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Abstract: We develop in detail, the classical magnetic monopoles of Yang-Mills gauge theory, 
and show how these classical monopoles, when analyzed using Gauss’ / Stokes’ theorem, appear 
to confine their gauge fields, and also, appear to be composite objects.  Of course, baryons, 
which include the protons and neutrons at the heart of nuclear physics, also confine their gauge 
fields and are similarly-composite objects.  This raises the question whether the magnetic 
monopoles of Yang-Mills theory are in some fashion related to the observed physical baryons.  
Because this exposition is classical, we also discuss the extent to which classical field theory can 
be used to effectively analyze baryons and confinement, and what would need to also be 
considered in a complete quantum field development. 
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1. Introduction:  The Field Strength Curvature Tensor in Gauge Theory, 
and a Review of Gauge-Covariant Derivatives 
 
 In 1918, [1], [2] Hermann Weyl first conceived the idea that electrodynamics might be 
unified with Einstein’s recently-developed geometric view of gravitation [3], by analyzing a 
“twisting” of vectors under parallel transport to measure the geometric curvature of a gauge 
space.  While Weyl first conceived of this as a local “gauge” symmetry, in 1929 [4] he corrected 
his original misconception into the modern view of a local “phase” symmetry.  Notwithstanding, 
the original misnomer “gauge” is still used to name Weyl’s theory, perhaps as a reminder to 
posterity that even the most foundational physical theories are sometimes properly-conceived in 
the abstract but misconceived in some details that need to be worked out over time. 
 
 In gravitational theory, the Riemann curvature tensor Rσ

αµν  may of course be defined as 

a measure of the degree to which the gravitationally-covariant derivative ;µ∂  is non-commuting 

when it operates on an arbitrary vector Aσ , that is, as  ; ;,R A Aσ
αµν σ µ ν α ≡ ∂ ∂  .  What Weyl in 

essence found, is that the antisymmetric, second rank, field strength tensor / bivector Fµν  which 

appears in electromagnetic theory may be defined as a measure of the extent to which the gauge-
covariant derivative Dµ  is not self-commuting when it operates on an arbitrary scalar field ϕ .  

That is, Fµν  may be defined analogously to Rσ
αµν , as a type of curvature in “gauge space,” by: 

 

( ) ( ),F i D D iD D iD Dµν µ ν µ ν ν µϕ ϕ ϕ ϕ ≡ = −  . (1.1) 

 
It is instructive to review how the explicit relationship between the field strength Fµν  and a 

gauge / vector potential Gµ  then arises from this definition (1.1). 

 
Gauge-covariant derivatives, like covariant derivatives in Riemannian geometry, take a 

form that depends on the representation of the object they act upon.  Taking the gauge field as 
the defining (fundamental) representation, the form of the gauge-covariant derivatives in (1.1) is 

FD iGµ µ µ= ∂ − , where the subscripted F denotes “fundamental.”  But in other situations to be 

reviewed, it is a bit more complicated than this.  (In general, for compactness, we scale the 
interaction charge strength g into the gauge field via gG Gµ µ→ .  This g can always be extracted 

back out when explicitly needed.)   So, applying FD iGµ µ µ= ∂ −  in (1.1), we may write: 

 

( ) ( ) ( )( ) ( ) ( )F FiD D i iG iG i iG G iG

i G G G iG G

µ ν µ µ ν ν µ ν ν µ ν ν

µ ν µ ν ν µ µ ν µ ν

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

= ∂ − ∂ − = ∂ ∂ − + ∂ −

= ∂ ∂ + ∂ + ∂ + ∂ −
, (1.2) 

 
as well as the reverse-signed, transposed-indexed: 
 

( )F FiD D i G G G iG Gν µ ν µ ν µ µ ν ν µ ν µϕ ϕ ϕ ϕ ϕ ϕ− = − ∂ ∂ − ∂ − ∂ − ∂ + . (1.3) 
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Using (1.2) and (1.3) in (1.1) then yields: 
 

( ) ( ) [ ], , ,F F F F F FF i D D iD D iD D i G i G Gµν µ ν µ ν ν µ µ ν µ ν µ νϕ ϕ ϕ ϕ ϕ ϕ ϕ     ≡ = − = ∂ ∂ + ∂ −      . (1.4) 

 
In flat spacetime where ; ;, , 0R A A Aσ

αµν σ µ ν α µ ν α   ≡ ∂ ∂ = ∂ ∂ =     and removing the arbitrary 

operand field ϕ , the above becomes the more familiar: 
 

( )[ ] [ [ ] [ ], FF G i G G iG G D Gµν µ ν µ ν µ µ ν µ ν = ∂ − = ∂ − =  . (1.5) 

 
Again, FD iGµ µ µ≡ ∂ −  above is the gauge-covariant derivative when it acts upon gauge field 

objects Gν  in the fundamental representation, but in general, when operating on other 

representations, it is a bit more complicated.   
 

