MEASURING COMPLEXITY BY USING REDUCTION TO SOLVE P VS NP AND NC & PH

KOBAYASHI KOJI

1. Abstract

This article prove that NC and PH is proper (especially P is not NP) by using reduction difference. We can prove that NC is proper by using AL0 is not NC. This means L is not P. We can prove P is not NP by using reduction difference between L and P. And we can also prove that PH is proper by using P is not NP.

2. NC IS PROPER

We use circuit problem as follows;

Definition 1. We will use the term " AC^{i*} , " NC^{i*} " as each complexity decision problems classes. " FAC^{i*} " as function problems class of AC^{i} . These complexity classes also use uniform circuits family set that compute target complexity classes problems. " $f \circ g$ " as composite circuit that output of g are input of f. In this case, we also use complexity classes to show target circuit. For example, $A \circ BB$ when A is circuits family and BB is circuits family set mean that $a \circ b \mid a \in A, b \in$ $B \in BB$. "R(A)" as subset of reversible NC that include A. Reversible mean that $\left(R(A) \circ (R(A))^{-1}\right)(x) = x$. Circuits family uniformity is that these circuits can compute FAC^{0} .

Theorem 2. $NL \leq_{AC^0} NC^2$

Proof. Mentioned [1] Theorem 10.40, all NC^2 are closed by FL reduction. This reduction is validity of (c_1, c_2) transition function. Transition function change O(1) memory and keep another memory. Therefore this validity can compute AC^0 and we can replace FL to FAC^0 .

Theorem 3. AC^i has Universal Circuits Family that can emulate all AC^i circuits family. That is, every AC^i has $AC^i - Complete$ under FAC^0 .

Proof. To prove this theorem by making universal circuit family $A^i \in AC^i$ that emulate circuit family $\{C_j\} \in AC^i$ by using "depth circuit tableau". Universal circuit $U_j \in A^i$ have partial circuit $u_{k,d}$ that emulate all C_j gates $g_{k\in n}$ (include input value) and connected wires $w_{p,q}$ from g_p output to g_q input in every depth d. $(w_{p,p}$ always exist)

- $u_{v \in n,d}$ have inputs from all $u_{u \in n,d-1}$ and g_u information that mean
- a) validity of $u_{u,d-1}$
- b) $u_{u,d-1}$ output (true if g_u output true)
- c) existence of $w_{u,v}$ (true if $w_{u,v}$ is exists)
- d) negation of $w_{u,v}$ (true if $w_{u,v}$ include not gate)
- e) gate type of g_v (Or gate or And gate)

and outputs to $u_{w \in n, d+1}$ that mean A) validity of $u_{v,d}$

B) $u_{v,d}$ output

These $u_{v,d}$ compute output like this;

If $u_{u,d-1}$ a) or c) input false then $u_{v,d}$ ignore $u_{u,d-1}$.

If $u_{u,d-1}$ a) and c) input true then $u_{v,d}$ A) output true and $u_{v,d}$ B) output g_k value that compute from e), b), d). b), d) include another $u_{w \in n,d-1}$ b), d).

If all a) input false then $u_{k,d}$ A) output false.

If all c) input false then $u_{k,d}$ A) output false.

And depth 0 circuit compute additional condition;

If $u_{k,0}$ is C_j input then $u_{k,0}$ A) output true and $u_{i,d}$ B) output C_j input value, else $u_{k,0}$ A) output false.

This U_j that consists of u emulate C_j . We can make every u in FAC^0 , so that A^i in AC^i .

Therefore, this theorem was shown.

Theorem 4. $NC^i = NC^{i+1} \rightarrow NC^i - Complete = AC^i - Complete = NC^{i+1} - Complete.$

Proof. If $NC^i = NC^{i+1}$, all $NC^i - Complete$, $AC^i - Complete$, $NC^{i+1} - Complete$ can reduce each other and $NC^i - Complete$, $AC^i - Complete$, $NC^{i+1} - Complete$ in NC^i . Therefore, this theorem was shown.

Theorem 5. $NC^i \subseteq NC^{i+1}$

Proof. To prove it using reduction to absurdity. We assume that $NC^{i} = NC^{i+1}$. It is trivial that $NC^{i} = AC^{i} = NC^{i+1} = AC^{i+1} = \cdots$.

Because $NC^i = NC^{i+1}$ and mentioned above 4, $R(FAC^i - Complete) \subset FAC^i - Complete$. Therefore

$$\begin{split} NC^{i} &= NC^{i+1} \rightarrow \forall A, B \in R \left(FAC^{i} - Complete \right) \exists C \in FAC^{0} \left(A \circ B = A \circ C \right) \\ A \text{ is reversible circuits family. Therefore } A \text{ have } A^{-1}. \\ NC^{i} &= NC^{i+1} \\ \rightarrow \forall A, B \in R \left(FAC^{i} - Complete \right) \exists C \in FAC^{0} \left(A^{-1} \circ A \circ B = A^{-1} \circ A \circ C \right) \\ \rightarrow \forall B \in R \left(FAC^{i} - Complete \right) \exists C \in FAC^{0} \left(B = C \right) \end{split}$$

This means $FAC^0 = FAC^i$. But this contradict contradict $AC^0 \subsetneq NC^1 \subset AC^i$. Therefore, this theorem was shown than reduction to absurdity.

