, then this is the right 

assignment with probability greater than 
 

 
 . This is an essential observation, because it 

might allow us to use theorem 2 in the analysis. Before the presentation of the 

algorithm, we need some notation. We write Test2CNF for the function that tests if a 

certain 2 – CNF expression has a solution (and we know that it works in linear time). 

We start with n variables xi,  with the negations    , we have 2n symbols. That means 

that the    ’s must represent no more than (
  
 

) symbols. We will call the    , the 

dual variables. When given a 3 – CNF expression, we can always write it with the 

help of the dual variables. In this form, we will call it the dual 3 – CNF expression 

(not to be confused with duality between CNF and DNF). 

 

Here is the algorithm, the dual expression algorithm (DEA): 

 

Input: a formula in 3-CNF with n variables   . 

 

We write the corresponding dual 3 – CNF expression in the     variables. There will 

be at most (
  
 

)      -  variables involved in the dual expression. We can form a 
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binary vector with these        - variables, call it the dual vector. 

 

Guess an initial assignment for the     -  variables , uniform at random.  

 

Repeat A(n) times (where A(n) is polynomial discussed later): 

 

Call the routine Test2CNF for the conjunction of all the     that are currently 

assigned value 1 (this will be a 2 – CNF expression in the    - variables).  

 

If Test2CNF finds that this conjunction of all the    ’s (that are currently 

assigned value 1) is satisfied, and if all clauses are satisfied, then stop and 

accept. 

 

If Test2CNF finds that this conjunction of all the    ’s (hat are currently 

assigned value 1) is satisfied, but not all clauses are satisfied, then find the 

first unsatisfied clause, and flip a random     from that clause that currently 

has value 0 (change its value from 0 to 1), and update all the clauses where it 

appears.  

 

If Test2CNF finds that this conjunction of all the    ’s (that are currently 

assigned value 1) is not satisfied, then choose a random     that is currently 

set to 1 and flip its value to 0. 

 

Repeat cycle. 

 

The difference between this and Schoning’s algorithm is that when we choose at 

random a     -  variable and assign it the value 1 (flip its value from 0 to 1), we are 

right with probability at least 
 

 
 , in other words, the probability of decreasing the 

Hamming distance between this dual vector and the possible dual vector solution is at 

least 
 

 
.  The polynomial A(n) can be taken as     (

  
 

)
 

, where C is a large constant. 

We do not have more than (
  
 

)      - variable involved in the dual expression. It is 

difficult to find an exact and suitable mathematical model for this algorithm (in terms 

of random walks or Markov chains, for example). The problem is that when 

Test2CNF finds inconsistency, it pushes the random walk one unit (in terms of the 

Hamming distance) away from the possible solution, with high probability, but if 

Test2CNF does not find inconsistency too often, the chain will hit the target in 

polynomial time with high probability. If the probability that Test2CNF finds 

consistency is high enough, then the algorithm hits on a solution with high probability 

in polynomial time (this can be easily proved). In a slightly different version of this 

algorithm, if Test2CNF finds consistency, then we look at all unsatisfied clauses such 

that they can be satisfied while maintaining consistency. The modified version of the 

DEA algorithm can be written as follows: 

 

Input: a formula in 3-CNF with n variables   . 

 

We write the corresponding dual 3 – CNF expression in the     variables. There will 
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be at most (
  
 

)      -  variables involved in the dual expression. We can form a 

binary vector with these        - variables, call it the dual vector. 

 

Guess an initial assignment for the     -  variables , uniform at random.  

 

Repeat A(n) times: 

 

Call the routine Test2CNF for the conjunction of all the     that are currently 

assigned value 1 (this will be a 2 – CNF expression in the    - variables).  

 

If Test2CNF finds that this conjunction of all the    ’s (that are currently 

assigned value 1) is satisfied, and if all clauses are satisfied, then stop and 

accept. 

 

If Test2CNF finds that this conjunction of all the    ’s (hat are currently 

assigned value 1) is satisfied, but not all clauses are satisfied, then find the 

first unsatisfied clause, and flip a random     from that clause that currently 

has value 0 (change its value from 0 to 1), and update all the clauses where it 

appears. If the conjunction of all the    ’s (hat are currently assigned value 1, 

including the last one flipped) is not satisfied, then reset the last     flipped, 

back to its previous value 0 (and update) and  look for the next     in that 

clause, or the next unsatisfied clause and flip a random     from that clause 

that currently has value 0 (change its value from 0 to 1), and update all the 

clauses where it appears. Repeat this process until there are no more clauses 

to check.  

 

 

If Test2CNF finds that this conjunction of all the    ’s (that are currently 

assigned value 1) is not satisfied, and there are no more clauses to check, then 

choose a random     that is currently set to 1 and flip its value to 0. 

 

Repeat cycle. 

 

Yet in another version of the DEA algorithm, each time the routine Test2CNF is 

called, find the solution in term of the xi  variables and update the corresponding     

variables in all the clauses. In this case, the associated Markov chain will move in 

jumps of more than one unit (in terms of the Hamming distance to a possible 

solution). I hope that the DEA algorithm (or some version of it) will find enough 

interest among programmers, in order to be properly tested in a wide variety of 

situations. There is something interesting here that has not been tested before. 

 

Section 4. Godel’s letter to von Newmann. 

 

For general implications, related to efficiently solving NP – complete problems, see 

[4]. An interesting application is related to the problem of automated theorem proving 

using an efficient algorithm for NP – complete problems. 

 

We know that we can solve the following problem in polynomial time: 
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Given two well formed formulas α and β, in a given axiomatic system (like ZFC), is β 

a ZFC – proof of α? 

 

Therefore, the following problem is in NP (it can be easily proved): 

 

Given a formula α, and a number n, is there a ZFC – proof of size at most n for α? 

 

Any efficient solution for NP-complete problems would make automated theorem 

proving a reality. We can have an automated system that would tell us (with 

probability as close to 1 as we want) that no solution to a given problem exists, that 

can be written in (for example) less than 10000 pages, or hit upon (find) such a proof.  

 

In a letter in 1956, Godel asked John von Newmann whether there was a general 

method to find proofs of size n, using time that increases only as n or   . If such a 

method existed, Godel argued that this “ would have consequences of the greatest 

magnitude. That is to say, it would clearly indicate that the mental effort of the 

mathematician in the case of yes or no questions could be completely replaced by 

machines. One would indeed have to simply select an n so large that, if the machine 

yields no result, there would then also be no reason to think further about the 

problem. “. 

 

This is the main reason why I wrote this article. This is not just a problem of 

optimization, or applied mathematics. I think that this problem should be the focus of 

attention for the core of the mathematicians, a problem the solution of which could 

transform mathematics and fulfill (to some extent) Hilbert’s dream, by following an 

idea that belongs to Godel. 

 

Another interesting path is to consider quantum algorithms, quantum random walks, 

in particular, but we will not go into this issue here. 

 

Conclusions. If we can settle the challenging problems above, then for all practical 

purposes, we can assume that P = NP, even if the conjecture P  NP might be true, if 

we exclude randomized algorithms. This article can be considered a review article. 

The ideas expressed in section 3, the DEA algorithm are original though. The main 

motivation for writing this article is in drawing the attention of pure mathematicians 

(not just people working in applied mathematics) to this important problem. 
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