If the gauge fields commute, i.e., if , 0G Gµ ν  =  , then (1.5) reduces to 

[ ]F G G Gµν µ ν µ ν ν µ= ∂ = ∂ − ∂  and the gauge theory is known as an abelian gauge theory.  If the 

gauge fields do not commute, , 0G Gµ ν  ≠  , then (1.5) becomes the field strength for a non-

abelian gauge theory, often also referred to as Yang-Mills [5] gauge theory. 
 
 Using differential forms, we may write the abelian field strength as: 
 

1 1
[ ]2! 2!F F dx dx G dx dx dGµ ν µ ν

µν µ ν= ∧ = ∂ ∧ = . (1.6) 

 
In general, the wedge product ,dx dx dx dx dx dx dx dxµ ν µ ν ν µ µ ν ∧ = − =    is antisymmetric under 

adjacent index interchange, and the differential elements are anticommuting, dx dx dx dxµ ν ν µ= − .  
So, by inspection from (1.5) in view of (1.6), the non-abelian field strength is: 
 

( ) [ ]1 1
[ ]2! 2! , ,F F dx dx G i G G dx dx dG i G G DGµ ν µ ν

µν µ ν µ ν = ∧ = ∂ − ∧ = − ≡  . (1.7) 

 
Here, compacted into differential forms, the gauge-covariant derivative is not separable from its 
operand as was FD iGµ µ µ= ∂ − when operating on Gν  in (1.1) to (1.5), but rather involves the 

commutator of G with the operand which, in this case, just so happens to also be G.  This in fact 
reveals the more-general form of the gauge-covariant derivative as we shall review next, and so 
we have removed the F subscript. 
 
  Now, focusing on non-abelian gauge theories, we introduce a set of Hermitian generators 

†i it t=  which form a closed group under multiplication via ,i j ijk kt t if t  =  , where ijkf  are the 

group structure constants and are antisymmetric under the transposition of any two adjacent 
indexes.  For any simple group SU(N), the internal symmetry indexes 2, , 1... 1i j k N= − .  We 

may then define k kF t Fµν µν≡  and i iG t Gµ µ≡  and use these in (1.5) to expand: 
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[ ] [ ] [ ], ,k k k k i j i j k k ijk k i jF t F G i G G t G i t t G G t G f t G Gµν µν µ ν µ ν µ ν µ ν µ ν µ ν  = = ∂ − = ∂ − = ∂ +    . (1.8) 

 
Factoring out kt  this simplifies to the recognizable: 
 

[ ]
k k ijk i jF G f G Gµν µ ν µ ν= ∂ + . (1.9) 

 
 Now, let us momentarily consider the situation where the it  are one half (½) times the 
three (3) Pauli spin matrix generators of SU(2), 1

2
i it σ= , so that ijkf  simply becomes the rank-3 

Levi-Civita tensor, ijk ijkf ε→ , which again, is antisymmetric in all indexes.  In spacetime, if we 

were to write ijk i jA Bε  for any two vectors iA  and jB  and were to regard , ,i j k  as indexes for 

the space dimensions x, y, z, then, for example, ( )33 1 2 2 1ij i jA B A B A Bε = − = ×A B  is the z-

component of the cross product ×A B , and more generally, ( )kijk i jA Bε = ×A B .  But of course, 

the , ,i j k  indexes in (1.9) are not space indexes, but are internal symmetry indexes.  So rather 
than using the cross-product symbol “× ” which is used for vectors in physical space, and 
because we still wish to be able compactly represent the fundamentally-antisymmetric character 
of ijkf  in the form of a “cross-like product” in internal symmetry space, we instead employ the 

wedge symbol “∧ .”  Although iG µ  and jG ν  in (1.9) both are gauge fields G, they have different 

spacetime indexes µ  and ν , so we may still think of them as two different vectors just like iA  

and jB  above.  So analogously to ( )kijk i jA Bε = ×A B  in the three space dimensions of 

spacetime, we write ( )kijk i jf G G G Gµ ν µ ν= ∧  in internal symmetry space.  Then, we use this in 

(1.9) to write ( )[ ]

kk kF G G Gµν µ ν µ ν= ∂ + ∧ .  Because the general form of this equation holds in 

SU(N) for each of the indexes 21... 1k N= − , we may remove the k index throughout to write: 
 

[ ]F G G Gµν µ ν µ ν= ∂ + ∧ . (1.10) 

 
Then, compacting (1.10) to differential forms as in (1.6), we have: 
 

( ) ( )1 1
[ ]2! 2!F F dx dx G G G dx dx dG G G d G G DGµ ν µ ν

µν µ ν µ ν= ∧ = ∂ + ∧ ∧ = + ∧ = + ∧ ≡ . (1.11) 

 
Now, Jaffe and Witten point out at pages 1 and 2 of [6], that: 

 
“If A denotes the U(1) gauge connection, locally a one-form on space-time, then 
the curvature or electromagnetic field tensor is the two-form F dA=  [see (1.6) 
above], and Maxwell’s equations in the absence of charges and currents read 
0 *dF d F= = .” 

 
They then proceed to explain that in “non-abelian gauge theory”: 
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“at the classical level one replaces the gauge group U(1) of electromagnetism by a 
compact gauge group G.  The definition of the curvature arising from the 
connection must be modified to F dA A A= + ∧  and Maxwell’s equations are 
replaced by the Yang–Mills equations, 0 *A Ad F d F= = , where Ad  is the gauge-

covariant extension of the exterior derivative.”  
 
