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In this work it is theoretically shown that a millisecond pulsar spinning with angular velocity close to 
1000 rotations per second (or more) has its gravitational mass reduced below its inertial mass, i.e., under 
these circumstances, the gravitational and the inertial masses of the millisecond pulsar are not 
equivalents. This can easily be experimentally checked, and it would seem to be an ideal test to the 
equivalence principle of general relativity. 
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1. Introduction 
           
          Millisecond pulsars are neutron stars 
with radius in the range of  [km145.9 − 1] 
and rotational period in the range of 
milliseconds. Thus, they rotate hundreds of 
times per second. They are the product of an 
extended period of mass and angular 
momentum transfer to a neutron star from an 
evolving companion star [2, 3, 4, 5, 6, 7, 8]. 
Millisecond pulsars are the fastest spinning 
stars in the Universe. The fastest known 
millisecond pulsar rotates 716 times per 
second [9]. Current theories of neutron star 
structure and evolution predict that pulsars 
would break apart if they reach about of 
~1500 rotations per second [10, 11] and that 
at 1000 rotations per second they would lose 
energy by gravitational radiation faster than 
the accretion process would speed them up 
[12]. However, in 2007 it was discovered a 
neutron star XTE J1739-285 rotating at 
1122 times per second.  
          We show in this paper that a 
millisecond pulsar spinning with angular 
velocity close to 1000 rotations per second 
(or more) has its gravitational mass 
significantly reduced below its inertial mass, 
showing therefore, that the gravitational mass 
is not equivalent to the inertial mass as 
claims the equivalence principle of general 
relativity .  
 
2. Theory  
           
          The physical property of mass has two 
distinct aspects, gravitational mass mg and 
inertial mass mi. The gravitational mass 
produces and responds to gravitational fields. 
It supplies the mass factors in Newton's 

famous inverse-square law of gravity 
(F=GMg mg /r2). The inertial mass is the mass 
factor in Newton's 2nd Law of Motion 
(F=mia).  
          Einstein's Equivalence Principle 
asserts that a experiment performed in a 
uniformly accelerating reference frame with 
acceleration a are undistinguishable from the 
same experiment performed in a non-
accelerating reference frame in a 
gravitational field where the acceleration of 
gravity is g = − a. One way of stating this 
fundamental principle of general relativity 
theory is to say that gravitational mass is 
equivalent to inertial mass.  
          However, the quantization of gravity 
shows that that the gravitational mass mg and 
inertial mass mi are correlated by means of 
the following factor [13]: 
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where  is the rest inertial mass of the 
particle and 

0im
pΔ  is the variation in the 

particle’s kinetic momentum;  is the speed 
of light.   

c

          Equation (1) shows that only for 
0=Δp  the gravitational mass is equal to the 

inertial mass. 
      In general, the momentum variation pΔ  is 
expressed by tFp ΔΔ =  where  is the   
applied force during a time interval

F
tΔ . Note 

that there is no restriction concerning the 
nature of the force , i.e., it can be 
mechanical, electromagnetic, etc. 
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          For example, we can look on the 
momentum variation pΔ   as due to 
absorption or emission of electromagnetic 
energy. In this case, we can write that  
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where  is the real part of the propagation 
vector 
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 ; EΔ  is the 
electromagnetic energy absorbed or emitted 
by the particle;  is the index of refraction 
of the medium  and v  is the phase velocity of 
the electromagnetic waves, given by:  
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 ε , μ and σ,   are the electromagnetic 
characteristics of the particle ( 0εεε r=  
where rε  is the relative electric permittivity 
and  ;mF /10854.8 12

0
−×=ε 0μμμ r=  where 

rμ is the relative magnetic permeability and 
).  m/H7

0 104 −×= πμ
          Thus, substitution of Eq. (2) into Eq. 
(1), gives 
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          If the particle is also rotating, with an 
angular speed ω  around its central axis, then 
it acquires an additional energy equal to its 
rotational energy ( )2

2
1 ωIEk = .  Since this is 

an increase in the internal energy of the 
particle, and this energy is basically 
electromagnetic, we can assume that , such 
as 

kE
EΔ , corresponds to an amount of 

electromagnetic energy absorbed (or emitted) 
by the particle. Thus, we can consider  as 
an increase in the electromagnetic 
energy 

kE

kEU =Δ
EΔ  absorbed (or emitted) by the 

particle. Consequently, in this case, we must 
replace EΔ  in Eq. (4) for . In the 
case of a millisecond pulsar, we can 

( )UE Δ+Δ

assumeΔ . Thus, Eq. (4) reduces to 
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where I  is the moment of inertia of the pulsar in 
respect to its rotation axis;  is the index of 
refraction of the pulsar ;  is the rest 
inertial mass of the pulsar and  is the speed of 
light. 
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          Since a pulsar is a rigid sphere then we can 
assume 2

05
2 RmI i= , where R  is the pulsar 

radius. In this case, Eq. (5) can be rewritten as 
follows 
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In the case of millisecond pulsars, we can take 

kmR 10≅  (There are various models 
predicting radii on the order of 10 km[14]). 
Therefore, if the pulsar is spinning with angular 
velocity close to 1000 rotations per second 
( )srad /300,6≅ω then Eq. (6) shows a 
decreasing of about 0.01% in the gravitational 
mass of the millisecond pulsar, in respect to the 
inertial mass of the pulsar.  
          However, the shortest possible period 

 of a pulsar can be estimated starting from 
the assumption that the speed  at the 
pulsar's surface cannot exceed the speed of 
light 
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For a pulsar of period  the radius 
is 

sT 001.0=
kmcTR 472 == π .  

