MEASURING COMPLEXITY BY USING REDUCTION TO SOLVE P VS NP AND NC & PH

KOBAYASHI KOJI

1. Abstract

This article prove that NC and PH is proper (especially P is not NP) by using reduction difference. If L is not P, we can prove P is not NP by using reduction difference between logarithm space and polynomial time. Like this, we can also prove that NC is proper by using AL0 is not NC1. This means L is not P. Therefore P is not NP. And we can also prove that PH is proper by using P is not NP.

2. P is not NP if L is not P

Definition 1. We will use the term "L", "P", "P-Complete", "NP", "NP-Complete", "NP" as each complexity classes. These complexity classes also use Turing Machine (TM) set that compute target complexity classes problems. " $f \circ g$ " as composite TM that accepting configurations of g are starting configurations of g.

Theorem 2. $L \subseteq P \rightarrow P \subseteq NP$

Proof. To prove it by using contraposition $P = NP \rightarrow L = P$.

As we all know that if P = NP then all NP can reduce P - Complete under FL.

 $P = NP \rightarrow \forall A \in P - Complete, B \in NP - Complete \exists C \in FL (A \circ C = B)$

NP-Complete that reduce by FP is also NP-Complete because

 $P = NP \rightarrow FP^{-1} = FP$

 $\rightarrow NP-Complete \leq_{FP} NP-Complete = NP-Complete \circ FP$

 $NP-Complete \circ FNP \subset NP-Complete$

Therefore

P = NP

 $\rightarrow \forall D \in P-Complete, E \in NP-Complete, F \in RFP \exists G \in FL (D \circ G = E \circ F)$

If P = NP, $\{1\} \in NP - Complete$ and some NP - Complete can reduce $\{1\}$ under some RFP.

 $P = NP \rightarrow \forall D \in P - Complete \exists G \in FL (D \circ G = \{1\})$

This means L = P. Therefore, this theorem was shown.

3. NC is proper

We use circuit problem as follows;

Definition 3. We will use the term " AC^{i} ", " NC^{i} " as each complexity decision problems classes. " FAC^{i} " as function problems class of " AC^{i} ". These complexity classes also use uniform circuits family set that compute target complexity classes problems. " $f \circ g$ " as composite circuit that output of g are input of f. In this case,

1

we also use complexity classes to show target circuit. For example, $A \circ BB$ when A is circuits family and BB is circuits family set mean that $a \circ b \mid a \in A, b \in B \in BB$. Circuits family uniformity is that these circuits can compute FAC^0 .

Theorem 4. $NL \leq_{AC^0} NC^2$

Proof. Mentioned [1] Theorem 10.40, all NC^2 are closed by FL reduction. This reduction is validity of (c_1, c_2) transition function. Transition function change O(1) memory and keep another memory. Therefore this validity can compute AC^0 and we can replace FL to FAC^0 .

Theorem 5. AC^i has Universal Circuits Family that can emulate all AC^i circuits family. That is, every AC^i has $AC^i - Complete$.

Proof. To prove this theorem by making universal circuit family $A^i \in AC^i$ that emulate circuit family $\{C_j\} \in AC^i$ by using "depth circuit tableau". Universal circuit $U_j \in A^i$ have partial circuit $u_{k,d}$ that emulate all C_j gates $g_{k \in n}$ (include input value) and connected wires $w_{p,q}$ from g_p output to g_q input in every depth d. $(w_{p,p}$ always exist)

 $u_{v \in n,d}$ have inputs from all $u_{u \in n,d-1}$ and g_u information that mean

- a) validity of $u_{u,d-1}$
- b) $u_{u,d-1}$ output (true if g_u output true)
- c) existence of $w_{u,v}$ (true if $w_{u,v}$ is exists)
- d) negation of $w_{u,v}$ (true if $w_{u,v}$ include not gate)
- e) gate type of g_v (Or gate or And gate)
- and outputs to $u_{w \in n, d+1}$ that mean
- A) validity of $u_{v,d}$
- B) $u_{v,d}$ output

These $u_{v,d}$ compute output like this;

If $u_{u,d-1}$ a) or c) input false then $u_{v,d}$ ignore $u_{u,d-1}$.

If $u_{u,d-1}$ a) and c) input true then $u_{v,d}$ A) output true and $u_{v,d}$ B) output g_k value that compute from e), b), d). b), d) include another $u_{w \in n,d-1}$ b), d).

If all a) input false then $u_{k,d}$ A) output false.

If all c) input false then $u_{k,d}$ A) output false.

And depth 0 circuit compute additional condition;

If $u_{k,0}$ is C_j input then $u_{k,0}$ A) output true and $u_{i,d}$ B) output C_j input value, else $u_{k,0}$ A) output false.

