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1. Abstract

This article describes about that NC and PH is proper (especially P is not NP)
by using problem reduction. If L is not P, we can prove P is not NP by using
di�erence between logarithm space reduction and polynomial time reduction. Like
this, we can also prove that NC is proper by using di�erence between AL0 and
NC1. This means L is not P. Therefore P is not NP. And we can also prove that
PH is proper by using P is not NP.

2. P is not NP if L is not P

De�nition 1. We will use the term �L�, �P �, �NP �, �FL�, �FP � as each com-
plexity classes. These complexity classes also use Turing Machine (TM) set that
compute target complexity classes problems. �f ◦ g� as composite TM that accept-
ing con�gurations of g are starting con�gurations of f . In this case, we also use
complexity classes to show target TM. For example, a ◦ bb when a is TM and bb is
complexity class mean that a ◦ b | b ∈ bb.

Theorem 2. L ( P → P ( NP

Proof. To prove it by using contraposition P = NP → L = P . As we all know
NP ◦ FP ∈ NP . From assumption P = NP , all NP ◦ FP correspond to P .
Therefore

P = NP → ∀C ∈ NP∀D ∈ FP∃E ∈ P (C ◦D = E)
Mentioned [1] Theorem 10.43, CIRCUIT −V ALUE are closed under logarithm

space reduction FL. That is,
∀H ∈ P∃G ∈ FL (CIRCUIT − V ALUE ◦G = H)
Therefore
P = NP
→ ∀C ∈ NP∀D ∈ FP∃G ∈ FL (C ◦D = CIRCUIT − V ALUE ◦G)
→ ∀D ∈ FP∃G ∈ FL (CIRCUIT − V ALUE ◦D = CIRCUIT − V ALUE ◦G)
→ ∀D ∈ FP∃G ∈ FL (D = G)
This means L = P . Therefore, this theorem was shown. �

3. NC is proper

And we use circuit problem as follows;

De�nition 3. We will use the term �ACi�, �NCi� as each complexity decision
problems classes. �FACi� as function problems class of �ACi�. These complexity
classes also use uniform circuits family set that compute target complexity classes
problems. �f ◦ g� as composite circuit that output of g are input of f . In this case,
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we also use complexity classes to show target circuit. For example, A◦BB when A
is circuits family and BB is circuits family set mean that a◦ b | a ∈ A, b ∈ B ∈ BB.
Circuits family uniformity is that these circuits can compute FAC0.

Theorem 4. NL ≤AC0 NC2

Proof. Mentioned [1] Theorem 10.40, all NC2 are closed by FL reduction. This
reduction is validity of (c1, c2) transition function. Transition function change O (1)
memory and keep another memory. Therefore this validity can compute AC0 and
we can replace FL to FAC0. �

Theorem 5. ACi has Universal Circuits Family that can emulate all ACi circuits

family.

Proof. To prove this theorem by making universal circuit family Ai ∈ ACi that
emulate circuit family {Cj} ∈ ACi by using �depth circuit tableau�. Universal
circuit Uj ∈ Ai have partial circuit uk,d that emulate all Cj gates gk∈n (include
input value) and connected wires wp,q from gp output to gq input in every depth d.
(wp,p always exist)

uv∈n,d have inputs from all uu∈n,d−1 and gu information that mean
a) validity of uu,d−1

b) uu,d−1 output (true if gu output true)
c) existence of wu,v (true if wu,v is exists)
d) negation of wu,v (true if wu,v include not gate)
e) gate type of gv (Or gate or And gate)
and outputs to uw∈n,d+1 that mean
A) validity of uv,d

B) uv,d output
These uv,d compute output like this;
If uu,d−1 a) or c) input false then uv,d ignore uu,d−1.
If uu,d−1 a) and c) input true then uv,d A) output true and uv,d B) output gk

value that compute from e), b), d). b), d) include another uw∈n,d−1 b), d).
If all a) input false then uk,d A) output false.
If all c) input false then uk,d A) output false.
And depth 0 circuit compute additional condition;
If uk,0 is Cj input then uk,0 A) output true and ui,d B) output Cj input value,

else uk,0 A) output false.
This Uj that consists of u emulate Cj . We can make every u in FAC0, so that

Ai in ACi.
Therefore, this theorem was shown. �

De�nition 6. We will use the term �Ai� as universal circuits family that compute
ACi problem, �N i� as universal circuits family that compute NCi problem.

