
MEASURING COMPLEXITY BY USING REDUCTION TOSOLVE P VS NP AND NC & PHKOBAYASHI KOJI1. Abstra
tThis arti
le des
ribes about that NC and PH is proper (espe
ially P is not NP)by using problem redu
tion. If L is not P, we 
an prove P is not NP by usingdi�eren
e between logarithm spa
e redu
tion and polynomial time redu
tion. Likethis, we 
an also prove that NC is proper by using AL0 is not NC1. This means Lis not P. Therefore P is not NP. And we 
an also prove that PH is proper by usingP is not NP. 2. P is not NP if L is not PDe�nition 1. We will use the term �L�, �P �, �P − Complete�, �NP �, �NP −
Complete�, �FL�, �FP � as ea
h 
omplexity 
lasses. These 
omplexity 
lasses alsouse Turing Ma
hine (TM) set that 
ompute target 
omplexity 
lasses problems. �f◦
g� as 
omposite TM that a

epting 
on�gurations of g are starting 
on�gurationsof f .Theorem 2. L ( P → P ( NPProof. To prove it by using 
ontraposition P = NP → L = P .As we all know that if P = NP then all NP 
an redu
e P − Complete under
FL.

P = NP → ∀A ∈ P − Complete, B ∈ NP∃C ∈ FL (A ◦ C = B)This is 
orre
t even if NP redu
e by any FP .
P = NP → ∀D ∈ P − Complete, E ∈ NP,F ∈ FP∃G ∈ FL (D ◦G = E ◦ F )If P = NP , all NP 
an redu
e {1} under some FP .
P = NP → ∀D ∈ P − Complete∃G ∈ FL (D ◦G = {1})This means L = P . Therefore, this theorem was shown. �3. NC is properWe use 
ir
uit problem as follows;De�nition 3. We will use the term �ACi�, �NCi� as ea
h 
omplexity de
isionproblems 
lasses. �FACi� as fun
tion problems 
lass of �ACi�. These 
omplexity
lasses also use uniform 
ir
uits family set that 
ompute target 
omplexity 
lassesproblems. �f ◦ g� as 
omposite 
ir
uit that output of g are input of f . In this 
ase,we also use 
omplexity 
lasses to show target 
ir
uit. For example, A◦BB when Ais 
ir
uits family and BB is 
ir
uits family set mean that a◦ b | a ∈ A, b ∈ B ∈ BB.Cir
uits family uniformity is that these 
ir
uits 
an 
ompute FAC0.Theorem 4. NL ≤AC0 NC2 1



MEASURING COMPLEXITY BY USING REDUCTION TO SOLVE P VS NP AND NC & PH 2Proof. Mentioned [1℄ Theorem 10.40, all NC2 are 
losed by FL redu
tion. Thisredu
tion is validity of (c1, c2) transition fun
tion. Transition fun
tion 
hange O (1)memory and keep another memory. Therefore this validity 
an 
ompute AC0 andwe 
an repla
e FL to FAC0. �Theorem 5. ACi has Universal Cir
uits Family that 
an emulate all ACi 
ir
uitsfamily. That is, every ACi has ACi − Complete.Proof. To prove this theorem by making universal 
ir
uit family Ai ∈ ACi thatemulate 
ir
uit family {Cj} ∈ ACi by using �depth 
ir
uit tableau�. Universal
ir
uit Uj ∈ Ai have partial 
ir
uit uk,d that emulate all Cj gates gk∈n (in
ludeinput value) and 
onne
ted wires wp,q from gp output to gq input in every depth d.(wp,p always exist)
uv∈n,d have inputs from all uu∈n,d−1 and gu information that meana) validity of uu,d−1b) uu,d−1 output (true if gu output true)
) existen
e of wu,v (true if wu,v is exists)d) negation of wu,v (true if wu,v in
lude not gate)e) gate type of gv (Or gate or And gate)and outputs to uw∈n,d+1 that meanA) validity of uv,dB) uv,d outputThese uv,d 
ompute output like this;If uu,d−1 a) or 
) input false then uv,d ignore uu,d−1.If uu,d−1 a) and 
) input true then uv,d A) output true and uv,d B) output gkvalue that 
ompute from e), b), d). b), d) in
lude another uw∈n,d−1 b), d).If all a) input false then uk,d A) output false.If all 
) input false then uk,d A) output false.And depth 0 
ir
uit 
ompute additional 
ondition;If uk,0 is Cj input then uk,0 A) output true and ui,d B) output Cj input value,else uk,0 A) output false.This Uj that 
onsists of u emulate Cj . We 
an make every u in FAC0, so that

Ai in ACi.Therefore, this theorem was shown. �Theorem 6. NCi ( NCi+1Proof. To prove it using redu
tion to absurdity. We assume that NCi = NCi+1.It is trivial that NCi = ACi = · · · = NC2i.Mentioned above 5, all ACi 
an redu
e ACi −Complete under AC0. Thereforeif NCi = NCi+1 then all NC2i 
an redu
e ACi − Complete under AC0.
NCi = NCi+1 → ∀A ∈ ACi − Complete, B ∈ NC2i∃C ∈ AC0 (A ◦ C = B)All NCi ◦NCi is in NC2i. Therefore above is 
orre
t even if NCi is NCi ◦NCi.
NCi = NCi+1 → ∀D ∈ ACi−Complete, E, F ∈ NCi∃G ∈ AC0 (D ◦G = E ◦ F )All NCi 
an redu
e {1} under some NCi.
NCi = NCi+1 → ∀D ∈ ACi − Complete∃G ∈ AC0 (D ◦G = {1})This means AC0 = ACi. But this 
ontradi
t 
ontradi
t AC0 ( NC1 ⊂ ACi.Therefore, this theorem was shown than redu
tion to absurdity. �4. P is not NPTheorem 7. P 6= NP