This U_j that consists of u emulate C_j . We can make every u in FAC^0 , so that A^i in AC^i .

Therefore, this theorem was shown.

Theorem 6. $NC^i \subseteq NC^{i+1}$

Proof. To prove it using reduction to absurdity. We assume that $NC^i = NC^{i+1}$. It is trivial that $NC^i = AC^i = NC^{i+1} = AC^{i+1} = \cdots$.

Mentioned above 5, all $AC^i - Complete$ can reduce $AC^i - Complete$ under AC^0 . Therefore if $NC^i = NC^{i+1}$ then all $NC^i - Complete$ can reduce $NC^i - Complete$ under AC^0 .

```
NC^{i} = NC^{i+1} \rightarrow \forall A, B \in NC^{i} - Complete \exists C \in AC^{0} (A \circ C = B)
```

 $NC^{i}-Complete$ that reduce by NC^{1} is also $NC^{i}-Complete$ because

 $NC^i = NC^{i+1}$

 $\rightarrow NC^{i} - Complete \leq_{AC^{0}} NC^{i+1} - Complete = NC^{i} - Complete \circ NC^{1}$

4. P is not NP

Theorem 7. $P \neq NP$

Proof. Mentioned above 2, $L \subsetneq P \to P \subsetneq NP$. And mentioned above 6, $L \subset NC^i \subsetneq NC^{i+1} \subset P$. Therefore $P \subsetneq NP$.

5. PH IS PROPER

Theorem 8. $\Pi_k \subsetneq \Pi_{k+2}$

Proof. To prove it using reduction to absurdity. We assume that $\Pi_k = \Pi_{k+2}$. It is trivial that $\Pi_k = \Pi_{k+2} = \Pi_{k+4} = \cdots$.

Mentioned [2] Theorem 6.26, Π_k – Complete under polynomial time reduction exist. All Π_k can reduce Π_k – Complete under FP. Therefore if $\Pi_k = \Pi_{k+2}$ then all Π_{k+2} – Complete can reduce Π_k – Complete under FP.

 $\Pi_k = \Pi_{k+2} \to \forall A, B \in \Pi_k - Complete \exists C \in FP (A \circ C = B)$

 $\Pi_k - Complete$ that reduce by $\Sigma_1 \circ \Pi_1$ is also $\Pi_k - Complete$ because

 $\Pi_k = \Pi_{k+2} \to \Pi_k - Complete \leq_P \Pi_{k+2} - Complete = \Pi_k - Complete \circ \Sigma_1 \circ \Pi_1$

 $\Pi_k = \Pi_{k+2} \to \Pi_k - Complete \circ \Sigma_1 \circ \Pi_1 = \Pi_{k+2} = \Pi_k$

Therefore

 $\Pi_k = \Pi_{k+2} \rightarrow \forall D, E \in \Pi_k - Complete, F \in \Sigma_1 \circ \Pi_1 \exists G \in FP (D \circ G = E \circ F)$

We can repeat this k times. Therefore

 $\Pi_k = \Pi_{k+2} \to \forall D, E \in \Pi_k - Complete, F \in \Pi_k \exists G \in FP (D \circ G = E \circ F)$

 Π_k – Complete can reduce $\{1\}$ by using Π_k .

 $\Pi_{k} = \Pi_{k+2} \to \forall D \in \Pi_{k} - Complete \exists G \in FP (D \circ G = \{1\})$

This means $FP = \Pi_k$. But this contradict contradict $FP \subseteq NP \subset \Pi_k$ mentioned above 7.

Therefore, this theorem was shown than reduction to absurdity.

Theorem 9. $\Delta_k \subseteq \Sigma_k, \Sigma_k \neq \Pi_k$

Proof. Mentioned [2] Theorem 6.12,

$$\Sigma_k = \Pi_k \to \Sigma_k = \Pi_k = PH$$

$$\Delta_k = \Sigma_k \to \Delta_k = \Sigma_k = \Pi_k = PH$$

This contraposition is,

$$(\Sigma_k \subsetneq PH) \vee (\Pi_k \subsetneq PH) \to \Sigma_k \neq \Pi_k$$

$$(\Delta_k \subsetneq PH) \lor (\Sigma_k \subsetneq PH) \lor (\Pi_k \subsetneq PH) \to \Delta_k \neq \Sigma_k$$

From mentioned above 8,

$$\Sigma_k \subsetneq \Pi_{k+1} \subset PH$$

Therefore, $\Delta_k \neq \Sigma_k, \Sigma_k \neq \Pi_k$.