Equation (1.11) is precisely F dA A A= + ∧  with the gauge field simply renamed from A to G, 
and what Jaffe and Witten write above is a condensed explanation for what we have laid out 
above in equations (1.1) through (1.11).  When we use the generalized one-form G and two-form 
F without any particular generator set it , then the differential forms equation is written as 

[ ],F dG i G G= −  in (1.7).  But when one does introduce a set of group generators it   and the 

antisymmetric structure contestants ijkf → ∧ , the differential forms equation is F dG G G= + ∧  

in (1.11).  To display the particular 21... 1i N= −  field components for a compact simple gauge 

group SU(N), this equation is ( )ii iF dG G G= + ∧ .  So [ ],F dG i G G= −  (commutator form) 

and F dG G G= + ∧  (wedge form) are just alternative ways of saying the same thing.  But a 
benefit of the wedge form is that we may write ( )F d G G DG= + ∧ ≡  so as to define a gauge-

covariant derivative ( ) ( )AD d G d≡ + ∧ =  in a form which is fully-separable from its operand, 

and which is generally applicable to any and all operands.  We will find it useful in general to 
develop both these forms. 
 
 Indeed, the reason we have gone through the exercise of (1.8) through (1.11), is to 
explore the question of how one generally performs Ad D= , independently of its operand, 

“where Ad  is the gauge-covariant extension of the exterior derivative.”  That is, we want to be 

able to generalize the taking of these derivatives, and especially, to ascertain the correct way to 
derive the equations * * *AJ d F D F= =  and AP d F DF= =  which specify the electric and 

magnetic three-form charge densities *J  and P . 
 

Specifically, as already stated, if we write equation (1.11) as ( )F d G G DG= + ∧ ≡  with 

( )D d G≡ + ∧ , we find that ( )D d G≡ + ∧  is in fact the generalized definition of the gauge-

covariant derivative which tells us how to take higher-rank gauge derivatives, independent of the 
representation of the operand.  Thus, the Maxwell equations for Yang-Mills theory, in 
differential forms, where it  and ijkf  are specified, with index i suppressed, for SU(N), where we 

use the duality operator *, and with F dG G G= + ∧ , are merely the 21... 1i N= −  equations: 
 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( )

* * * * * * * *

* * * *

J D F D DG d G F d F G F d dG G G G dG G G

d dG d G G G dG G G G

P DF DDG d G F dF G F d dG G G G dG G G

ddG d G G G dG G G G

= = = + ∧ = + ∧ = + ∧ + ∧ + ∧

= + ∧ + ∧ + ∧ ∧

= = = + ∧ = + ∧ = + ∧ + ∧ + ∧

= + ∧ + ∧ + ∧ ∧

.(1.12) 
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The duality operator was first developed by Reinich [7] later elaborated by Wheeler [8], and it 
uses the Levi-Civita as laid out in [9] at pages 87-89. 

 
In this paper, we shall develop the classical Yang-Mills magnetic monopole density P in 

detail, and shall show how this monopole, when analyzed using Gauss’ / Stokes’ theorem, 
appears to confine its gauge fields.  Of course, baryons, which include the protons and neutrons 
at the heart of nuclear physics, also confine their gauge fields.  So this raises the question 
whether the magnetic monopoles of Yang-Mills theory are in some fashion related to baryons. 
 
2. Classical Field Equations for the Yang-Mills Magnetic Monopole 
 
 To further develop the monopole density P, first, akin to the derivation (1.1) through 
(1.5), we calculate the commutator: 
 

( ) ( )( ) ( ),

,

D F D F F D iG F F iG

F F iG F F iF G F i G F

σ µν σ µν µν σ σ σ µν µν σ σ

σ µν µν σ σ µν µν σ µν σ σ µν σ µν

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

  = − = ∂ − − ∂ − 

 = ∂ + ∂ − − ∂ + = ∂ −  

. (2.1) 

 
We can use FD D iGσ σ σ σ= = ∂ −  in the above, precisely because this is a commutator, and so 

the gauge field will be commuted with the operand Fµν  as in [ ],F dG i G G= −  a.k.a. 

F dG G G= + ∧ .  Removing ϕ  we see that (2.1) contains the useful identity, with commutator 
included in the gauge-covariant derivative: 
 

, ,D F F i G F D Fσ µν σ µν σ µν σ µν   = ∂ − =    . (2.2) 

 

Then, combining (2.2) with (1.1) in the form ,F i D Dµν µ ν =   first yields: 

 

, ,D F i D D Dσ µν σ µ ν  =     (2.3) 

 
containing an anticommuting succession of gauge-covariant derivatives.  This in turn means that 
the index-cyclical combination: 
 

[ ]( ), , , , , , 0P D F D F D F i D D D D D D D D Dσµν σ µν µ νσ ν σµ σ µ ν µ ν σ ν σ µ        = + + = + + =         , (2.4) 

 
by the Jacobian identity.  So we see that the Yang-Mills magnetic monopoles vanish, just like 
those of abelian gauge theory.  Consequently, we can append 0P =  from (2.4) to (1.12), and so 
write  0P DF DDG= = = . 
 
