MEASURING COMPLEXITY BY USING REDUCTION TO SOLVE P VS NP AND NC \& PH

KOBAYASHI KOJI

1. Abstract

This article prove that NC and PH is proper (especially P is not NP) by using reduction difference. We can prove that NC is proper by using AL0 is not NC. This means L is not P . We can prove P is not NP by using reduction difference between L and P . And we can also prove that PH is proper by using P is not NP.

2. NC IS PROPER

We use circuit problem as follows;
Definition 1. We will use the term " $A C^{i}$ ", " $N C^{i}$ " as each complexity decision problems classes. " $F A C^{i}$ " as function problems class of $A C^{i}$. These complexity classes also use uniform circuits family set that compute target complexity classes problems. " $f \circ g$ " as composite circuit that output of g are input of f. In this case, we also use complexity classes to show target circuit. For example, $A \circ B B$ when A is circuits family and $B B$ is circuits family set mean that $a \circ b \mid a \in A, b \in$ $B \in B B$. " $R(A)$ " as subset of reversible $N C$ that include A. Reversible mean that $\left(R(A) \circ(R(A))^{-1}\right)(x)=x$. Circuits family uniformity is that these circuits can compute $F A C^{0}$.

Theorem 2. $N L \leq_{A C^{0}} N C^{2}$
Proof. Mentioned [1] Theorem 10.40, all $N C^{2}$ are closed by $F L$ reduction. This reduction is validity of $\left(c_{1}, c_{2}\right)$ transition function. Transition function change O (1) memory and keep another memory. Therefore this validity can compute $A C^{0}$ and we can replace $F L$ to $F A C^{0}$.

Theorem 3. $A C^{i}$ has Universal Circuits Family that can emulate all $A C^{i}$ circuits family. That is, every $A C^{i}$ has $A C^{i}$ - Complete under $F A C^{0}$.

Proof. To prove this theorem by making universal circuit family $A^{i} \in A C^{i}$ that emulate circuit family $\left\{C_{j}\right\} \in A C^{i}$ by using "depth circuit tableau". Universal circuit $U_{j} \in A^{i}$ have partial circuit $u_{k, d}$ that emulate all C_{j} gates $g_{k \in n}$ (include input value) and partial circuit $v_{p-q, d}$ that emulate all wires w_{p-q} from g_{p} output to g_{q} input in every depth d. U_{j} use three value $\{\top, \perp, \emptyset\}$. \emptyset is special value that all g_{k} ignore this value. All gate in a depth d is u_{d}, all wires that input connected k in a depth d is $v_{k-, d}$, output connected k in a depth d is $v_{-k, d}$.
$v_{p-q, d}$ input connected each $u_{p, d}$ output and $w_{p-q} . v_{p-q, d}$ output connected each $u_{q, d+1}$ input. If w_{p-q} does not exist, $v_{p-q, d}$ output \emptyset. Else if w_{p-q} have negative then $v_{p-q, d}$ output $u_{k, d}$ negative value. Else $v_{p-q, d}$ output $u_{k, d}$ positive value.
$u_{k, d}$ input connected each $v_{-k, d-1}$ output and $g_{k} . u_{k, d}$ output connected each $v_{k-, d}$ input. If g_{k} is one of C_{j} input value, $u_{k, d}$ output the input value. Else (g_{k} is And / Or gate) $u_{k, d}$ output the gate value that compute from all $v_{-k, d-1}$ output values. In this computation, $u_{k, d}$ ignore all \emptyset. If all value are $\emptyset, u_{k, d}$ output \emptyset.

This U_{j} that consists of u, v emulate C_{j}. We can make every u, v in $F A C^{0}$ because C_{j} is uniform circuit1. Therefore, A^{i} in $A C^{i}$ and this theorem was shown.

Theorem 4. $N C^{i}=N C^{i+1} \rightarrow N C^{i}-$ Complete $=A C^{i}-$ Complete $=N C^{i+1}-$ Complete.
Proof. If $N C^{i}=N C^{i+1}$, all $N C^{i}-$ Complete, $A C^{i}-$ Complete, $N C^{i+1}-$ Complete can reduce each other and $N C^{i}-$ Complete, $A C^{i}$ - Complete, $N C^{i+1}$ - Complete in $N C^{i}$. Therefore, this theorem was shown.
Theorem 5. $N C^{i} \subsetneq N C^{i+1}$
Proof. To prove it using reduction to absurdity. We assume that $N C^{i}=N C^{i+1}$. It is trivial that $N C^{i}=A C^{i}=N C^{i+1}=A C^{i+1}=\cdots$.