Theorem 7. FAC0 can reduce all ACi to Ai. That is, Ai is closed under FAC0

reduction.

Proof. Mentioned above 35, we can make all ACi by using AC0 and we can connect
these ACi to Ai. That is, we can emulate all ACi circuit by using Ai ◦AC0. From
the view of Ai, AC0 is input reduction from ACi to Ai. Therefore, this theorem
was shown. �
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As we all know, all NC1 decision problems can embed NC1 function problems.
To simplify, we de�ne �Padding� that embed decision problems in function problems.

De�nition 8. We will use the term �Padding function� and �PadNi

(
NC1

)
� as

function that change decision problem NC1 to function problems PadNi

(
NC1

)
that outputs �t to N i inputs. This PadNi

(
NC1

)
output must include NC1 output

in head. (Other output make additional AC0 circuit that input is some NC1 gate
output.)

Theorem 9. NCi ( NCi+1

Proof. We can prove this theorem like mentioned above 2.
To prove it using reduction to absurdity. We assume that NCi = ACi = NCi+1.

From assumption NCi = ACi, there is N i that equal Ai.
NCi = ACi → ∀Ai ∈ ACi∃N i ∈ NCi

(
Ai = N i

)
From view of circuit structure, it is trivial that N i ◦ PadNi

(
NC1

)
∈ NCi+1.

From assumption NCi = ACi = NCi+1, all N i◦PadNi

(
NC1

)
correspond to NCi.

Therefore
NCi = ACi = NCi+1 → ∀C ∈ NC1∃D ∈ NCi

(
N i ◦ PadNi (C) = D

)
Mentioned above 7, all ACi are closed by FAC0 reduction to universal circuit

Ai. That is,
∀H ∈ ACi∃G ∈ FAC0

(
Ai ◦G = H

)
Therefore
NCi = ACi = NCi+1

→ ∀C ∈ NC1∃D ∈ NCi∀H ∈ ACi∃G ∈ FAC0
(
Ai ◦G = H

)
∧
(
N i ◦ PadNi (C) = D

)
→ ∀C ∈ NC1∃G ∈ FAC0

(
Ai ◦G = N i ◦ PadNi (C)

)
→ ∀C ∈ NC1∃G ∈ FAC0 (G = PadNi (C))
But this means AC0 = NC1 because head of PadNi (C) output is C output. It

is contradict AC0 ( NC1.
Therefore, this theorem was shown than reduction to absurdity. �

4. P is not NP

Theorem 10. P ̸= NP

Proof. Mentioned above 2, L ( P → P ( NP . And mentioned above 9, L ⊂
NCi ( NCi+1 ⊂ P . Therefore P ( NP . �

5. PH is proper

Theorem 11. Πk ( Σk+1

Proof. We can prove this theorem like mentioned above 9.
To prove it using reduction to absurdity. We assume that Πk = Σk+1. As we all

know Πk ◦ Σ1 ∈ Σk+1. From assumption, all Πk ◦ Σ1 correspond to Πk. Therefore
Πk = Σk+1 → ∀C ∈ Πk∀D ∈ Σ1∃E ∈ Πk (C ◦D = E)
Mentioned [2] Theorem 6.26, QSAT ′

k are Πk −Complete under polynomial time
reduction. That is,

∀H ∈ Πk∃G ∈ FP (QSAT ′
k ◦G = H)

