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ABSTRACT
The Riemann hypothesis is an important outstanding problem in number theory as its validity
will affirm the manner of the distribution of the prime numbers. It posits that all the non-
trivial zeros of the zeta function ζ lie on the critical strip between Re(s) = 0 and Re(s) = 1 at
the  critical  line  Re(s)  =  1/2.  The  important  question  is  whether  there  would  be  zeros
appearing at other locations on this critical strip, e.g., at Re(s) = 1/4, 1/3, 3/4, or, 4/5, etc.,
which would disprove the Riemann hypothesis. This paper provides an indirect proof or proof
by contradiction (reductio ad absurdum) of the Riemann hypothesis.  
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Theorem:- The Riemann hypothesis is valid.

Proof:-
According to the precepts of fractal geometry, phenomena which appear random when viewed
en  masse  display  some  orderliness  and  pattern  which  could  be  regarded  as  a  fractal
characteristic. For instance, the prime numbers are very random and haphazard entities, yet,
when viewed en masse they display a regularity in the way they thin out, whereby it is affirmed
that the number of primes not exceeding a given natural number n is approximately n/log n, in
the sense that the ratio of the number of such primes to n/log n eventually approaches 1 as n
becomes larger and larger, log n being the natural logarithm (to the base e) of n (vide the prime
number theorem proved in 1896 by Hadamard and de la Vallee-Poussin). In other words, the
prime number theorem, which is the direct outcome of the Riemann hypothesis, states that the
limit of the quotient of the 2 functions π(n) and n/log n as n approaches infinity is 1, which is
expressed by the formula:

lim  π(n)/(n/log n) = 1                      (1)
                                          n→∞

the larger the number  n is,  the better is the approximation of the quantity of primes, as is
implied by the above formula where π(n) is the prime counting function (π here is not the π
which is the constant 3.142 used to compute perimeters and areas of circles, but is only a
convenient symbol adopted to denote the prime counting function)

All this is in spite of the fact that the primes are scarcer and scarcer as n is larger and larger. 

The prime number theorem could in fact be regarded as a weaker version of the Riemann 
hypothesis which posits that all the non-trivial zeros of the zeta function ζ on the critical strip 
bounded by Re(s) = 0 and Re(s) = 1 would be at the critical line Re(s) = 1/2. For a better 
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understanding of the close connection between the prime number theorem and the Riemann
hypothesis,  it  should  be  noted  that  Hadamard  and  de  la  Vallee  Poussin  had  in  1896
independently proven that none of the non-trivial zeros lie on the very edge of the critical strip,
on the lines Re(s) = 0 or Re(s) = 1 - this was enough for deducing the prime number theorem.
The locations of these non-trivial zeros on the critical strip could be described by a complex
number 1/2 + bi where the real part is 1/2 and i represents the square root of -1. It had already
been proven that there is an infinitude of non-trivial zeros at the critical line Re(s) = 1/2 on the
critical strip between Re(s) = 0 and Re(s) = 1. The moot question is whether there would be any
zeros off the critical line Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1, e.g.,
at Re(s) = 1/4, 1/3, 3/4, or, 4/5, etc., the presence of any of which would disprove the Riemann
hypothesis. So far, no such “off-the-critical-line” zeros has been found.

The validity of the Riemann hypothesis would evidently imply the validity of the prime number
theorem (which  as  described  above  is  the  offspring  and  weaker  version  of  the  Riemann
hypothesis)  though the  validity  of  the  prime  number  theorem does  not  imply the  former.
Nevertheless, both of them have one thing in common in that they are both concerned with the
estimate of the quantity of primes less than a given number,  with the Riemann hypothesis
positing a more exact estimate of the quantity of primes less than a given number. But, on the
other hand, what would be the result if the Riemann hypothesis were false? We will come back
to this later.

