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Abstract: We develop in detail, the classical madignmonopoles of Yang-Mills gauge theory,
and show how these classical monopoles, when athlyging Gauss’ / Stokes’ theorem, appear
to confine their gauge fields, and also, appedbeaccomposite objects. Of course, baryons,
which include the protons and neutrons at the heartuclear physics, also confine their gauge
fields and are similarly-composite objects. Thises the question whether the magnetic
monopoles of Yang-Mills theory are in some fash&ated to the observed physical baryons.
Because this exposition is classical, we also dist¢he extent to which classical field theory can
be used to effectively analyze baryons and conBngrand what would need to also be
considered in a complete quantum field development.
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1. Introduction: The Field Strength Curvature Tensor in Gauge Theory,
and a Review of Gauge-Covariant Derivatives

In 1918, [1], [2] Hermann Weyl first conceived tltea that electrodynamics might be
unified with Einstein’s recently-developed geometview of gravitation [3], by analyzing a
“twisting” of vectors under parallel transport toeasure the geometric curvature of a gauge
space. While Weyl first conceived of this as aldgauge” symmetry, in 1929 [4] he corrected
his original misconception into the modern viewadbcal “phase” symmetry. Notwithstanding,
the original misnomer “gauge” is still used to nakiveyl's theory, perhaps as a reminder to
posterity that even the most foundational physdilcabries are sometimes properly-conceived in
the abstract but misconceived in some detailsrteat! to be worked out over time.

In gravitational theory, the Riemann curvatureswrR’,,, may of course bdefinedas

v
a measure of the degree to which the gravitatigrwll/ariant derivatived., is non-commuting
when it operates on an arbitrary vecwy, that is, as R%,, A s[aw,a;v] A . What Weyl in
essence found, is that the antisymmetric, secamki feeld strength tensor / bivectds,, which
appears in electromagnetic theory may be definedrasasure of the extent to which the gauge-
covariant derivativeD,, is not self-commuting when it operates on an eabytscalar fieldg .

That is, F,, may bedefinedanalogously toR’

F as a type of curvature in “gauge space,” by:

auv

F.¢=i[D,.D,]¢=iD,(D,¢)-D,(D,4). (1.1)

It is instructive to review how the explicit relatiship between the field strengtf), and a
gauge / vector potenti@,, then arises from this definition (1.1).

Gauge-covariant derivatives, like covariant demxed in Riemannian geometry, take a
form that depends on the representation of thecolbfey act upon. Taking the gauge field as
the defining (fundamental) representation, the fofrthe gauge-covariant derivatives in (1.1) is
D¢, =0,-iG,, where the subscriptelel denotes “fundamental.” But in other situationsbto
reviewed, it is a bit more complicated than thi@n general, for compactness, we scale the
interaction charge strengthinto the gauge field vi@G, - G,. Thisg can always be extracted

back out when explicitly needed.) So, applyibg, =d,-iG, in (1.1), we may write:

iD., (D¢, ¢) =i (9, -iG,)((0, -iG,)#)=id, (3,4 -G ,$)+G , (3,4 -G, ¢)

=i0,0,4+90,G,¢+G,0,4+G,0,¢-iG,G¢
as well as the reverse-signed, transposed-indexed:
-iD, (D¢ ,8)=-19,0,4-0,G,$-G,9,6-G,0,4+iG,G,4. (1.3)
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Using (1.2) and (1.3) in (1.1) then yields:
F.¢=i[Ds,.D, |¢ =D, (Dr¢)-De, (D #) =i [9,.0,]4+0,6,4-1G,G,|¢. (1.4

In flat spacetime whereR’,,, A =[d,,,9,]A =[0,,0,] A =0 and removing the arbitrary
operand fieldg , the above becomes the more familiar:

Fu =016y _i[Gu'GVJ:(a[ﬂ_iQN)GM =DnG (1.5)

Again, D, ,=0,-iG, above is the gauge-covariant derivative when i apon gauge field
objects G, in the fundamental representation, but in genewalen operating on other
representations, it is a bit more complicated.

If the gauge fields commute, ie., G, G [=0, then (1.5) reduces to
F,=0,G,=0,G -9,G, and the gauge theory is known asadrelian gauge theory. If the
gauge fields daot commute,[G,,G, |# 0, then (1.5) becomes the field strength fonca-

abeliangauge theory, often also referred to as Yang-N#]gjauge theory.