          Equation (6) shows that millisecond 
pulsars with radius of about 30km, spinning 
with angular velocity close to 1000 rotations 
per second,  have their gravitational masses 
decreased of about 1% in respect to the inertial 
mass of the pulsar.  
          This should provide an interesting new 
test for equivalence principle of general 
relativity. 
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In this work it is theoretically shown that a millisecond pulsar spinning with angular velocity close to 1000 rotations per second (or more) has its gravitational mass reduced below its inertial mass, i.e., under these circumstances, the gravitational and the inertial masses of the millisecond pulsar are not equivalents. This can easily be experimentally checked, and it would seem to be an ideal test to the equivalence principle of general relativity.
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1. Introduction


          Millisecond pulsars are neutron stars with radius in the range of 
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 [1] and rotational period in the range of milliseconds. Thus, they rotate hundreds of times per second. They are the product of an extended period of mass and angular momentum transfer to a neutron star from an evolving companion star [2, 3, 4, 5, 6, 7, 8]. Millisecond pulsars are the fastest spinning stars in the Universe. The fastest known millisecond pulsar rotates 716 times per second [9]. Current theories of neutron star structure and evolution predict that pulsars would break apart if they reach about of ~1500 rotations per second [10, 11] and that at 1000 rotations per second they would lose energy by gravitational radiation faster than the accretion process would speed them up [12]. However, in 2007 it was discovered a neutron star XTE J1739-285 rotating at 1122 times per second. 


          We show in this paper that a millisecond pulsar spinning with angular velocity close to 1000 rotations per second (or more) has its gravitational mass significantly reduced below its inertial mass, showing therefore, that the gravitational mass is not equivalent to the inertial mass as claims the equivalence principle of general relativity . 


2. Theory 


          The physical property of mass has two distinct aspects, gravitational mass mg and inertial mass mi. The gravitational mass produces and responds to gravitational fields. It supplies the mass factors in Newton's famous inverse-square law of gravity (F=GMg mg /r2). The inertial mass is the mass factor in Newton's 2nd Law of Motion (F=mia). 


          Einstein's Equivalence Principle asserts that a experiment performed in a uniformly accelerating reference frame with acceleration a are undistinguishable from the same experiment performed in a non-accelerating reference frame in a gravitational field where the acceleration of gravity is g = ( a. One way of stating this fundamental principle of general relativity theory is to say that gravitational mass is equivalent to inertial mass. 

          However, the quantization of gravity shows that that the gravitational mass mg and inertial mass mi are correlated by means of the following factor [13]:
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where 
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 is the rest inertial mass of the particle and 

[image: image4.wmf]p


D


 is the variation in the particle’s kinetic momentum; 
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          Equation (1) shows that only for 
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. Note that there is no restriction concerning the nature of the force

[image: image11.wmf]F


, i.e., it can be mechanical, electromagnetic, etc.


          For example, we can look on the momentum variation 
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  as due to absorption or emission of electromagnetic energy. In this case, we can write that 
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where 
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 is the electromagnetic energy absorbed or emitted by the particle;
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 ( , ( and (,   are the electromagnetic characteristics of the particle (
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          Thus, substitution of Eq. (2) into Eq. (1), gives
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          If the particle is also rotating, with an angular speed 
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 around its central axis, then it acquires an additional energy equal to its rotational energy 
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.  Since this is an increase in the internal energy of the particle, and this energy is basically electromagnetic, we can assume that
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where 
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 is the moment of inertia of the pulsar in respect to its rotation axis; 
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          Since a pulsar is a rigid sphere then we can assume 
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, where 

[image: image45.wmf]R


 is the pulsar radius. In this case, Eq. (5) can be rewritten as follows
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In the case of millisecond pulsars, we can take 
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 (There are various models predicting radii on the order of 10 km[14]). Therefore, if the pulsar is spinning with angular velocity close to 1000 rotations per second 
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then Eq. (6) shows a decreasing of about 0.01% in the gravitational mass of the millisecond pulsar, in respect to the inertial mass of the pulsar. 

          However, the shortest possible period 
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          Equation (6) shows that millisecond pulsars with radius of about 30km, spinning with angular velocity close to 1000 rotations per second,  have their gravitational masses decreased of about 1% in respect to the inertial mass of the pulsar. 

          This should provide an interesting new test for equivalence principle of general relativity.
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