Meanwhile, more about the non-trivial zeros of the zeta function ζ(s) defined by a power series
shown below:

ζ(s) =  ∑  1/ns = 1 + 1/2s + 1/3s + 1/4s + 1/5s + …                      (2)
                                   n = 1

At the critical line Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1 all the non-
trivial zeros would be found on an oscillatory sine wave which oscillates in spirals, there being
an infinitude of these spirals (representing the so-called complex plane). All the properties of
the prime counting function π(n) are in some way coded in the properties of the zeta function ζ,
evidently resulting in the primes and the non-trivial zeros being some sort of mirror images of
one another - the regularity in the way the primes progressively thin out and the progressively
better approximation of the quantity of primes towards infinity by the prime counting function
π(n) mirror or reflect the regularity in the way the non-trivial zeros of the zeta function ζ line up
at the critical line Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1, the non-
trivial zeros becoming progressively closer together there, with no zeros appearing anywhere
else on the critical strip, and, all this has been found to be true for the 1st. 1013 non-trivial zeros. 

Riemann had posited that the margin of error in the estimate of the quantity of primes less than 
a given number with the prime counting function π(n) could be eliminated by utilizing the 
following J function which is a step function involving the non-trivial zeros expressed in terms 
of the zeta function ζ, which has been shown to be effective (2 steps are involved here - first, 
the prime counting function π(n) is expressed in terms of the J(n) function, then the J(n) 
function is expressed in terms of the zeta function ζ, with the J(n) function forming the link 
between the counting of the prime counting function π(n) and the measuring (involving 
analysis and calculus) of the zeta function ζ, which would result in the properties of the prime
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counting function π(n) somehow encoded in the properties of the zeta function ζ):

                                                                                           ∞

J(n) = Li(n) - ∑ Li(np) - log 2 + ∫ dt/(t(t2 - 1) log t)                      (3)
                                                                                   p                                                x

where the 1st. term Li(n) is generally referred to as the “principal term” and the 2nd. term
∑ Li(np) had been called the “periodic terms” by Riemann, Li being the logarithmic integral
 p

The above formula may look intimidating but is actually not. The 3rd. term log 2 is a number
which  is  0.69314718055994… while  the  4th.  term 1/(t(t2 -  1)  log  t)  which  is  an  integral
representing the area under the curve of a certain function from the argument all the way out to
infinity can only have a maximum value of 0.1400101011432869…. Since these 2 terms taken
together (and minding the signs) are limited to the range from -0.6931… to -0.5531…, and
since the prime counting function  π(n) deals with really large quantities up to millions and
trillions they are much inconsequential and can be safely ignored. The 1st. term or principal
term Li(n), where n is a real number, should also be not much of a problem as its value can be
obtained from a book of mathematical tables or computed by some math software package such
as Mathematica or Maple.  However, special attention should be given to the 2nd. term ∑ Li(np)
                                                                                                                                             p

which concerns the sum of the non-trivial zeros of the zeta function ζ (p in this 2nd. term is a
“rho”, which is the 17th. letter of the Greek alphabet, and it means “root” - a root is a non-trivial
zero of the Riemann zeta function ζ - a root here is a solution or value of an unknown of an
equation which could be factorized).  Riemann had evidently called the 2nd.  term “periodic
terms” as the components there vary irregularly.
                                                                                                                     n 

The prime number theorem asserts that π(n) ~ Li(n) (technically Li(n) = ∫  dx/log (x)) which
                                                                                                                     2 
also implies the weaker result that π(n) ~ n/log n. However, with Li(n) the prime count estimate
would have a margin of error. The Riemann hypothesis asserts that the difference between the
true number of primes p(n) and the estimated number of primes q(n) would be not much larger
than √n. With the above J(n) function we could eliminate this margin of error and obtain an
exact estimate of the quantity of primes less than a given number:

J(n) = exact quantity of primes less than a given number

Since the 3rd. and 4th. terms of the J(n) function are inconsequential and can be safely ignored,
as is described above, deducting the 2nd. term from the 1st. term should be sufficient:

J(n) = Li(n) - ∑ Li(np) = exact quantity of primes less than a given number
                                                                       p                  

The above in a nutshell shows the intimate relationship between the primes and the non-trivial
zeros of the zeta function ζ, the primes and the non-trivial zeros being some sort of mirror
images of one another as is described above, with the distribution of the non-trivial zeros being
regarded as the music of the primes by mathematicians.                                                
                