Using differential forms, we may write the abelfeid strength as:

F=4F,dxOdX = F,d¥ dk=(d, G-9, G) dk dx=d, S O bx c (1.6)

In general, the wedge produdk” 0 dX = dx dk— d% d‘k:[ dXk d)ﬂ is antisymmetric under

adjacent index interchange, and the differentiainants are anticommutingx”dxX = - dx dX.
So, by inspection from (1.5) in view of (1.6), then-abelian field strength is:

F =dG-i[G,G]= DG. (1.7)

Here, compacted into differential forms, the gauageariant derivative is not separable from its
operand as wa®, , =9, -iG,when operating orG, in (1.1) to (1.5), but rather involves the

commutator ofG with the operand which, in this case, just so leagpo also b&. This in fact
reveals the more-general form of the gauge-covadarivative as we shall review next, and so
we have removed tHe subscript

Now, focusing on non-abelian gauge theories,m@duce a set of Hermitian generators
t' =t" which form a closed group under multiplication \[ié,t" } =if *t* , where f'™ are the
group structure constants and are antisymmetriemutite transposition of any two adjacent
indexes. For any simple group SU(N), the intesyahmetry indexes, j k =1.N*-1. We
may then definé=,, =t“F*,, andG, =t'G, and use these in (1.5) to expand:

3
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F, =t‘F*, =9,G,-i[G, G |=t9,G, -it.t]|G,G, =t3,C,+ ftc, G, (18)

HV]
Factoring outt® this simplifies to the recognizable:
k — k ijk ~i j
F*,=0,G" + "G, G,. (2.9)

Now, let us momentarily consider the situation wehthet' are one half (%) times the

three (3) Pauli spin matrix generators of SUE) 10", so thatf™ simply becomes the rank-3
Levi-Civita tensor, f* _ &% which again, is antisymmetric in all indexes. spacetime, if we
were to writee™ A'B' for any two vectorsA' and B’ and were to regard j k as indexes for
the spacedimensionsx, y, z then, for examples*AB = A B - AZBlz(AXB)3 is the z-
component of the cross produ&t<B, and more generall™ A B =(A XB)k. But of course,

the i, j,k indexes in (1.9) are not space indexes, buirdeznal symmetryndexes. So rather

than using the cross-product symbot™“which is used for vectors in physical space, and
because we still wish to be able compactly reptetbenfundamentally-antisymmetric character

of f% in the form of a “cross-like product” in interngymmetry space, we instead employ the
wedge symbol f1.” Although Giﬂ andG’, in (1.9) both are gauge fiel@® they have different

spacetime indexeg and v, so we may still think of them as two differenctars just like A

and B! above. So analogously te"*AB' = (A><B)k in the three space dimensions of
spacetime, we writef “G' G/, :(Gﬂ 0 q)k in internal symmetry space. Then, we use this in
(1.9) to write F*, =0,,G",, +(Gﬂ Dq)k. Because the general form of this equation hids

SU(N) for each of the indexds=1...N* - 1, we may remove thieindex throughout to write:

F.=0,6,+G,UG. (1.10)

[u=V]

Then, compacting (1.10) to differential forms aglir6), we have:

F=1F,d¢Odx = F, d¥ dk=(d, G-9, G+ GO ¢ dx dx

: (1.11)
=0,G,d¥0dX+%£ GO GdkO dk= dG @ G( ¢ G) & D

Now, Jaffe and Witten point out at pages 1 and [Bpthat:

“If A denotes the U(1) gauge connection, locally a one-fon space-time, then
the curvature or electromagnetic field tensor s tho-form F =dA [see (1.6)
above], and Maxwell's equations in the absence h@rges and currents read
O=dF=d*F.
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They then proceed to explain that in “non-abeliange theory”:

“at the classical level one replaces the gaugemtéd) of electromagnetism by a
compact gauge group G. The definition of the clumea arising from the
connection must be modified t6 =dA+ A A and Maxwell's equations are
replaced by the Yang—Mills equatior®3=d,F =d,* F, whered, is the gauge-
covariant extension of the exterior derivative.”