3. PH is proper

Definition 6. We will use the term "L", "P", "P – Complete", "NP", "NP – Complete", "FL", "FP" as each complexity classes. These complexity classes also use Turing Machine (TM) set that compute target complexity classes problems. We will use the term " Δ_k ", " Σ_k ", " Π_k " as each Polynomial hierarchy classes. " $f \circ g$ " as composite problem that output of g are input of f. "R(A)" as "reversible TM" that equal A. Reversible mean that $\left(R(A) \circ (R(A))^{-1}\right)(x) = x$.

Theorem 7. $R(\Sigma_k) \subset \Sigma_k, R(\Pi_k) \subset \Pi_k.$

Proof. We can reduce Σ_k and Π_k to another Σ_k and Π_k that have tree graph of computation history. (if all configuration keep input, computation history become tree graph.) These Σ_k, Π_k are $R(\Sigma_k), R(\Pi_k)$ because each computation history of

each output only reach one input. Therefore $(R(A) \circ (R(A))^{-1})(x) = x$. We can compute these reduction in *FP*. Therefore, this theorem was shown.

Theorem 8. $P \subsetneq NP$

Proof. To prove it using reduction to absurdity. We assume that P = NP. As we all know that if P = NP then all NP can reduce P - Complete under FL. And all $NP \circ FP \subset NP$. Therefore

$$\begin{split} P &= NP \rightarrow \forall A \in NP - Complete \forall B \in FP \exists C \in FL \ (A \circ B = A \circ C) \\ \text{Mentioned above7, } R \ (NP - Complete) \subset NP - Complete. Therefore \\ P &= NP \rightarrow \forall D \in R \ (NP - Complete) \forall B \in FP \exists C \in FL \ (D \circ B = D \circ C) \\ D \ \text{is reversible function. Therefore } D \ \text{have } D^{-1}. \\ P &= NP \\ \rightarrow \forall D \in R \ (P - Complete) \forall B \in FP \exists C \in FL \ (D^{-1} \circ D \circ B = D^{-1} \circ D \circ C) \\ \end{pmatrix} \end{split}$$

 $\rightarrow \forall D \in R \left(P - Complete \right) \forall B \in FP \exists C \in FL \left(B = C \right)$

This means FP = FL. But this contradict $FL \subsetneq FP$ mentioned above5. Therefore, this theorem was shown than reduction to absurdity.

Theorem 9. $\Pi_k = \Pi_{k+1} \rightarrow \Pi_k - Complete = \Pi_{k+1} - Complete$

Proof. If $\Pi_k = \Pi_{k+1}$, all Π_k -*Complete*, Π_{k+1} -*Complete* can reduce each other and Π_k -*Complete*, Π_{k+1} -*Complete* in Π_k . Therefore, this theorem was shown. \Box

Theorem 10. $\Pi_k \subsetneq \Pi_{k+1}$

Proof. To prove it using reduction to absurdity. We assume that $\Pi_k = \Pi_{k+1}$. It is trivial that $\Pi_k = \Pi_{k+1} = \Pi_{k+2} = \cdots$.

Mentioned [2] Theorem 6.26, $\Pi_k - Complete$ under polynomial time reduction exist. Therefore all $\Pi_{k+1} - Complete$ can reduce $\Pi_k - Complete$ under FP. Because $\Pi_k = \Pi_{k+1}$ and mentioned above 9, $R(\Pi_k - Complete) \subset \Pi_k - Complete$. Therefore

 $\Pi_{k} = \Pi_{k+1} \to \forall A, B \in R (\Pi_{k} - Complete) \exists C \in FP (A \circ B = A \circ C)$ *A* is reversible function. Therefore *A* have A^{-1} . $\Pi_{k} = \Pi_{k+1}$ $\to \forall A, B \in R (\Pi_{k} - Complete) \exists C \in FP (A^{-1} \circ A \circ B = A^{-1} \circ A \circ C)$ $\to \forall B \in R (\Pi_{k} - Complete) \exists C \in FP (B = C)$

This means $\Pi_k = FP$. But this contradict contradict mentioned above. Therefore, this theorem was shown than reduction to absurdity.