Mentioned [2] Theorem 6.10,

$$\Sigma_k \subset \Sigma_{k+1}, \ \Pi_k \subset \Pi_{k+1}, \forall k \geq 1 \ (\Delta_k \subset (\Sigma_k \cap \Pi_k) \subset (\Sigma_k \cup \Pi_k) \subset \Delta_{k+1})$$

Therefore, $\Delta_k \subsetneq \Sigma_k, \Sigma_k \neq \Pi_k$.

Theorem 10. $\Pi_k \not\subset \Sigma_k, \Sigma_k \not\subset \Pi_k$

Proof. To prove it using reduction to absurdity. We assume that $\Pi_k \subset \Sigma_k$. This means that all $\overline{\Sigma_k} = \Pi_k$ is also Σ_k .

$$\Pi_k \subset \Sigma_k \to \forall A \in \Sigma_k \left(\overline{A} \in \Pi_k \subset \Sigma_k \right)$$

Mentioned [2] Theorem 6.21, all Σ_k are closed under polynomial time conjunctive reduction. We can emulate these reduction by using Π_1 . That is,

$$\exists B \in \Sigma_k \forall C \in \Sigma_k \exists D \in \Pi_1 (B \circ D = C)$$

Therefore,

 $\Pi_k \subset \Sigma_k$

$$\rightarrow \exists B \in \Sigma_k \forall C \in \Sigma_k \exists D \in \Pi_1 \forall A \in \Sigma_k \left(B \circ D = C \right) \land \left(\overline{A} \in \Pi_k \subset \Sigma_k \right)$$

$$\rightarrow \exists B \in \Sigma_k \forall C \in \Sigma_k \exists D \in \Pi_1 \left(B \circ D = C \right) \land \left(\overline{B} \in \Sigma_k \right)$$

$$\rightarrow \exists B \in \Sigma_k \forall C \in \Sigma_k \exists D \in \Pi_1 \ (B \circ D = C) \land (B \in \Pi_k)$$

Therefore $\Sigma_k \subset \Pi_k$ because $B \circ D \in \Pi_k$. But this means $\Sigma_k = \Pi_k$ and contradict $\Sigma_k \neq \Pi_k$ mentioned above 9. Therefore $\Pi_k \not\subset \Sigma_k$.

We can prove $\Sigma_k \not\subset \Pi_k$ like this.

Therefore, this theorem was shown than reduction to absurdity.

Theorem 11. $\Delta_k \subseteq \Pi_k$

Proof. To prove it using reduction to absurdity. We assume that $\Delta_k = \Pi_k$.

Mentioned [2] Theorem 6.10,

$$\Sigma_k \subset \Sigma_{k+1}, \Pi_k \subset \Pi_{k+1}, \forall k \geq 1 (\Delta_k \subset (\Sigma_k \cap \Pi_k) \subset (\Sigma_k \cup \Pi_k) \subset \Delta_{k+1})$$

Therefore

$$\Delta_k = \Pi_k$$

$$\stackrel{\circ}{\to} \Delta_k = \Pi_k \subset (\Sigma_k \cap \Pi_k) \subset \Sigma_k \subset (\Sigma_k \cup \Pi_k) \subset \Delta_{k+1}$$

$$\rightarrow \Pi_k \subset \Sigma_k$$

But this result contradict mentioned above 10.

Therefore, this theorem was shown than reduction to absurdity.

Theorem 12. $\Sigma_k \subsetneq \Delta_{k+1}, \Pi_k \subsetneq \Delta_{k+1}$

Proof. To prove it using reduction to absurdity. We assume that $\Sigma_k = \Delta_{k+1}$.

Mentioned [2] Theorem 6.10,

$$\forall k \geq 1 \, (\Delta_k \subset (\Sigma_k \cap \Pi_k) \subset (\Sigma_k \cup \Pi_k) \subset \Delta_{k+1})$$

Therefore

$$\Sigma_k = \Delta_{k+1}$$

$$\stackrel{\stackrel{\scriptstyle k}{\rightarrow}}{\rightarrow} \Delta_k \subset (\Sigma_k \cap \Pi_k) \subset \Pi_k \subset (\Sigma_k \cup \Pi_k) \subset \Sigma_k = \Delta_{k+1}$$

$$\rightarrow \Pi_k \subset \Sigma_k$$

But this result contradict mentioned above 10. Therefore $\Sigma_k \subsetneq \Delta_{k+1}$.

We can prove $\Pi_k \subseteq \Delta_{k+1}$ like this.

Therefore, this theorem was shown than reduction to absurdity.

References

- Michael Sipser, (translation) OHTA Kazuo, TANAKA Keisuke, ABE Masayuki, UEDA Hiroki, FUJIOKA Atsushi, WATANABE Osamu, Introduction to the Theory of COMPUTATION Second Edition, 2008
- [2] OGIHARA Mitsunori, Hierarchies in Complexity Theory, 2006
- [3] MORITA Kenichi, Reversible Computing, 2012