Equation (1.11) is preciselir =dA+ A A with the gauge field simply renamed frohto G,
and what Jaffe and Witten write above is a condgrsglanation for what we have laid out
above in equations (1.1) through (1.11). When sethe generalized one-foilgand two-form

F without any particular generator sét then the differential forms equation is writtes a
F =dG-i[G,G in (1.7). But when one does introduce a set ofigrgenerators' and the
antisymmetric structure contestart¥ - [, the differential forms equation & =dG+ GO G

in (1.11). To display the particular=1..N? -1 field components for a compact simple gauge
group SU(N), this equation i§' =dG +(GO G)i. So F =dG-i[G, G| (commutator form)
and F =dG+ GO G (wedge form) are just alternative ways of saying same thing. But a
benefit of the wedge form is that we may wrffe=(d + GO) G= DG so as to define a gauge-
covariant derivativeD =(d+G0O) (=d,) in a form which is fully-separable from its opedan

and which is generally applicable any and all operands We will find it useful in general to
develop both these forms.

Indeed, the reason we have gone through the eredfi (1.8) through (1.11), is to
explore the question of how one generally perfordhs= D, independently of its operand,

“where d, is the gauge-covariant extension of the extererivdtive.” That is, we want to be

able to generalize the taking of these derivatiaesl especially, to ascertain the correct way to
derive the equation§J =d,* F=D" F and P=d,F= DF which specify the electric and

magnetic three-form charge densities and P .

Specifically, as already stated, if we write eqoratf1.11) asF =(d + GO) G= DG with

D=(d+G0), we find thatD =(d+G0) is in fact the generalized definition of the gauge-

covariant derivative which tells us how to takeh@grank gauge derivatives, independent of the
representation of the operand Thus, the Maxwell equations for Yang-Mills thgorn

differential forms, where¢' and f™ are specified, with indexsuppressed, for SU(N), where we
use the duality operator *, and with=dG+ GO G, are merely thé =1..N? - 1 equations:
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*J=D*F=D" DG=(d+GOf F=d F+GH F=%d (dG G ¢+ & ( d& G |
=d*dG+ ¢ (GO Q+ GF d& GY ( G ¢

P=DF=DDG=(d+GL) F=dF+ GO F= d dG & G+ G( d& G 5
=ddG+d(GO G+ GJ d& G1 G G

(1.12)

The duality operator was first developed by Reifichlater elaborated by Wheeler [8], and it
uses the Levi-Civita as laid out in [9] at pages387

In this paper, we shall develop the classical Yitigs magnetic monopol® in detail,
and shall show how this monopole, when analyzedgu8€auss’ / Stokes’ theorem, appears to
confine its gauge fields. Of course, baryons, Whinclude the protons and neutrons at the heart

of nuclear physics, also confine their gauge fieldSo this raises the question whether the
magnetic monopoles of Yang-Mills theory are in sdashion related to baryons.

2. Classical Field Equationsfor the Yang-Mills Magnetic Monopole

To further develop the monopok first, akin to the derivation (1.1) through (1.®%)e
calculate the commutator:

[D,.F,, |#=D,(F,¢)-F.D,¢=(0,-iG,)(F.8)-F, (9, -iG )P

(2.1)
_aUF/.(V¢+ )74 0'¢ IGUF,W¢ v U¢+|va 0’¢ aa ,uv¢ II:GLT’ /.1v:|

We canuse D, =D, =d,-iG, in the above, precisely because this is a comantahd so
the gauge field will be commuted with the operafg, as in F=dG-i[G,G] aka.
F =dG+ GOG. Removingg we see that (2.1) contains the useful identity:

[D,.F, ]=0,F, -i[G,.F, |=D,F, (2.2)
Then, combining (2.2) with (1.1) in the forf, =i| D,,D, |first yields:
D,F, =i|D,,[D,.D,]] (2.3)

containing an anticommuting succession of gaugextant derivatives. This in turn means that
the index-cyclical combination:

P, =D,F, +D,F, +D,F, = ([ [0,.0,]]+[D,[D,.D,]]+ V,[DJ,DNH)=O, (2.4)
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by the Jacobian identity. So we see thatYheg-Mills magnetic monopoles vanish, just like
those of abelian gauge theorgonsequently, we can appdhdg 0 from (2.4) to (1.12), and so
write P=DF =DDG=0.

