MEASURING COMPLEXITY BY USING REDUCTION TO SOLVE P VS NP AND NC & PH

KOBAYASHI KOJI

1. Abstract

This article prove that NC and PH is proper (especially P is not NP) by using reduction difference. We can prove that NC is proper by using AL0 is not NC. This means L is not P. We can prove P is not NP by using reduction difference between L and P. And we can also prove that PH is proper by using P is not NP.

2. NC is proper

We use circuit problem as follows;

Definition 1. We will use the term " AC^{i} ", " NC^{i} " as each complexity decision problems classes. " FAC^{i} " as function problems class of AC^{i} . These complexity classes also use uniform circuits family set that compute target complexity classes problems. " $f \circ g$ " as composite circuit that output of g are input of f. In this case, we also use complexity classes to show target circuit. For example, $A \circ BB$ when A is circuits family and BB is circuits family set mean that $a \circ b \mid a \in A, b \in B \in BB$. "R(A)" as subset of reversible NC that include A. Reversible mean that $\left(R(A) \circ (R(A))^{-1}\right)(x) = x$. Circuits family uniformity is that these circuits can compute FAC^{0} .

Theorem 2. $NL \leq_{AC^0} NC^2$

Proof. Mentioned [1] Theorem 10.40, all NC^2 are closed by FL reduction. This reduction is validity of (c_1, c_2) transition function. Transition function change O(1) memory and keep another memory. Therefore this validity can compute AC^0 and we can replace FL to FAC^0 .

Theorem 3. AC^i has Universal Circuits Family that can emulate all AC^i circuits family. That is, every AC^i has $AC^i - Complete$ under FAC^0 .

Proof. To prove this theorem by making universal circuit family $A^i \in AC^i$ that emulate circuit family $\{C_j\} \in AC^i$ by using "depth circuit tableau". Universal circuit $U_j \in A^i$ have partial circuit $u_{k,d}$ that emulate all C_j gates $g_{k \in n}$ (include input value) and partial circuit $v_{p-q,d}$ that emulate all wires w_{p-q} from g_p output to g_q input in every depth d. U_j use three value $\{\top, \bot, \emptyset\}$. \emptyset is special value that all g_k ignore this value. All gate in a depth d is u_d , all wires that input connected k in a depth d is $v_{-k,d}$.

 $v_{p-q,d}$ input connected each $u_{p,d}$ output and w_{p-q} . $v_{p-q,d}$ output connected each $u_{q,d+1}$ input. If w_{p-q} does not exist, $v_{p-q,d}$ output \emptyset . Else if w_{p-q} have negative then $v_{p-q,d}$ output $u_{k,d}$ negative value. Else $v_{p-q,d}$ output $u_{k,d}$ positive value.

 $u_{k,d}$ input connected each $v_{-k,d-1}$ output and g_k . $u_{k,d}$ output connected each v_{k-d} input. If g_k is one of C_j input value, $u_{k,d}$ output the input value. Else $(g_k$ is And / Or gate) $u_{k,d}$ output the gate value that compute from all $v_{-k,d-1}$ output values. In this computation, $u_{k,d}$ ignore all \emptyset . If all value are \emptyset , $u_{k,d}$ output \emptyset .

This U_j that consists of u, v emulate C_j . We can make every u, v in FAC^0 because C_j is uniform circuit1. Therefore, A^i in AC^i and this theorem was shown.

Theorem 4. $NC^i = NC^{i+1} \rightarrow NC^i - Complete = AC^i - Complete = NC^{i+1} - Complete$.

Proof. If $NC^i = NC^{i+1}$, all $NC^i - Complete$, $AC^i - Complete$, $NC^{i+1} - Complete$ can reduce each other and $NC^i - Complete$, $AC^i - Complete$, $NC^{i+1} - Complete$ in NC^i . Therefore, this theorem was shown.

Theorem 5. $NC^i \subseteq NC^{i+1}$

Proof. To prove it using reduction to absurdity. We assume that $NC^i = NC^{i+1}$. It is trivial that $NC^i = AC^i = NC^{i+1} = AC^{i+1} = \cdots$.

Because $NC^i = NC^{i+1}$ and mentioned above 4, $R\left(FAC^i - Complete\right) \subset FAC^i - Complete$. Therefore

 $NC^{i} = NC^{i+1} \rightarrow \forall A, B \in R \left(FAC^{i} - Complete \right) \exists C \in FAC^{0} \left(A \circ B = A \circ C \right)$ A is reversible circuits family. Therefore A have A^{-1} .

 $NC^i = NC^{i+1}$

 $\rightarrow \forall A, B \in R \left(FAC^{i} - Complete \right) \exists C \in FAC^{0} \left(A^{-1} \circ A \circ B = A^{-1} \circ A \circ C \right)$

 $\rightarrow \forall B \in R \left(FAC^i - Complete \right) \exists C \in FAC^0 \left(B = C \right)$

This means $FAC^0 = FAC^i$. But this contradict $AC^0 \subseteq NC^1 \subset AC^i$.

Therefore, this theorem was shown than reduction to absurdity.