 But there is another zero in the monopole P of (1.12), and that is the zero which comes 
from 0ddG= .  This is rooted in the geometric relationship dd = 0  of exterior calculus in 
spacetime: “the exterior derivative of an exterior derivative is zero.”  In general in this paper, we 
shall highlight the zero of dd = 0  to distinguish it from the (not highlighted) zero of the Jacobian 
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identity 0DDG =  which is established by the combination of (1.12) and (2.4).  The highlighted 
zero in dd = 0  is a “subset” identity contained within (1.12), which we may now rewrite as: 
 

( )0 P DF DDG d G G G dG G G G= = = = + ∧ + ∧ + ∧ ∧0 . (2.5) 

 
Of course, in an abelian gauge theory such as Maxwell’s electrodynamics where , 0G Gµ ν  =   so 

that [ ]F Gµν µ ν= ∂  in (1.5) thus F dG= , the Magnetic monopole densities are themselves 

specified by  abelianP dF ddG= = = 0 .  This means that the Yang-Mills monopole density in (2.5), 

although it too is equal to zero, contains a number of non-zero terms embedded within, as well as 
the term ddG= 0  which we associate with the vanishing monopoles of electrodynamics.  This 
will be very important to keep in mind as we develop this monopole, because this “abelian 
subset” embedding of ddG= 0  within (2.5) will be directly responsible for confining the gauge 
fields within the Yang-Mills monopole, and will lead us to consider whether there is some 
connection between Yang-Mills monopoles and baryons. 
 
 Next let us ascertain the commutator form for the monopole (2.5).  Via the exact same 
type of calculation we used to turn (1.5) a.k.a. (1.7) into (1.11), one may demonstrate that 

[ ],P DF dF i G F= = −  is equivalent to ( )P DF d G F= = + ∧ .  So, combining the former, 

[ ],P DF dF i G F= = − , with [ ],F DG dG i G G= = −  from (1.7) a.k.a. ( )F DG d G G= = + ∧  

from (1.11) , we may translate (2.5) into the commutator expression:   
 

[ ] [ ]( ) [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

, , , ,

, , , ,

, , , , 0

P DF DDG dF i G F d dG i G G i G dG i G G

ddG id G G i G dG G G G

id G G i G dG G G G

 = = = − = − − − 

 = − − −  

 = − − − = 0

. (2.6) 

 
 Let us now expand (2.6) above into tensor components term-by-term, and then do some 
reconsolidation of terms.  For P and [ ],id G G−  we have: 

 
1
3!P P dx dx dx P dx dx dxσ µ ν σ µ ν

σµν σµν= ∧ ∧ = , (2.7) 

 

[ ] [ ]( )
( )

( ) ( )
( )

1
3!

1
2!

1
[ ] [ ] [ ]3!

, , , ,

,

id G G i G G G G G G dx dx dx

i G G dx dx dx i G G dx dx dx

i G G G G dx dx dx i G G G G dx dx dx

i G G G G G G dx dx dx

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν σ µ ν
σ µ ν σ µ ν

σ µ ν σ µ ν
σ µ ν µ σ ν σ µ ν σ µ ν

σ µ ν
σ µ ν µ ν σ ν σ µ

   − = − ∂ + ∂ + ∂ ∧ ∧   

 = − ∂ ∧ ∧ = − ∂ ∧ ∧ 

= − ∂ + ∂ ∧ ∧ = − ∂ − ∂ ∧ ∧

= − ∂ + ∂ + ∂ ∧ ∧

+ ( )1
[ ] [ ] [ ]3! i G G G G G G dx dx dx

idGG iGdG

σ µ ν
σ µ ν µ ν σ ν σ µ∂ + ∂ + ∂ ∧ ∧

= − +

. (2.8) 
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The sign reversal in the third line of (2.8) reveals the identity [ ],d G G dGG GdG= − , in contrast 

to scalar product rule ( )d a b da b a db⋅ = ⋅ + ⋅ .  For [ ],i G dG−  we further have: 

 

[ ] ( )
( )( )

( )
( )

1
3!

1 1
2! 2!

1
2!

1
2!

1
3!

, , , ,

,

2

2

i G dG i G G G G G G dx dx dx

i G G dx dx dx i G G G G dx dx dx

i G G G G G G dx dx dx

i G G G G dx dx dx

i G G G

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν σ µ ν
σ µ ν σ µ ν µ ν σ

σ µ ν
σ µ ν ν µ σ µ ν σ

σ µ ν
σ µ ν σ µ ν

σ µ ν µ

     − = − ∂ + ∂ + ∂ ∧ ∧     

 = − ∂ ∧ ∧ = − ∂ − ∂ ∧ ∧ 

= − ∂ − ∂ − ∂ ∧ ∧

= − ∂ − ∂ ∧ ∧

= − ∂ +( )
( )

( )
( )

1
3!

1
[ ] [ ] [ ]3!