But there is another zero in the monopBlef (1.12), and that is the zero which comes
from ddG=0. This is rooted in the geometric relationstdd =0 of exterior calculus in
spacetime: “the exterior derivative of an extederivative is zero.” In general in this paper, we
shall highlight the zero ofld =0 to distinguish it from the (not highlighted) zesbthe Jacobian
identity DDG =0 which is established by the combination of (1.42) (2.4). The highlighted
zero indd =0 is a “subset” identity contained within (1.12), iallnwe may now rewrite as:

0=P=DF=DDG=0+d(GOG+ GI dG+ GI GJ C. (2.5)

Of course, in an abelian gauge theory such as Miisveéectrodynamics wherEGﬂ, GV] =0 so
that F, =9,,G, in (1.5) thus F =dG, the Magnetic monopole densities are themselves

(1]
specified by P, ;.,= dF = ddG=0. This means that the Yang-Mills monopole densit{2.5),

although it too is equal to zero, contains a nunofberon-zero terms embedded within, as well as
the termddG=0 which we associate with the vanishing monopoleslettrodynamics. This
will be very important to keep in mind as we deyekhis monopole, because this “abelian
subset” embedding oldG=0 within (2.5) will be directly responsible faonfiningthe gauge
fields within the Yang-Mills monopole, and will ldaus to consider whether there is some
connection between Yang-Mills monopoles and baryons

Next let us ascertain the commutator form for ti@nopole (2.5). Via the exact same
type of calculation we used to turn (1.5) a.k.a7)lnto (1.11), one may demonstrate that

P=DF =dF-i[G,F] is equivalent toP=DF =(d+GL) F. So, combining the former,
P=DF =dF-i[G,F], with F=DG=dG-i[G G aka. F=DG=(d+G0L)G from (1.7)
and (1.11) , we may translate (2.5) into the conatautexpression:

P=DF=DDG=dF-i[G F|=d(dG- {Gd)- | GdG | G §]
=ddG-id[G G- { G d§-[ G G §¢] . (2.6)
=0-id[G,G]~i[G,dg-[ G[G d]|=0

Let us now expand (2.6) above into tensor compisnemm-by-term, and then do some
reconsolidation of terms. Férand -id[G, G| we have:

P=4P, df Od¥ 0 dk= P, dk dx d, 2.7)

Pcruv
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-id[G,6]=-14i(9,[G,.G ]+9,[G.G]+3,[ G, G]) d& D oD dx
=-1i0,[G,.G, |d¢ Odx' D d%=-3d,[ G, G| d% dk dx=-60},( G G dx dx d
6|(6 G,G,+G,0,G)dX df dk=-6(0, G G- (I, § dx dx tix
G,0,G,) d¥X O dX Ddx’ . (2.8)
=—1j (a[(,c;ﬂ]c; +9,G,G,+9,G, G) d€ O d¥ D d&

+1i(G,0,G +Gﬂa[veoj+qqaq,)d>m d& 0 d

[u™=V]

=-idGG+iGdG

The sign reversal in the third line of (2.8) regethe identityd[G, G] = dGG- GdC, in contrast
to scalar product rule (alb) = dado+ &Jdt. For-i[G,dG]| we further have:

-i[6,d6]=-4i([G,.9,G ]+[ G,.0,G ]+[ G.0, G]) dk O oD dx
=-4i[G,,0,G, | Od¥' D dx=-3] G.,0, G| d% dk dx
=-3G,9,G,-9,(GG,)|df dX dk=-3 GI, G- @, 6-0, GG dx dx t

=-3[G,0,G,-G,0,G -0,G G |dXdX'dX =38, G, G d% dk dx
1i9,G,G, dx’ 0 d¥' O dX

i(0,6,6,+0,G,G,+9,G,G,) df O d& O dk
(0,6, G,+9,G,G,+9,G, G) d€ 0 dk 0 d&

(=]

(2.9)

1 1 1
N N w||_x I\J|
- le

o
®
®

in which theGdG cancel out by a similar sign reversal in the tlaind fourth lines. Finally:

-[e[e.q]=-4(6.[G.G]]*[ G [ G. 6l]+[ &[ & §]]) &0 @ &
=-4[G,.[G,.G||dX 0D dk=-3 G[ &, ]| dx dx tix . (2.10)
=-6[G,,G,G | dX dX dk=-12G ¢ G dx dx tx