Because $N C^{i}=N C^{i+1}$ and mentioned above $4, R\left(F A C^{i}-C\right.$ omplete $) \subset F A C^{i}-$ Complete. Therefore
$N C^{i}=N C^{i+1} \rightarrow \forall A, B \in R\left(F A C^{i}-C o m p l e t e\right) \exists C \in F A C^{0}(A \circ B=A \circ C)$
A is reversible circuits family. Therefore A have A^{-1}.
$N C^{i}=N C^{i+1}$
$\rightarrow \forall A, B \in R\left(F A C^{i}-\right.$ Complete $) \exists C \in F A C^{0}\left(A^{-1} \circ A \circ B=A^{-1} \circ A \circ C\right)$
$\rightarrow \forall B \in R\left(F A C^{i}-\right.$ Complete $) \exists C \in F A C^{0}(B=C)$
This means $F A C^{0}=F A C^{i}$. But this contradict $A C^{0} \subsetneq N C^{1} \subset A C^{i}$.
Therefore, this theorem was shown than reduction to absurdity.
Theorem 6. $A C^{i} \subsetneq A C^{i+1}$
Proof. If $A C^{i}=A C^{i+1}$ then $A C^{i}=N C^{i+1}=A C^{i+1}=N C^{i+2}=A C^{i+2}$ and contradict mentioned above $5 N C^{i} \subsetneq N C^{i+1}$. Therefore, this theorem was shown than reduction to absurdity.

3. PH is proper

Definition 7. We will use the term " L ", " P ", " $P-C o m p l e t e ", " N P ", " N P-$ Complete", "FL", "FP" as each complexity classes. These complexity classes also use Turing Machine (TM) set that compute target complexity classes problems. We will use the term " Δ_{k} ", " Σ_{k} ", " Π_{k} " as each Polynomial hierarchy classes. " $f \circ g$ " as composite problem that output of g are input of f. " $R(A)$ " as "reversible TM" that equal A. Reversible mean that $\left(R(A) \circ(R(A))^{-1}\right)(x)=x$.
Theorem 8. $R\left(\Sigma_{k}\right) \subset \Sigma_{k}, R\left(\Pi_{k}\right) \subset \Pi_{k}$.
Proof. We can reduce Σ_{k} and Π_{k} to another Σ_{k} and Π_{k} that have tree graph of computation history. (if all configuration keep input, computation history become tree graph.) These Σ_{k}, Π_{k} are $R\left(\Sigma_{k}\right), R\left(\Pi_{k}\right)$ because each computation history of each output only reach one input. Therefore $\left(R(A) \circ(R(A))^{-1}\right)(x)=x$. We can compute these reduction in $F P$. Therefore, this theorem was shown.
Theorem 9. $P \subsetneq N P$

Proof. To prove it using reduction to absurdity. We assume that $P=N P$.
As we all know that if $P=N P$ then all $N P$ can reduce P-Complete under $F L$. And all $N P \circ F P \subset N P$. Therefore
$P=N P \rightarrow \forall A \in N P-C o m p l e t e \forall B \in F P \exists C \in F L(A \circ B=A \circ C)$
Mentioned above8, $R(N P-$ Complete $) \subset N P-C o m p l e t e . ~ T h e r e f o r e ~$
$P=N P \rightarrow \forall D \in R(N P-C o m p l e t e) \forall B \in F P \exists C \in F L(D \circ B=D \circ C)$
D is reversible function. Therefore D have D^{-1}.
$P=N P$
$\rightarrow \forall D \in R(P-C o m p l e t e) \forall B \in F P \exists C \in F L\left(D^{-1} \circ D \circ B=D^{-1} \circ D \circ C\right)$
$\rightarrow \forall D \in R(P-$ Complete $) \forall B \in F P \exists C \in F L(B=C)$
This means $F P=F L$. But this contradict $F L \subsetneq F P$ mentioned above5. Therefore, this theorem was shown than reduction to absurdity.
Theorem 10. $\Pi_{k}=\Pi_{k+1} \rightarrow \Pi_{k}$ Complete $=\Pi_{k+1}-$ Complete
Proof. If $\Pi_{k}=\Pi_{k+1}$, all Π_{k}-Complete, Π_{k+1}-Complete can reduce each other and Π_{k} - Complete, Π_{k+1} - Complete in Π_{k}. Therefore, this theorem was shown.