1 1
[ ] [ ] [ ]2 3!

1
2

G G G dx dx dx

i G G G G G G dx dx dx

i G G G G G G dx dx dx

i G G G G G G dx dx dx

iGdG idGG

σ µ ν
ν σ ν σ µ

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν
σ µ ν µ ν σ ν σ µ

∂ + ∂ ∧ ∧

+ ∂ + ∂ + ∂ ∧ ∧

= − ∂ + ∂ + ∂ ∧ ∧

+ ∂ + ∂ + ∂ ∧ ∧

= − +

 (2.9) 

 
in which the GdG doubles by a similar sign reversal in the third and fourth lines.  Finally: 
 

[ ] [ ]( )1
3!

1
2!

, , , , , , , ,

, , 2

G G G G G G G G G G G G dx dx dx

G G G dx dx dx G G G dx dx dx

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν σ µ ν
σ µ ν σ µ ν

         − = − + + ∧ ∧          

  = − ∧ ∧ = − ∧ ∧  

. (2.10) 

 
In (2.6), we then use (2.7) to (2.10) and [ ],d G G dGG GdG= −  from (2.8) to restructure, thus 

reducing and consolidating the monopole density as much as possible while retaining an 
integrable [ ],d G G  term, into: 

 

[ ] [ ] [ ]
[ ]

[ ]
[ ] [ ]

1
2

1
2

1 1
2 2

, , , ,

, ,

, ,

, , ,

P id G G i G dG G G G

idGG iGdG iGdG idGG G G G

idGG G G G

id G G iGdG G G G

 = − − −  

 = − + − + −  

 = − −  

 = − − −  

0

0

0

0

. (2.11) 

 
Now, of central interest in the discussion to follow, the monopole density contains a 

Gauss/Stokes-integrable term [ ],d G G  (and the 0) together with the two non-integrable terms 

GdG and [ ], ,G G G   .  From (2.8) we may further extract: 
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( )1
[ ] [ ] [ ]3!

1
[ ] [ ]2! 3 6

iGdG i G G G G G G dx dx dx

iG G dx dx dx iG G dx dx dx iG G dx dx dx

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν σ µ ν σ µ ν
σ µ ν σ µ ν σ µ ν

= ∂ + ∂ + ∂ ∧ ∧

= ∂ ∧ ∧ = ∂ = ∂
. (2.12) 

 
So expanding the P result in (2.11) back into tensor form making use of (2.12) and some 
intermediate results within (2.8) and (2.10) with 1

3! dx dx dx dx dx dxσ µ ν σ µ ν∧ ∧ → , we obtain:  

 

[ ] [ ]
( )( )

1 1
2 2, , ,

3 3 12 0

P P dx dx dx

id G G iGdG G G G

i G G iG G G G G dx dx dx

σ µ ν
σµν

σ µ ν
σ µ ν σ µ ν σ µ ν

=

 = − − −  

= + − ∂ − ∂ − =

0

0

, (2.13) 

 
 Finally, it will be of great interest to use Gauss’ / Stokes Theorem dX X=∫∫ ∫�  for any 

differential form X, to ascertain the classical surface flux associated with this non-abelian 
magnetic monopole. Here, we work from (2.13) to write: 
 

( ) ( )
( )

( )
3 1
2 2!

1 1
[ ] [ ] [ ]2 3!

1
3

3 3 12

3 3 12

,

P P dx dx dx

i G G dx dx dx iG G G G G dx dx dx

i G G dx dx iG G G G G dx dx dx

i G G dx dx

i G G G G G G dx dx dx

σ µ ν
σµν

σ µ ν σ µ ν
σ µ ν σ µ ν σ µ ν

µ ν σ µ ν
µ ν σ µ ν σ µ ν

µ ν
µ ν

σ µ ν
σ µ ν µ ν σ ν σ µ

=

= − ∂ − ∂ +

= − − ∂ +

 = − ∧ 

− ∂ + ∂ + ∂ ∧ ∧

−

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫

∫∫ ∫∫∫

∫∫

∫∫∫

0

0

0

�

�

[ ]( )
[ ] [ ]
[ ] [ ]

!

3 1
2 2

3 1
2 2

, , , , , ,

, , , 0

, , , 0

G G G G G G G G G dx dx dx

dG i G G i GdG G G G

i G G i GdG G G G

σ µ ν
σ µ ν µ ν σ ν σ µ        + + ∧ ∧        

 = − − − = 

 = − − − = 

∫∫∫

∫∫ ∫∫ ∫∫∫ ∫∫∫

∫∫ ∫∫∫ ∫∫∫0

� �

�

. (2.14) 

 

In the final two lines above, we have used ddG dG= = =∫∫∫ ∫∫∫ ∫∫0 0� , which is the Gauss’ / 

Stokes’ integral form of the exterior calculus relationship dd = 0 .  By writing (2.14) using the 
not-highlighted 0 of the Jacobian identity (2.4) as: 
 

[ ] [ ]
[ ] [ ]

3 1
2 2

3 1
2 2

, , ,

, , ,

dG i G G i GdG G G G

i G G i GdG G G G

 − = +  

 = − = +  

∫∫ ∫∫ ∫∫∫ ∫∫∫

∫∫ ∫∫∫ ∫∫∫0

� �

�

, (2.15) 

 
we clearly see the relationship between what is contained within the three-dimensional volume 

∫∫∫ and what net flows through the closed two-dimensional surface ∫∫� enclosing that volume.  