In (2.6), we then use (2.7) to (2.10) adfiG, G| = dGG- GdC from (2.8) to restructure, thus
reducing and consolidating the monopole as mugch pgssible, into:
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P=0-id[G,G]-[G dd-[ G[ G §]
=0-idGG+iGdG+4 idGG-[ G[ G §]
=0-1idGG+31iGdG+1 IGAG-[ G G G
=0-1id[G,G]+1iGdG-[ G[ G 4]=0

(2.11)

Now, of central interest in the discussion to fallothe monopole contains a
Gauss/Stokes-integrable terd{G, G| (and the0) together with the two non-integrable terms

GdG and|G,[G,G]|. From (2.8) we may further extract:

iGdG=1i(G,0,G,+ G2, G, + Gd, G) dk 0 dkO dx
=1iG,0,G,d¥ D d¥ [ d¥ =3iGo,, G d% dk =6 i@, G dx x 't

[Vl

(2.12)

So expanding thé result in (2.11) back into tensor form making we(2.12) and some
intermediate results within (2.8) and (2.10), wéadin

=P, d¥ dX dk
=0-1id[G,G]+1iGdG-[ G[ G §] : (2.13)
=0+(-39,(G,G,)+3G,0,G, ~12G,G,G ) df d¥ dk=C

Finally, it will be of great interest to use GausStokes Theoren{[dX =¢ X for any

differential form X, to ascertain the classical surface flux assatiatéh this non-abelian
magnetic monopole. Here, we work from (2.13) taevri

[P =[] P, o a o

=0-3[[o,(G,G,)dx dx dx +[[[(31Go, G-12G G ¢ dx dx dx
=0-3¢pG,G de”d% +[[[(3iG0, G-12G G G) dk dk dx
=0-2ifp4[G,.G, Jdx D dx
+3i[][4(6.0,6,+G,3,G, + G4, G ) df 0 dx D dx
-Ts(e.[ena]* 616 6]+ 6 6. 6]]) ko @0 @
=<ﬁ.f>dG-%'<.fJS[G’ cl+iiffjedc-[[[[ 6 G §]=
-o-3ifj(e.cJ+41[[Joae-[[[[ ol & d] -

(2.14)
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In the final two lines above, we have usﬁrJO:_mddG:@ dG=0, which is the Gauss’ /

Stokes’ integral form of the exterior calculus teaship dd =0. By writing (2.14) using the
not-highlighted O of the Jacobian identity (2.4) as

{pdc-2ifp[G. 6] =-1i[[[ cde+[[[ G[ G G]
=0-3ifp[e.6]=-4i[[[cde+[[[[c[G 4]’

we clearly see the relationship between what idainad within the three-dimensional volume
”j and what net flows through the closed two-dimemslimmrface# enclosing that volume.

Now, we wish to interpret what is being said byl 6.

(2.15)

3. Confinement of Gauge fieldswithin Yang-Mills Magnetic
Monopoles

We start with the termﬁ) dG =0 which is embedded in (2.15). In electrodynamics,
Gauss’ law for magnetism and Faraday’s law are botttained within:

[[[P=[[]dF=][f ddc=dp F=dp F* a5 dx=]p dc-o. (3.1)

At rest, this tells us that while magnetic fieldsyrflow across some surfaces, there is never a
net flux of a magnetic field through anglosed two dimensional surface. In the form
P =dF = ddG=0, this simply says there are no observed magnbticges. So how might we

interpret the presence gideG =0 asone of the termamong a number afon-vanishingerms
in equations (2.14) and (2.15) for the Yang-Millagnetic monopoles?

To find out, let us return to th@on-abelian, Yang-Milldield strength (1.5) and rewrite
this using the differential forms equation:

fpF=4fpF. o Ddx =44pa,, G, dX O dx-% 4p[ G, G| & o

={pdc-ifp[G ¢]=0-iff[G G

We may then use (3.2) to rewrite (2.15) as follows:

{pF =-ifp[c.6]=-1i[[[cdc+2([[[ c[ G d]# 0. (3.3)

So if (3.1) tells us that there is no net flux adignetic flux over of any closed surface in abelian
electrodynamics, (3.3) tells us that theésea net flux across closed surfaces of whatever the
analogis to a magnetic field, in Yang-Mills gauge theory

(3.2)

10
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Now, we have a puzzle here: any time we see a #’h‘ﬂ, we know that we are talking

about a magnetic monopole, and that whatever iggwd within the associated volume integral
is a magnetic charge. Indeed, (3.3) may be thooglasthe very definition of a magnetic
charge which in (3.3) isnot zero. At the same time, we found in (2.4) a.K2a6) that
P=DF =DDG=0, which is to say, that the magnetic charge densitgero, just as it is in

electrodynamics. So iP=DF =DDG=0 but <ﬂ>F #0, how do we reconcile the former

equation which says the magnetic charge densigrns with the latter equation which says there
is a non-zero magnetic charge?