Theorem 6. $AC^i \subseteq AC^{i+1}$

Proof. If $AC^i = AC^{i+1}$ then $AC^i = NC^{i+1} = AC^{i+1} = NC^{i+2} = AC^{i+2}$ and contradict mentioned above 5 $NC^i \subseteq NC^{i+1}$. Therefore, this theorem was shown than reduction to absurdity.

3. PH IS PROPER

Definition 7. We will use the term "L", "P", "P-Complete", "NP", "NP-Complete", "FL", "FP" as each complexity classes. These complexity classes also use Turing Machine (TM) set that compute target complexity classes problems. We will use the term " Δ_k ", " Σ_k ", " Π_k " as each Polynomial hierarchy classes. " $f \circ g$ " as composite problem that output of g are input of g. "R(A)" as "reversible TM" that equal g. Reversible mean that $R(A) \circ R(A) \circ R($

Theorem 8. $R(\Sigma_k) \subset \Sigma_k$, $R(\Pi_k) \subset \Pi_k$.

Proof. We can reduce Σ_k and Π_k to another Σ_k and Π_k that have tree graph of computation history. (if all configuration keep input, computation history become tree graph.) These Σ_k, Π_k are $R(\Sigma_k), R(\Pi_k)$ because each computation history of each output only reach one input. Therefore $\left(R(A) \circ (R(A))^{-1}\right)(x) = x$. We can compute these reduction in FP. Therefore, this theorem was shown.

Theorem 9. $P \subsetneq NP$

Proof. To prove it using reduction to absurdity. We assume that P = NP.

As we all know that if P = NP then all NP can reduce P - Complete under FL. And all $NP \circ FP \subset NP$. Therefore

```
P = NP \rightarrow \forall A \in NP - Complete \forall B \in FP \exists C \in FL (A \circ B = A \circ C)
```

Mentioned above8, $R(NP-Complete) \subset NP-Complete$. Therefore

$$P = NP \rightarrow \forall D \in R (NP - Complete) \forall B \in FP \exists C \in FL (D \circ B = D \circ C)$$

D is reversible function. Therefore D have D^{-1} .

P = NP

$$\rightarrow \forall D \in R (P-Complete) \ \forall B \in FP \exists C \in FL \left(D^{-1} \circ D \circ B = D^{-1} \circ D \circ C\right)$$

$$\rightarrow \forall D \in R (P - Complete) \forall B \in FP \exists C \in FL (B = C)$$

This means FP = FL. But this contradict $FL \subsetneq FP$ mentioned above 5. Therefore, this theorem was shown than reduction to absurdity.

Theorem 10. $\Pi_k = \Pi_{k+1} \to \Pi_k - Complete = \Pi_{k+1} - Complete$

Proof. If $\Pi_k = \Pi_{k+1}$, all $\Pi_k - Complete$, $\Pi_{k+1} - Complete$ can reduce each other and $\Pi_k - Complete$, $\Pi_{k+1} - Complete$ in Π_k . Therefore, this theorem was shown. \square

Theorem 11. $\Pi_k \subsetneq \Pi_{k+1}$

Proof. To prove it using reduction to absurdity. We assume that $\Pi_k = \Pi_{k+1}$. It is trivial that $\Pi_k = \Pi_{k+1} = \Pi_{k+2} = \cdots$.

Mentioned [2] Theorem 6.26, Π_k – Complete under polynomial time reduction exist. Therefore all Π_{k+1} – Complete can reduce Π_k – Complete under FP. Because $\Pi_k = \Pi_{k+1}$ and mentioned above 10, $R(\Pi_k - Complete) \subset \Pi_k$ – Complete. Therefore

$$\Pi_{k} = \Pi_{k+1} \to \forall A, B \in R \left(\Pi_{k} - Complete \right) \exists C \in FP \left(A \circ B = A \circ C \right)$$

A is reversible function. Therefore A have A^{-1} .

 $\Pi_k = \Pi_{k+1}$

$$\rightarrow \forall A, B \in R (\Pi_k - Complete) \exists C \in FP (A^{-1} \circ A \circ B = A^{-1} \circ A \circ C)$$

$$\rightarrow \forall B \in R (\Pi_k - Complete) \exists C \in FP (B = C)$$

This means $\Pi_k = FP$. But this contradict mentioned above 9. Therefore, this theorem was shown than reduction to absurdity.

Theorem 12. $\Delta_k \subsetneq \Sigma_k, \Sigma_k \neq \Pi_k$

Proof. Mentioned [2] Theorem 6.12,

$$\Sigma_k = \Pi_k \to \Sigma_k = \Pi_k = PH$$

$$\Delta_k = \Sigma_k \to \Delta_k = \Sigma_k = \Pi_k = PH$$

This contraposition is,

$$(\Sigma_k \subseteq PH) \vee (\Pi_k \subseteq PH) \rightarrow \Sigma_k \neq \Pi_k$$

$$(\Delta_k \subsetneq PH) \lor (\Sigma_k \subsetneq PH) \lor (\Pi_k \subsetneq PH) \to \Delta_k \neq \Sigma_k$$

From mentioned above 11,

 $\Sigma_k \subseteq \Pi_{k+1} \subset PH$

Therefore, $\Delta_k \neq \Sigma_k, \Sigma_k \neq \Pi_k$.