Theorem 11. $\Delta_k \subsetneq \Sigma_k, \Sigma_k \neq \Pi_k$

Proof. Mentioned [2] Theorem 6.12, $\Sigma_{k} = \Pi_{k} \to \Sigma_{k} = \Pi_{k} = PH$ $\Delta_{k} = \Sigma_{k} \to \Delta_{k} = \Sigma_{k} = \Pi_{k} = PH$ This contraposition is, $(\Sigma_{k} \subsetneq PH) \lor (\Pi_{k} \subsetneq PH) \to \Sigma_{k} \neq \Pi_{k}$ $(\Delta_{k} \subsetneq PH) \lor (\Sigma_{k} \subsetneq PH) \lor (\Pi_{k} \subsetneq PH) \to \Delta_{k} \neq \Sigma_{k}$ From mentioned above 10, $\Sigma_{k} \subsetneq \Pi_{k+1} \subset PH$ Therefore, $\Delta_{k} \neq \Sigma_{k}, \Sigma_{k} \neq \Pi_{k}$. Mentioned [2] Theorem 6.10, $\Sigma_{k} \subset \Sigma_{k+1}, \Pi_{k} \subset \Pi_{k+1}, \forall k \ge 1 (\Delta_{k} \subset (\Sigma_{k} \cap \Pi_{k}) \subset (\Sigma_{k} \cup \Pi_{k}) \subset \Delta_{k+1})$ Therefore, $\Delta_{k} \subsetneq \Sigma_{k}, \Sigma_{k} \neq \Pi_{k}$.

Theorem 12. $\Pi_k \not\subset \Sigma_k, \Sigma_k \not\subset \Pi_k$

Proof. To prove it using reduction to absurdity. We assume that $\Pi_k \subset \Sigma_k$. This means that all $\overline{\Sigma_k} = \Pi_k$ is also Σ_k .

 $\Pi_k \subset \Sigma_k \to \forall A \in \Sigma_k \ (\overline{A} \in \Pi_k \subset \Sigma_k)$

Mentioned [2] Theorem 6.21, all Σ_k are closed under polynomial time conjunctive reduction. We can emulate these reduction by using Π_1 . That is,

 $\exists B \in \Sigma_k \forall C \in \Sigma_k \exists D \in \Pi_1 \left(B \circ D = C \right)$

Therefore,

 $\Pi_k \subset \Sigma_k$

 $\rightarrow \exists B \in \Sigma_k \forall C \in \Sigma_k \exists D \in \Pi_1 \forall A \in \Sigma_k (B \circ D = C) \land (\overline{A} \in \Pi_k \subset \Sigma_k)$ $\rightarrow \exists B \in \Sigma_k \forall C \in \Sigma_k \exists D \in \Pi_1 \left(B \circ D = C \right) \land \left(\overline{B} \in \Sigma_k \right)$

 $\rightarrow \exists B \in \Sigma_k \forall C \in \Sigma_k \exists D \in \Pi_1 (B \circ D = C) \land (B \in \Pi_k)$

Therefore $\Sigma_k \subset \Pi_k$ because $B \circ D \in \Pi_k$. But this means $\Sigma_k = \Pi_k$ and contradict $\Sigma_k \neq \Pi_k$ mentioned above 11. Therefore $\Pi_k \not\subset \Sigma_k$.

We can prove $\Sigma_k \not\subset \Pi_k$ like this.

Therefore, this theorem was shown than reduction to absurdity.

Theorem 13. $\Delta_k \subseteq \Pi_k$

Proof. To prove it using reduction to absurdity. We assume that $\Delta_k = \Pi_k$. Mentioned [2] Theorem 6.10, $\Sigma_k \subset \Sigma_{k+1}, \Pi_k \subset \Pi_{k+1}, \forall k \ge 1 (\Delta_k \subset (\Sigma_k \cap \Pi_k) \subset (\Sigma_k \cup \Pi_k) \subset \Delta_{k+1})$ Therefore $\Delta_k = \Pi_k$ $\rightarrow \Delta_k = \Pi_k \subset (\Sigma_k \cap \Pi_k) \subset \Sigma_k \subset (\Sigma_k \cup \Pi_k) \subset \Delta_{k+1}$ $\rightarrow \Pi_k \subset \Sigma_k$ But this result contradict mentioned above 12. Therefore, this theorem was shown than reduction to absurdity.

Theorem 14. $\Sigma_k \subsetneq \Delta_{k+1}, \Pi_k \subsetneq \Delta_{k+1}$

Proof. To prove it using reduction to absurdity. We assume that $\Sigma_k = \Delta_{k+1}$. Mentioned [2] Theorem 6.10, $\forall k \ge 1 \ (\Delta_k \subset (\Sigma_k \cap \Pi_k) \subset (\Sigma_k \cup \Pi_k) \subset \Delta_{k+1})$ Therefore $\Sigma_k = \Delta_{k+1}$ $\rightarrow \Delta_k \subset (\Sigma_k \cap \Pi_k) \subset \Pi_k \subset (\Sigma_k \cup \Pi_k) \subset \Sigma_k = \Delta_{k+1}$ $\rightarrow \Pi_k \subset \Sigma_k$ But this result contradict mentioned above 12. Therefore $\Sigma_k \subsetneq \Delta_{k+1}$. We can prove $\Pi_k \subsetneq \Delta_{k+1}$ like this. Therefore, this theorem was shown than reduction to absurdity.

References

- [1] Michael Sipser, (translation) OHTA Kazuo, TANAKA Keisuke, ABE Masayuki, UEDA Hiroki, FUJIOKA Atsushi, WATANABE Osamu, Introduction to the Theory of COMPUTATION Second Edition, 2008
- OGIHARA Mitsunori, Hierarchies in Complexity Theory, 2006

[3] MORITA Kenichi, Reversible Computing, 2012