One way to think this through, is take the Yangiddlectric charge field equation (1.12)
*J = D* F, revert this (merely for pedagogic simplicity) ite abelian form*J = d* F which
contains Gauss’ law for electricity, and then ap@wauss’ / Stokes’ Theorem to obtain

fpF=[[[+3 (:J'_[ g F). Just asaﬂ')F in the rest frame represents a net flux of magneti

field through a closed surfacqﬁﬁ*F in the rest frame represents a net flux of eledield
through a closed surface. And th#*F then becomes the very definition of thkctric
charge. But here, electric charge density is @efiby*J inside IH*J , While in (3.3) magnetic
charge density is defined by1iGdG+%[G[G d] inside -4i[[[cdG+2[[[[G[G d].
That is, we have a magnetic charge densi%deG+—§[G,[G G]] which we need to think
about in comparison to an electric charge density

The answer to this puzzle is that the magnetic gehadensity isnot the P of
P=DF =DDG=0, it is the P'E—§iGdG+§[G[G q] in (3.3). The magnetic charge as

defined by the enclosure Withi@F is a three-form just like*J and P, but it is not an
elementarythree-form. Rather, it is a three form constrdcke®m -1iGdG which includes
some dynamical behavior of the gauge fields ingi@evolume integral, and fropé[G,[G, G]]

which represents pure gauge field amalgams subgistithin the volume integral. That is, the
magnetic charge is eomposite three-forrbuilt out of gauge fields, rather than an elemegnta
three form like the abelian electric charge. Injeee may take this a step further:

In electrodynamics, the three-fortd which in tensor language is related to the electri
source current density vectdr” by *J,_, = (—g)'Ss J9, is atrue electric sourcavhich then

aouv
gives rise to gauge fields in abelian gauge thetay*J =d* F=d dG, and per (1.12), via
*J=D* F=D* DG in Yang-Mills gauge theory. On the other hand,e th
P'= —%iGdG+—§[G[ G G]] in (3.3), if written as a tensor (see (2.14)) andverted over to a

one form via the same general identity’ :(—g)'5£ P, will result in afaux magnetic

auv aouv
sourcewhich is constructed solely out of gauge fields which themselves are sourced by
*J=D* F=D" DG. So, there is only or@lementarysource], not two sourced andP. From
this one sourcéd, gauge field$s are emitted. From these gauge figBjsa faux magnetic source

11
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P'=-1iGdG+2[ G[ G d] is assembled. And finally, from this faux magaetiource,

<ﬂ> F #0 flows across closed surfaces as laid out in (3®)e electric sourcd”, whether in

abelian or non-abelian gauge theory, has its owlepandent existence, and it is the source of
any and all gauge fields. But the faux magnetiore® charge in (3.3) haso independent
existenceapart from the gauge fieldd. Rather, it is built out of the gauge fieldSo the Yang-
Mills monopoles are composite, not elementary, @bjeAnd, by the way, so too are baryons.

Having resolved the puzzle of how to recondile= DF = DDG =0 with SEJSF 0, we
next pose the following question: what happenthéototal fluxgﬁﬁ F in (3.2) under the local

gauge-like transformatioff®’ - F*'=F* —-9"G* ? In differential forms, this transformation
is F - F'=F -dG, which means, precisely becat@de =0, that:

fpF - fpF =¢p(F-de)=4p F, (3.4)

So, the net surface flux in the monopole equat®B)(is invariant under the transformation
F* o F#'=F* -9"G*, which means that the gauge fieldnist observablawith respect to

net flux across closed surfaces of the monopolee dbelian expressiorﬁ) dG =0, expanded to
show the Riemann tensor, may be written#sF :ﬁ)dG:”_[ R, G dX dX dk=0, and
explicitly shows how individual gauges fieldS, couple with the spacetime geometry as
represented byR',,,. This represents absenceof monopoles in electrodynamics, and yields

the symmetry principl€3.4) for the behavior of magnetic monopole monegpan Yang-Mills
theory generally.