Now, we wish to interpret what is being said by (2.15). 
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3. Confinement of Gauge fields within, and the Composite Nature of, 
Yang-Mills Magnetic Monopoles 
 
 We start with the term dG =∫∫ 0�  which is embedded in (2.15).  In electrodynamics, 

Gauss’ law for magnetism and Faraday’s law are both contained within: 
 

P dF ddG F F dx dx dGµν
µ ν= = = = = =∫∫∫ ∫∫∫ ∫∫∫ ∫∫ ∫∫ ∫∫ 0� � � . (3.1) 

 
At rest, this tells us that while magnetic fields may flow across some surfaces, there is never a 
net flux of a magnetic field through any closed two dimensional surface.  In the form 
P dF ddG= = = 0 , this simply says there are no observed magnetic charges.  So how might we 
interpret the presence of dG =∫∫ 0�  as one of the terms among a number of non-vanishing terms 

in equations (2.14) and (2.15) for the Yang-Mills magnetic monopoles? 
 
 To find out, let us return to the non-abelian, Yang-Mills field strength (1.5), namely 

[ ] ,F G i G Gµν µ ν µ ν = ∂ −   , and rewrite this using the differential forms equation: 

 

[ ] [ ]

1 1 1
[ ]2! 2! 2! ,

, ,

F F dx dx G dx dx i G G dx dx

dG i G G i G G

µ ν µ ν µ ν
µν µ ν µ ν = ∧ = ∂ ∧ − ∧ 

= − = −

∫∫ ∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫∫0

� � � �

� � �

. (3.2) 

 
We may then use (3.2) to rewrite (2.15) with an overall multiplication by 23 , as follows: 

 

[ ] [ ]( )1 2
3 3, , , 0F i G G iGdG G G G = − = + ≠ ∫∫ ∫∫ ∫∫∫� � . (3.3) 

 
So, while (3.1) tells us that there is no net magnetic field flux over of any closed surface in 
abelian electrodynamics, (3.3) tells us that there is a non-vanishing net flux across closed 
surfaces of whatever the analog is to a magnetic field, in Yang-Mills gauge theory.   
 

Now, we have a puzzle here: any time we see a term F∫∫� , we know that we are talking 

about a magnetic monopole, and that whatever is contained within the associated volume integral 
is a magnetic charge.  Indeed, (3.3) may be thought of as the very definition of a magnetic 
charge, which in (3.3) is not zero.  At the same time, we found in (2.4) a.k.a. (2.6) that 

0P DF DDG= = = , which is to say, that the magnetic charge density is zero, just as it is in 

electrodynamics.  So if 0P DF DDG= = =  but 0F ≠∫∫� , how do we reconcile the former 

equation which says the magnetic charge density is zero with the latter equation which says there 
is a non-zero magnetic charge? 
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One way to think this through, is take the Yang-Mills electric charge field equation 
(1.12), * *J D F= , revert this (merely for pedagogic simplicity) to its abelian form * *J d F=  
which contains Gauss’ law for electricity, and then apply Gauss’ / Stokes’ Theorem to obtain 

( )* * *F J d F= =∫∫ ∫∫∫ ∫∫∫� .  Just as F∫∫�  in the rest frame represents a net flux of magnetic 

field through a closed surface, *F∫∫�  in the rest frame represents a net flux of electric field 

through a closed surface.  And this *F∫∫�  then becomes the very definition of the electric 

charge.  But here, electric charge density is defined by *J  inside *J∫∫∫ , while in (3.3) magnetic 

charge density is defined by [ ]1 2
3 3 , ,iGdG G G G +    inside [ ]( )1 2

3 3 , ,iGdG G G G +  ∫∫∫ .  That is, 

we have a magnetic charge density [ ]1 2
3 3 , ,iGdG G G G +    which we need to think about in 

comparison to an electric charge density *J . 
 
The answer to this puzzle is that the magnetic charge density is not the P of 

0P DF DDG= = = , it is the [ ]1 2
3 3 , ,P iGdG G G G′  ≡ +    in (3.3).  The magnetic charge as 

defined by the enclosure surface F∫∫� , is a three-form just like *J  and P, but it is not an 

elementary three-form source.  Rather, it is a three form constructed from 13 iGdG which includes 

some dynamical behavior of the gauge fields inside the volume integral, and from [ ]2
3 , ,G G G    

which represents pure gauge field amalgams subsisting within the volume integral.  That is, the 
magnetic charge is a composite three-form built out of gauge fields, rather than an elementary 
three form like the abelian electric charge source.  Indeed, we may take this a step further: 
 

In electrodynamics, the three-form *J  which in tensor language is related to the electric 

source current density vector Jα  by ( ).5
*J g Jα

σµν ασµνε= − , is a true electric source which then 

gives rise to gauge fields in abelian gauge theory via * * *J d F d dG= = , and per (1.12), via 
* * *J D F D DG= =  in Yang-Mills gauge theory.  On the other hand, the 