Theorem 11. $\Pi_{k} \subsetneq \Pi_{k+1}$
Proof. To prove it using reduction to absurdity. We assume that $\Pi_{k}=\Pi_{k+1}$. It is trivial that $\Pi_{k}=\Pi_{k+1}=\Pi_{k+2}=\cdots$.

Mentioned [2] Theorem 6.26, Π_{k} - Complete under polynomial time reduction exist. Therefore all Π_{k+1} - Complete can reduce Π_{k} - Complete under FP. Because $\Pi_{k}=\Pi_{k+1}$ and mentioned above $10, R\left(\Pi_{k}-\right.$ Complete $) \subset \Pi_{k}-$ Complete. Therefore
$\Pi_{k}=\Pi_{k+1} \rightarrow \forall A, B \in R\left(\Pi_{k}-\right.$ Complete $) \exists C \in F P(A \circ B=A \circ C)$
A is reversible function. Therefore A have A^{-1}.
$\Pi_{k}=\Pi_{k+1}$
$\rightarrow \forall A, B \in R\left(\Pi_{k}-\right.$ Complete $) \exists C \in F P\left(A^{-1} \circ A \circ B=A^{-1} \circ A \circ C\right)$
$\rightarrow \forall B \in R\left(\Pi_{k}-\right.$ Complete $) \exists C \in F P(B=C)$
This means $\Pi_{k}=F P$. But this contradict mentioned above9. Therefore, this theorem was shown than reduction to absurdity.

Theorem 12. $\Delta_{k} \subsetneq \Sigma_{k}, \Sigma_{k} \neq \Pi_{k}$
Proof. Mentioned [2] Theorem 6.12, $\Sigma_{k}=\Pi_{k} \rightarrow \Sigma_{k}=\Pi_{k}=P H$
$\Delta_{k}=\Sigma_{k} \rightarrow \Delta_{k}=\Sigma_{k}=\Pi_{k}=P H$
This contraposition is,
$\left(\Sigma_{k} \subsetneq P H\right) \vee\left(\Pi_{k} \subsetneq P H\right) \rightarrow \Sigma_{k} \neq \Pi_{k}$
$\left(\Delta_{k} \subsetneq P H\right) \vee\left(\Sigma_{k} \subsetneq P H\right) \vee\left(\Pi_{k} \subsetneq P H\right) \rightarrow \Delta_{k} \neq \Sigma_{k}$
From mentioned above 11,
$\Sigma_{k} \subsetneq \Pi_{k+1} \subset P H$
Therefore, $\Delta_{k} \neq \Sigma_{k}, \Sigma_{k} \neq \Pi_{k}$.
Mentioned [2] Theorem 6.10,
$\Sigma_{k} \subset \Sigma_{k+1}, \Pi_{k} \subset \Pi_{k+1}, \forall k \geq 1\left(\Delta_{k} \subset\left(\Sigma_{k} \cap \Pi_{k}\right) \subset\left(\Sigma_{k} \cup \Pi_{k}\right) \subset \Delta_{k+1}\right)$
Therefore, $\Delta_{k} \subsetneq \Sigma_{k}, \Sigma_{k} \neq \Pi_{k}$.
Theorem 13. $\Pi_{k} \not \subset \Sigma_{k}, \Sigma_{k} \not \subset \Pi_{k}$
Proof. To prove it using reduction to absurdity. We assume that $\Pi_{k} \subset \Sigma_{k}$. This means that all $\overline{\Sigma_{k}}=\Pi_{k}$ is also Σ_{k}.
$\Pi_{k} \subset \Sigma_{k} \rightarrow \forall A \in \Sigma_{k}\left(\bar{A} \in \Pi_{k} \subset \Sigma_{k}\right)$
Mentioned [2] Theorem 6.21, all Σ_{k} are closed under polynomial time conjunctive reduction. We can emulate these reduction by using Π_{1}. That is,
$\exists B \in \Sigma_{k} \forall C \in \Sigma_{k} \exists D \in \Pi_{1}(B \circ D=C)$
Therefore,
$\Pi_{k} \subset \Sigma_{k}$
$\rightarrow \exists B \in \Sigma_{k} \forall C \in \Sigma_{k} \exists D \in \Pi_{1} \forall A \in \Sigma_{k}(B \circ D=C) \wedge\left(\bar{A} \in \Pi_{k} \subset \Sigma_{k}\right)$
$\rightarrow \exists B \in \Sigma_{k} \forall C \in \Sigma_{k} \exists D \in \Pi_{1}(B \circ D=C) \wedge\left(\bar{B} \in \Sigma_{k}\right)$
$\rightarrow \exists B \in \Sigma_{k} \forall C \in \Sigma_{k} \exists D \in \Pi_{1}(B \circ D=C) \wedge\left(B \in \Pi_{k}\right)$
Therefore $\Sigma_{k} \subset \Pi_{k}$ because $B \circ D \in \Pi_{k}$. But this means $\Sigma_{k}=\Pi_{k}$ and contradict $\Sigma_{k} \neq \Pi_{k}$ mentioned above 12. Therefore $\Pi_{k} \not \subset \Sigma_{k}$.