Mentioned [2] Theorem 6.10,

$$\Sigma_k \subset \Sigma_{k+1}, \Pi_k \subset \Pi_{k+1}, \forall k \geq 1 (\Delta_k \subset (\Sigma_k \cap \Pi_k) \subset (\Sigma_k \cup \Pi_k) \subset \Delta_{k+1})$$

Therefore, $\Delta_k \subseteq \Sigma_k, \Sigma_k \neq \Pi_k$.

Theorem 13. $\Pi_k \not\subset \Sigma_k, \Sigma_k \not\subset \Pi_k$

Proof. To prove it using reduction to absurdity. We assume that $\Pi_k \subset \Sigma_k$. This means that all $\overline{\Sigma_k} = \Pi_k$ is also Σ_k .

$$\Pi_k \subset \Sigma_k \to \forall A \in \Sigma_k \left(\overline{A} \in \Pi_k \subset \Sigma_k \right)$$

Mentioned [2] Theorem 6.21, all Σ_k are closed under polynomial time conjunctive reduction. We can emulate these reduction by using Π_1 . That is,

$$\exists B \in \Sigma_k \forall C \in \Sigma_k \exists D \in \Pi_1 (B \circ D = C)$$

Therefore,

 $\Pi_k \subset \Sigma_k$

$$\rightarrow \exists B \in \Sigma_k \forall C \in \Sigma_k \exists D \in \Pi_1 \forall A \in \Sigma_k (B \circ D = C) \land (\overline{A} \in \Pi_k \subset \Sigma_k)$$

$$\rightarrow \exists B \in \Sigma_k \forall C \in \Sigma_k \exists D \in \Pi_1 (B \circ D = C) \land (\overline{B} \in \Sigma_k)$$

$$\rightarrow \exists B \in \Sigma_k \forall C \in \Sigma_k \exists D \in \Pi_1 \ (B \circ D = C) \land (B \in \Pi_k)$$

Therefore $\Sigma_k \subset \Pi_k$ because $B \circ D \in \Pi_k$. But this means $\Sigma_k = \Pi_k$ and contradict $\Sigma_k \neq \Pi_k$ mentioned above 12. Therefore $\Pi_k \not\subset \Sigma_k$.

We can prove $\Sigma_k \not\subset \Pi_k$ like this.

Therefore, this theorem was shown than reduction to absurdity.

Theorem 14. $\Delta_k \subsetneq \Pi_k$

Proof. To prove it using reduction to absurdity. We assume that $\Delta_k = \Pi_k$.

Mentioned [2] Theorem 6.10,

$$\Sigma_k \subset \Sigma_{k+1}, \ \Pi_k \subset \Pi_{k+1}, \forall k \geq 1 \ (\Delta_k \subset (\Sigma_k \cap \Pi_k) \subset (\Sigma_k \cup \Pi_k) \subset \Delta_{k+1})$$

Therefore

$$\Delta_k = \Pi_k$$

$$\to \Delta_k = \Pi_k \subset (\Sigma_k \cap \Pi_k) \subset \Sigma_k \subset (\Sigma_k \cup \Pi_k) \subset \Delta_{k+1}$$

$$\rightarrow \Pi_k \subset \Sigma_k$$

But this result contradict mentioned above 13.

Therefore, this theorem was shown than reduction to absurdity.

Theorem 15. $\Sigma_k \subsetneq \Delta_{k+1}, \Pi_k \subsetneq \Delta_{k+1}$

Proof. To prove it using reduction to absurdity. We assume that $\Sigma_k = \Delta_{k+1}$.

Mentioned [2] Theorem 6.10,

$$\forall k \geq 1 \ (\Delta_k \subset (\Sigma_k \cap \Pi_k) \subset (\Sigma_k \cup \Pi_k) \subset \Delta_{k+1})$$

Therefore

$$\Sigma_k = \Delta_{k+1}$$

$$\to \Delta_k \subset (\Sigma_k \cap \Pi_k) \subset \Pi_k \subset (\Sigma_k \cup \Pi_k) \subset \Sigma_k = \Delta_{k+1}$$

$$\rightarrow \Pi_k \subset \Sigma_k$$

But this result contradict mentioned above 13. Therefore $\Sigma_k \subsetneq \Delta_{k+1}$.

We can prove $\Pi_k \subseteq \Delta_{k+1}$ like this.

Therefore, this theorem was shown than reduction to absurdity.

References

- Michael Sipser, (translation) OHTA Kazuo, TANAKA Keisuke, ABE Masayuki, UEDA Hiroki, FUJIOKA Atsushi, WATANABE Osamu, Introduction to the Theory of COMPUTATION Second Edition, 2008
- [2] OGIHARA Mitsunori, Hierarchies in Complexity Theory, 2006
- [3] MORITA Kenichi, Reversible Computing, 2012