But if the non-zero flux in the Yang-Mills monogoéquation (3.3) is invariant under the
gauge-like transformatiofr*’ — F*'=F* —-9“G* which means that the gauge fiel@¢ are
not net observables over a closed monopole surfasewould seem to suggest that the Yang-
Mills monopole inherently confine their gauge feldThis is another hint that the monopole
equation (3.3) could be the classical field equtar a baryon, in integral form.

The final point is that because the faux magnstierce P' = -1iGdG+2| G[ G ] is

constructed out of gauge fields, and because thegegdields are in turn sourced by
*J =D* F =D DG, and because electric sources may be representedtor form in terms of

Dirac fermion wavefunctiong/ via J* =y*“y , it should be possible in principle, and would
certainly be desirable in practice, to rewrite thex magnetic source%iGdG+§[G,[ G G]] in

terms of thetrue source currentsl” from which they arise, and then to rewrite thé = y“y
in terms of their fermion wavefunctions. The upshot of all this, is that whi{ﬁ F in(3.3)is

presently expressed in terms of gauge fieldﬁas (G) , once we obtain the gauge fieIGie( J)

12



Jay R. Yablon

in terms of sources and the sourcd§y) in terms of fermions, we will end up with

#F (G(J(l/l))) Then, we would need to apply the Exclusion Rplecof Fermi-Dirac-Pauli

statistics to maintain thg in distinct quantum eigenstates, which would gigehe opportunity,
for example, to introduce a color degree of freedondo so and thus make a connection to

SU(3x Chromodynamics, witk@F(G(J(wR,wG,wB))). So this means that the Yang-Mills

monopoles are not only composite objects, but angposite objects which contain fermions and
gauge fields, and that these fermions will needitey some form of quantum exclusion, which
may include SU(3. And, by the way, all of the same the same is wlibaryons, and as to
fermion exclusion, quarks.

It is for these reasons, that it may be fruittukentertain the prospect that (3.3) is not only
the classical field equation for a Yang-Mills matinenonopole, but may be synonymous with
the classical field equation for a baryon.

4, Can a Classical Field Equation Really Teach us Anything Useful about
Confinement and Baryons?

Given that (3.3) is a classical field equation, mvast pose the question whether such a
classical equation can really have anything ofregeto say about baryons and confinement,
which have many features that arise only out ointiwa field theory. For example, it might be
observed that a classical analysis which seeksstusks baryons and confinement in no way
takes account of quantum field theory with operatdued fields. This, it might be argued, is
despite the fact that there are many reasons tevieetonfinement and the existence of a mass
gap are related to the running of the coupling oriswhich is an inherently quantum effect.

Certainly, (3.3) above is a completely classicaldfiequation, not yet taking into account
any aspects (or the need to prove existence) anatnvial relativistic quantum Yang—Mills
theory on®* [6]. And, of course, there are many reasons liev®that confinement is related to
the running of the strong coupling constant, whtan inherently quantum effect, and which
manifests in asymptotic freedom at “ultraviolet’eegy and infrared slavery at low energy [10].
However, just like electrodynamics, Yang-Mills gautpeory has a classical formulation and (is
expected once quantum Yang-Mills existence is prp¥e have) a quantum field formulation.
This means that (3.3) may reveal inherently-confimattributes for the magnetic monopoles of
Yang-Mills gauge theory which appear at the cladslevel and which are rooted in the
relationshipdd =0 of Riemannian spacetime exterior geometry, as agelhherently-composite

attributes expressed b@g F (G(J(l/l))) That opens up the question how these sameud#sb
translate through to quantum Yang-Mills theory.