We can prove $\Sigma_{k} \not \subset \Pi_{k}$ like this.
Therefore, this theorem was shown than reduction to absurdity.
Theorem 14. $\Delta_{k} \subsetneq \Pi_{k}$
Proof. To prove it using reduction to absurdity. We assume that $\Delta_{k}=\Pi_{k}$. Mentioned [2] Theorem 6.10,
$\Sigma_{k} \subset \Sigma_{k+1}, \Pi_{k} \subset \Pi_{k+1}, \forall k \geq 1\left(\Delta_{k} \subset\left(\Sigma_{k} \cap \Pi_{k}\right) \subset\left(\Sigma_{k} \cup \Pi_{k}\right) \subset \Delta_{k+1}\right)$
Therefore
$\Delta_{k}=\Pi_{k}$
$\rightarrow \Delta_{k}=\Pi_{k} \subset\left(\Sigma_{k} \cap \Pi_{k}\right) \subset \Sigma_{k} \subset\left(\Sigma_{k} \cup \Pi_{k}\right) \subset \Delta_{k+1}$
$\rightarrow \Pi_{k} \subset \Sigma_{k}$
But this result contradict mentioned above 13.
Therefore, this theorem was shown than reduction to absurdity.
Theorem 15. $\Sigma_{k} \subsetneq \Delta_{k+1}, \Pi_{k} \subsetneq \Delta_{k+1}$
Proof. To prove it using reduction to absurdity. We assume that $\Sigma_{k}=\Delta_{k+1}$.
Mentioned [2] Theorem 6.10,
$\forall k \geq 1\left(\Delta_{k} \subset\left(\Sigma_{k} \cap \Pi_{k}\right) \subset\left(\Sigma_{k} \cup \Pi_{k}\right) \subset \Delta_{k+1}\right)$
Therefore
$\Sigma_{k}=\Delta_{k+1}$
$\rightarrow \Delta_{k} \subset\left(\Sigma_{k} \cap \Pi_{k}\right) \subset \Pi_{k} \subset\left(\Sigma_{k} \cup \Pi_{k}\right) \subset \Sigma_{k}=\Delta_{k+1}$
$\rightarrow \Pi_{k} \subset \Sigma_{k}$
But this result contradict mentioned above 13. Therefore $\Sigma_{k} \subsetneq \Delta_{k+1}$.
We can prove $\Pi_{k} \subsetneq \Delta_{k+1}$ like this.
Therefore, this theorem was shown than reduction to absurdity.

References

[1] Michael Sipser, (translation) OHTA Kazuo, TANAKA Keisuke, ABE Masayuki, UEDA Hiroki, FUJIOKA Atsushi, WATANABE Osamu, Introduction to the Theory of COMPUTATION Second Edition, 2008
[2] OGIHARA Mitsunori, Hierarchies in Complexity Theory, 2006
[3] MORITA Kenichi, Reversible Computing, 2012