Therefore
Πk = Σk+1

→ ∀C ∈ Πk∀D ∈ Σ1∃G ∈ P (C ◦D = QSAT ′
k ◦G)
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→ ∀D ∈ Σ1∃G ∈ FP (QSAT ′
k ◦D = QSAT ′

k ◦G)
→ ∀D ∈ Σ1∃G ∈ FP (D = G)
But this means P = NP and contradict P ̸= NP . Therefore Πk ( Σk+1.
Therefore, this theorem was shown than reduction to absurdity. �

Theorem 12. ∆k ( Σk,Σk ̸= Πk

Proof. Mentioned [2] Theorem 6.12,
Σk = Πk → Σk = Πk = PH
∆k = Σk → ∆k = Σk = Πk = PH
This contraposition is,
(Σk ( PH) ∨ (Πk ( PH) → Σk ̸= Πk

(∆k ( PH) ∨ (Σk ( PH) ∨ (Πk ( PH) → ∆k ̸= Σk

From mentioned above 11,
Σk ( Πk+1 ⊂ PH
Therefore, ∆k ̸= Σk,Σk ̸= Πk.
Mentioned [2] Theorem 6.10,
Σk ⊂ Σk+1, Πk ⊂ Πk+1,∀k ≥ 1 (∆k ⊂ (Σk ∩Πk) ⊂ (Σk ∪Πk) ⊂ ∆k+1)
Therefore, ∆k ( Σk,Σk ̸= Πk . �

Theorem 13. Πk ̸⊂ Σk,Σk ̸⊂ Πk

Proof. To prove it using reduction to absurdity. We assume that Πk ⊂ Σk. This
means that all Σk = Πk is also Σk.

Πk ⊂ Σk → ∀A ∈ Σk

(
A ∈ Πk ⊂ Σk

)
Mentioned [2] Theorem 6.21, all Σk are closed under polynomial time conjunctive

reduction. We can emulate these reduction by using Π1. That is,
∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1 (B ◦D = C)
Therefore,
Πk ⊂ Σk

→ ∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1∀A ∈ Σk (B ◦D = C) ∧
(
A ∈ Πk ⊂ Σk

)
→ ∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1 (B ◦D = C) ∧

(
B ∈ Σk

)
→ ∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1 (B ◦D = C) ∧ (B ∈ Πk)
Therefore Σk ⊂ Πk because B◦D ∈ Πk. But this means Σk = Πk and contradict

mentioned above 12 Σk ̸= Πk. Therefore Πk ̸⊂ Σk.
We can prove Σk ̸⊂ Πklike this.
Therefore, this theorem was shown than reduction to absurdity. �

Theorem 14. ∆k ( Πk

Proof. To prove it using reduction to absurdity. We assume that ∆k = Πk.
Mentioned [2] Theorem 6.10,
Σk ⊂ Σk+1, Πk ⊂ Πk+1,∀k ≥ 1 (∆k ⊂ (Σk ∩Πk) ⊂ (Σk ∪Πk) ⊂ ∆k+1)
Therefore
∆k = Πk

→ ∆k = Πk ⊂ (Σk ∩Πk) ⊂ Σk ⊂ (Σk ∪Πk) ⊂ ∆k+1

→ Πk ⊂ Σk

But this result contradict mentioned above 13.
Therefore, this theorem was shown than reduction to absurdity. �

Theorem 15. Σk ( ∆k+1,Πk ( ∆k+1
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Proof. To prove it using reduction to absurdity. We assume that Σk = ∆k+1.
Mentioned [2] Theorem 6.10,
∀k ≥ 1 (∆k ⊂ (Σk ∩Πk) ⊂ (Σk ∪Πk) ⊂ ∆k+1)
Therefore
Σk = ∆k+1

→ ∆k ⊂ (Σk ∩Πk) ⊂ Πk ⊂ (Σk ∪Πk) ⊂ Σk = ∆k+1

→ Πk ⊂ Σk

But this result contradict mentioned above 13. Therefore Σk ( ∆k+1.
We can prove Πk ( ∆k+1 like this.
Therefore, this theorem was shown than reduction to absurdity. �
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