[ ]1 2
3 3 , ,P iGdG G G G′  = +    in (3.3), if written as a tensor (see (2.14)) and converted over to a 

one form via the same general identity ( ).5
*P g Pα

σµν ασµνε′ ′= − ,  will result in a faux magnetic 

source which is constructed solely out of gauge fields G, which themselves are sourced by 
* * *J D F D DG= = .  So, there is only one elementary source J, not two sources J and P.  From 
this one source J, gauge fields G are emitted from interaction vertices.  From these gauge fields 
G, a faux magnetic source [ ]1 2

3 3 , ,P iGdG G G G′  = +    is assembled.  And finally, from this faux 

magnetic source, 0F ≠∫∫�  flows across closed surfaces as in (3.3).  The electric source Jα , 

whether in abelian or non-abelian gauge theory, has its own independent existence, and it is the 
source of any and all gauge fields.  But the faux magnetic source charge in (3.3) has no 
independent existence apart from the gauge fields G.  Rather, it is built out of the gauge fields.  
So the Yang-Mills monopoles are composite, not elementary, objects.  And, by the way, so too 
are baryons. 
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 Having resolved the puzzle of how to reconcile 0P DF DDG= = =  with 0F ≠∫∫� , we 

next pose the following question:  what happens to the total flux F∫∫�  in (3.2) under the local 

gauge-like transformation [ ]'F F F Gµν µν µν ν µ→ = − ∂ ?  In differential forms, this transformation 
is dGFFF −=′→ , which means, precisely because dG =∫∫ 0� , that: 

 

( )F F F dG F′→ = − =∫∫ ∫∫ ∫∫ ∫∫� � � � , (3.4) 

 
So, the net surface flux in the monopole equation (3.3) is invariant under the transformation 

[ ]'F F F Gµν µν µν ν µ→ = − ∂ , which means that the gauge field is not observable with respect to 

net flux across closed surfaces of the monopole.  The abelian expression dG =∫∫ 0� , expanded to 

show the Riemann tensor, may be written as F dG R G dx dx dxτ σ µ ν
νσµ τ= = =∫∫ ∫∫ ∫∫∫ 0� � , and 

explicitly shows how individual gauge fields Gτ  couple with spacetime geometry as represented 

by Rτ
νσµ .  This represents an absence of monopoles in electrodynamics, and yields the symmetry 

principle (3.4) for the behavior of magnetic monopoles in Yang-Mills theory generally. 
 
 But if the non-zero flux in the Yang-Mills monopole equation (3.3) is invariant under the 
gauge-like transformation [ ]'F F F Gµν µν µν ν µ→ = − ∂  which means that the gauge fields Gµ  are 
not net observables over a closed monopole surface, this would seem to suggest that the Yang-
Mills monopole inherently confine their gauge fields.  This is another hint that the monopole 
equation (3.3) could be the classical field equation for a baryon, in integral form. 
 
 The final point is that because the faux magnetic source [ ]1 2

3 3 , ,P iGdG G G G′  = +    is 

constructed out of gauge fields, and because the gauge fields are in turn sourced by 
* * *J D F D DG= = , and because electric sources may be represented in vector form in terms of 
Dirac fermion wavefunctions ψ   via J µ µψγ ψ= , it should be possible in principle, and would 

certainly be desirable in practice, to rewrite the faux magnetic source [ ]1 2
3 3 , ,iGdG G G G +    in 

terms of the true source currents J µ  from which they arise, and then to rewrite the J µ µψγ ψ=  

in terms of their fermion wavefunctions ψ .   The upshot of all this, is that while F∫∫�  in (3.3) is 

presently expressed in terms of gauge fields as ( )F G∫∫� , once we obtain the gauge fields ( )G J  

in terms of sources and the sources ( )J ψ  in terms of fermions, we will end up with 

( )( )( )F G J ψ∫∫� .  Then, having more than one fermion within the enclosed F∫∫�  “system,” we 

would need to apply the Exclusion Principle of Fermi-Dirac-Pauli statistics to maintain the ψ  in 
distinct quantum eigenstates, which would give us the opportunity, for example, to introduce a 
color degree of freedom to do so and thus make a connection to SU(3)C Chromodynamics, with 

( )( )( ), ,R G BF G J ψ ψ ψ∫∫� .  So this means that the Yang-Mills monopoles are not only composite 

objects, but are composite objects which contain fermions and gauge fields, and that these 
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fermions will need to obey some form of quantum exclusion, which may include SU(3)C.  And, 
by the way, all of the same the same is true of baryons, and as to fermion exclusion, quarks. 
 
 It is for these reasons, that it may be fruitful to entertain the prospect that (3.3) is not only 
the classical field equation for a Yang-Mills magnetic monopole, but may be synonymous with 
the classical field equation for a baryon. 