We return to the question of the consequence of the falsity of the Riemann hypothesis. Let us
here assume that the Riemann hypothesis is false,  i.e.,  there are also zeros found off the
critical line Re(s) = 1/2 on the critical strip between Re(s) = 0 and Re(s) = 1, e.g., at Re(s) =
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1/4, 1/3, 3/4, or, 4/5, etc., and see the consequence. What would be the significant implication
of this assumption? The falsity of the Riemann hypothesis would imply that the distribution
of the zeros of the zeta function ζ on the critical strip between Re(s) = 0 and Re(s) = 1 has lost
the regularity of pattern which is characteristic of the non-trivial zeros at the critical  line
Re(s) = 1/2 and which is described above, and is now disorderly and irregular. This would in
turn imply that the distribution of the primes is also similarly disorderly and irregular since
the primes and the non-trivial zeros of the zeta function ζ are intimately linked and are some
sort of mirror images of one another - any changes in one of them would be reflected in the
other on account of their intimate link - note that the zeta function ζ has the property of prime
sieving  (compare:  sieve  of  Eratosthenes)  encoded  within  it,  the  properties  of  the  prime
counting function  π(n) being somehow encoded in the properties of the  zeta function ζ, so
that if the zeros generated were disorderly and irregular it would mean that the distribution of
the primes were also similarly disorderly and irregular - the characteristic of the primes on
the input side of the function determines the characteristic of the zeros on the output side of
the function (i.e., the distribution of the primes determines the distribution of the zeros, so
that from a study of the distribution of the zeros the distribution of the primes could be
deduced and vice versa), which is expected for a function. The overall result would be that
the more orderly the distribution of the zeros is the more orderly would be the corresponding
distribution  of  the  primes,  the  more  disorderly the  distribution  of  the  zeros  is  the  more
disorderly  would  be  the  corresponding  distribution  of  the  primes,  and,  vice  versa.  But,
according to the prime number theorem, or, prime counting function π(n), which is closely
connected with the Riemann hypothesis itself being an offspring and weaker version of it as
is described above, there is instead actually a regularity in the way the primes thin out, with
the  prime  counting  function  π(n)  even  providing  a  progressively  better  estimate  of  the
quantity of primes towards infinity - this progressively better estimate would not be possible
if the primes behave really badly and are really highly disorderly and irregular - there is no
such really great disorder or irregularity among the primes, a state of affair which is evidently
affirmed by the fact that the corresponding non-trivial zeros at the critical line Re(s) = 1/2 on
the critical strip between Re(s) = 0 and Re(s) = 1 display regularity in the way they line up at
the critical line Re(s) = 1/2, the non-trivial zeros becoming progressively closer together there
with no zeros appearing anywhere else on the critical strip (all of which has been found to be
true for the 1st. 1013 non-trivial zeros - an important point to note is that though the non-trivial
zeros at  the critical  line Re(s)  = 1/2 become more and more closely packed together the
farther along we  move up this critical line while the primes occur farther and farther along
the number line, the density of the one is approximately the reciprocal of the density of the
other wherein the complementariness, regularity, symmetry is evident), this regularity of the
distribution of the non-trivial zeros mirroring the regularity of the distribution of the primes
as is  explained above. Our assumption of the falsity of the Riemann hypothesis has thus
resulted in a contradiction of the actual distribution of the primes and the actual distribution
of the corresponding non-trivial  zeros at  the critical  line Re(s)  = 1/2 on the critical  strip
between Re(s) = 0 and Re(s) = 1. If our assumption that the Riemann hypothesis is false is
correct,  the prime number  theorem would be false  as  there  would be great  disorder  and
irregularity among the primes with no regularity in the way the primes thin out and without
the prime counting function π(n) providing a progressively better estimate of the quantity of
primes towards infinity (this progressively better estimate of the quantity of primes actually
implies some regularity in the distribution of the primes). However, as is explained just above
the  prime  number  theorem  is  not  false;  it  had  in  fact  been  proven  through  both  non-
elementary methods (by Hadamard and de la Vallee Poussin) and elementary methods (by
Erdos and Selberg later) and is indubitably true. Therefore, our assumption of the falsehood
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of the Riemann hypothesis is at fault. The Riemann hypothesis cannot be false and has to be
true.   
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