Specifically, if in fact (3.3) for #F is an equation for baryon-like gauge field

confinement properties of Yang-Mills magnetic mool@s based upon their abelian-subset
behaviors rooted in the classical equataiG=0 and its integral fornﬁ) dG=0, and if the
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composite faux magnetic chargge = —%iGdG+—§[G[ G GH in (3.3) in some way represents a

baryon charge, then the classical baryons that dvbel represented by (3.3) do not suddenly
become “not baryons” in quantum field theory. Raththere wouldwo sets of behaviorthat
need to be studied: a) how these monopoles belmageciassical formulation, which includes
(3.3) and (3.4) above, and b) how these monopaldgianally behave in quantum field theory.
So if we can demonstrate that the classical behsappear to be confining and appear to
involve a non-elementary, composite charge thdtides some amalgam of fermions and gauge
fields, one should expect that this will “bleedtdhgh to yield quantum amplitudes and running
couplings and color symmetries that buttress, efy,dhese classical behaviors, just as abelian
magnetic monopoles do not suddenly appear and axdmagnetic fields do not suddenly net
flow through closed surfaces, once one goes frassatal to quantum electrodynamics.

Further, one might take the perspective that dhesefor confinement and baryon
compositeness is the classical field equation (8B)a Yang-Mills monopole which has the
symmetry (3.4), and that one of th#ectsof this is that in a quantum field treatment oésh
baryon monopoles, the strong coupling will weaken dltraviolet and strengthen for infrared
probes. And, it can be argued that this is a nmateral approach than simply trying to figure
out how to “glue” together disparate quarks intoybas without knowing to begin with what
sorts of covariant objects baryons actually arespacetime Indeed, if the hints of baryons and
confinement that arise in (3.3) and (3.4) are abyrihen we would need to start thinking of
baryons as third-rank antisymmetric tensors anated| three-forms in spacetime governed by
the classical equation (3.3) with the symmetry }3&nd then see how that connects to
everything else we know about baryons. The “lgjlae together the quarks” approach,
notwithstanding many opportunities to do so, has flar failed to explain why QCD “must have
‘quark confinement, that is, even though the thasrgescribed in terms of elementary fields,
such as the quark fields, that transform non-tiliviander SU(3), the physical particle states—
such as the proton, neutron, and pion—are SU(3riamt.” ([6] at page 3.) This SU(3)-
invariance ofphysical particle statess a symmetry principleand while not every classical
symmetry carries through to quantum field theooy, éxample, the chiral anomaly (e.g., [11],
section 1V.7), there is no apparenpriori reason to believe that whatever classical symesgetri
are found for these monopoles (such as (3.4)) evilly manifest in the classical but not the
guantum field theory. At the very least, the gioesfor study becomes “do these symmetries
carry over from classical to quantum field theaagd if not, why not, and in what manner are
they altered?”

Additionally, approaching confinement starting frantlassical treatment of baryons has
validating precedent in the MIT Bag Model reviewagde.g., Error! Bookmark not defined.],
section 18. Irrespective of the specifics of amytipular bag-type model of confinement, the
MIT Bag Model very correctly makes one very impattgoint: focus carefully on what flows
and does not flow across any closed two-dimensismdhce. And it does so using treassical
formulation of Gauss’ / Stokes’ theorem. This iswthe integral form of Maxwell’'s equations
in classical field theory may well be a very selesgiarting point studying confinement, because
from the Bag Model viewpoint, confinement is alloab what passes and does not pass through
closed surfaces containing the extended field gondition within the baryon volume.
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Finally, it is certainly unrealistic to expect thatclassical-only treatment of baryons
based on Yang-Mills magnetic monopoles will explalihof the observed phenomenology of
baryons. It cannot and will not. Only a propeaquum field treatment may be expected to do
so. Yet, at the same time, that there are someriaqt physics insights to be gained even from
a classical treatment of the Yang-Mills monopoleattpn (3.3). And, we know that if we can

fully develop a classical theory on its own terrasd then obtain its Lagrangian densﬁﬁqo)
and actionS(¢) in terms of its fieldsp, that we can convert over to a quantum field theda
the path integratior? :I quexpijfd“xzj DpexpiS. While carrying out the path integration

of a non-linear theory such as Yang-Mills gaugeotiigand especially gravitational theory) is
still an exceptionally challenging problem, thaedaot mean one ought not make the effort to
find the correct road for doing so. This begindihging the right classical theory to quantize.

So what is most important is for researchers iniglar baryon and nuclear theory to be
aware of the possibility of modelling baryons asny#@ills magnetic monopoles to gain
possible insight into confinement and related Q@Bmetries, so that this possible connection
can be further developed, vetted, and empiricalbtedd by anyone who finds it interesting or
promising.
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