MEASURING COMPLEXITY BY USING REDUCTION TO SOLVE P VS NP AND NC & PH 3Proof. Mentioned above 2, L ( P → P ( NP . And mentioned above 6, L ⊂
NCi ( NCi+1 ⊂ P . Therefore P ( NP . �5. PH is properTheorem 8. Πk ( Πk+2Proof. To prove it using redu
tion to absurdity. We assume that Πk = Πk+2. It istrivial that Πk = Πk+2 = · · · = Π2k.Mentioned [2℄ Theorem 6.26, QSAT ′

k are Πk −Complete under polynomial timeredu
tion. All Πk 
an redu
e Πk − Complete under FP . Therefore if Πk = Πk+2then all Π2k 
an redu
e Πk − Complete under FP .
Πk = Πk+2 → ∀A ∈ Πk − Complete, B ∈ Π2k∃C ∈ FP (A ◦ C = B)All Πk ◦ Πk is in Π2k. Therefore, if Πk = Πk+2 then above is 
orre
t even if Πkis Πk ◦Πk .
Πk = Πk+2 → ∀D ∈ Πk − Complete, E, F ∈ Π2k∃G ∈ FP (D ◦G = E ◦ F )All Πk 
an redu
e {1} under some Πk.
Πk = Πk+2 → ∀D ∈ Πk − Complete∃G ∈ FP (D ◦G = {1})This means FP = Πk. But this 
ontradi
t 
ontradi
t FP ( NP ⊂ Πk men-tioned above7.Therefore, this theorem was shown than redu
tion to absurdity. �Theorem 9. ∆k ( Σk,Σk 6= ΠkProof. Mentioned [2℄ Theorem 6.12,
Σk = Πk → Σk = Πk = PH

∆k = Σk → ∆k = Σk = Πk = PHThis 
ontraposition is,
(Σk ( PH) ∨ (Πk ( PH) → Σk 6= Πk

(∆k ( PH) ∨ (Σk ( PH) ∨ (Πk ( PH) → ∆k 6= ΣkFrom mentioned above 8,
Σk ( Πk+1 ⊂ PHTherefore, ∆k 6= Σk,Σk 6= Πk.Mentioned [2℄ Theorem 6.10,
Σk ⊂ Σk+1, Πk ⊂ Πk+1,∀k ≥ 1 (∆k ⊂ (Σk ∩ Πk) ⊂ (Σk ∪ Πk) ⊂ ∆k+1)Therefore, ∆k ( Σk,Σk 6= Πk . �Theorem 10. Πk 6⊂ Σk,Σk 6⊂ ΠkProof. To prove it using redu
tion to absurdity. We assume that Πk ⊂ Σk. Thismeans that all Σk = Πk is also Σk.
Πk ⊂ Σk → ∀A ∈ Σk

(

A ∈ Πk ⊂ Σk

)Mentioned [2℄ Theorem 6.21, all Σk are 
losed under polynomial time 
onjun
tiveredu
tion. We 
an emulate these redu
tion by using Π1. That is,
∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1 (B ◦D = C)Therefore,
Πk ⊂ Σk

→ ∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1∀A ∈ Σk (B ◦D = C) ∧
(

A ∈ Πk ⊂ Σk

)

→ ∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1 (B ◦D = C) ∧
(

B ∈ Σk

)

→ ∃B ∈ Σk∀C ∈ Σk∃D ∈ Π1 (B ◦D = C) ∧ (B ∈ Πk)Therefore Σk ⊂ Πk be
ause B◦D ∈ Πk. But this means Σk = Πk and 
ontradi
t
Σk 6= Πk mentioned above 9. Therefore Πk 6⊂ Σk.
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an prove Σk 6⊂ Πklike this.Therefore, this theorem was shown than redu
tion to absurdity. �Theorem 11. ∆k ( ΠkProof. To prove it using redu
tion to absurdity. We assume that ∆k = Πk.Mentioned [2℄ Theorem 6.10,
Σk ⊂ Σk+1, Πk ⊂ Πk+1,∀k ≥ 1 (∆k ⊂ (Σk ∩ Πk) ⊂ (Σk ∪ Πk) ⊂ ∆k+1)Therefore
∆k = Πk

→ ∆k = Πk ⊂ (Σk ∩ Πk) ⊂ Σk ⊂ (Σk ∪ Πk) ⊂ ∆k+1

→ Πk ⊂ ΣkBut this result 
ontradi
t mentioned above 10.Therefore, this theorem was shown than redu
tion to absurdity. �Theorem 12. Σk ( ∆k+1,Πk ( ∆k+1Proof. To prove it using redu
tion to absurdity. We assume that Σk = ∆k+1.Mentioned [2℄ Theorem 6.10,
∀k ≥ 1 (∆k ⊂ (Σk ∩ Πk) ⊂ (Σk ∪ Πk) ⊂ ∆k+1)Therefore
Σk = ∆k+1

→ ∆k ⊂ (Σk ∩Πk) ⊂ Πk ⊂ (Σk ∪ Πk) ⊂ Σk = ∆k+1

→ Πk ⊂ ΣkBut this result 
ontradi
t mentioned above 10. Therefore Σk ( ∆k+1.We 
an prove Πk ( ∆k+1 like this.Therefore, this theorem was shown than redu
tion to absurdity. �Referen
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