 
4. Can a Classical Field Equation Really Teach us Anything Useful about 
Confinement and Baryons? 

 
Given that (3.3) is a classical field equation, we must pose the question whether such a 

classical equation can really have anything of interest to say about baryons and confinement, 
which have many features that arise only out of quantum field theory.  For example, it might be 
observed that a classical analysis which seeks to discuss baryons and confinement in no way 
takes account of quantum field theory with operator-valued fields.  This, it might be argued, is 
despite the fact that there are many reasons to believe confinement and the existence of a mass 
gap are related to the running of the coupling constant, which is an inherently quantum effect. 
 

Certainly, (3.3) above is a completely classical field equation, not yet taking into account 
any aspects (or the need to prove existence) of a non-trivial relativistic quantum Yang–Mills 
theory on R4 [6].  And, of course, there are many reasons to believe that confinement is related to 
the running of the strong coupling constant, which is an inherently quantum effect, and which 
manifests in asymptotic freedom at “ultraviolet” energy and infrared slavery at low energy [10].  
However, just like electrodynamics, Yang-Mills gauge theory has a classical formulation and (is 
expected once quantum Yang-Mills existence is proven, to have) a quantum field formulation.  
This means that (3.3) may reveal inherently-confining attributes for the magnetic monopoles of 
Yang-Mills gauge theory which appear at the classical level and which are rooted in the 
relationship dd = 0  of Riemannian spacetime exterior geometry, as well as inherently-composite 

attributes expressed by ( )( )( )F G J ψ∫∫� .  That opens up the question how these same attributes 

translate through to quantum Yang-Mills theory.   
 

Specifically, if in fact (3.3) for F∫∫�  is an equation for baryon-like gauge field 

confinement properties of Yang-Mills magnetic monopoles based upon their abelian-subset 
behaviors rooted in the classical equation ddG= 0  and its integral form dG =∫∫ 0� , and if the 

composite faux magnetic charge [ ]1 2
3 3 , ,P iGdG G G G′  = +    in (3.3) in some way represents a 

baryon charge, then the classical baryons that would be represented by (3.3) would not suddenly 
become “not baryons” in quantum field theory.  Rather, there would two sets of behaviors that 
need to be studied: a) how these monopoles behave in a classical formulation, which includes 
(3.3) and (3.4) above, and b) how these monopoles additionally behave in quantum field theory.  
So if we can demonstrate that the classical behaviors appear to be confining and appear to 
involve a non-elementary, composite charge that includes some amalgam of fermions and gauge 
fields, one should expect that this will “bleed” through to yield quantum amplitudes and running 
couplings and color symmetries that buttress, not defy, these classical behaviors, just as abelian 
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magnetic monopoles do not suddenly appear and ordinary magnetic fields do not suddenly net 
flow through closed surfaces, once one goes from classical to quantum electrodynamics. 
 

  Further, one might take the perspective that the cause for confinement and baryon 
compositeness is the classical field equation (3.3) for a Yang-Mills monopole which has the 
symmetry (3.4), and that one of the effects of this is that in a quantum field treatment of these 
baryon monopoles, the strong coupling will weaken for ultraviolet and strengthen for infrared 
probes.  And, it can be argued that this is a more natural approach than simply trying to figure 
out how to “glue” together disparate quarks into baryons without knowing to begin with what 
sorts of covariant objects baryons actually are in spacetime.  Indeed, if the hints of baryons and 
confinement that arise in (3.3) and (3.4) are correct, then we would need to start thinking of 
baryons as third-rank antisymmetric tensors and related three-forms in spacetime governed by 
the classical equation (3.3) with the symmetry (3.4), and then see how that connects to 
everything else we know about baryons.  The “let’s glue together the quarks” approach, 
notwithstanding many opportunities to do so, has thus far failed to explain why QCD “must have 
‘quark confinement, that is, even though the theory is described in terms of elementary fields, 
such as the quark fields, that transform non-trivially under SU(3), the physical particle states—
such as the proton, neutron, and pion—are SU(3)-invariant.”  ([6] at page 3.)  This SU(3)-
invariance of physical particle states is a symmetry principle, and while not every classical 
symmetry carries through to quantum field theory, for example, the chiral anomaly (e.g., [11], 
section IV.7), there is no apparent a priori reason to believe that whatever classical symmetries 
are found for these monopoles (such as (3.4)) will only manifest in the classical but not the 
quantum field theory.  At the very least, the question for study becomes “do these symmetries 
carry over from classical to quantum field theory, and if not, why not, and in what manner are 
they altered?”  Further, if the baryon charge really is [ ]1 2

3 3 , ,P iGdG G G G′  = +   , then as we turn 

( ) ( )( )( )F G F G J ψ→∫∫ ∫∫� � , so too would we turn ( ) ( )( )( )P G P G J ψ′ ′→ , which may reveal 

that the inherently-composite nature of this [ ]1 2
3 3 , ,P iGdG G G G′  = +    charge is in fact the long-

sought “glue” to aggregate quarks and gluons into a single charge system, ab initio. 
 

Additionally, approaching confinement starting from a classical treatment of baryons has 
validating precedent in the MIT Bag Model reviewed in, e.g., [12], section 18.  Irrespective of 
the specifics of any particular bag-type model of confinement, the MIT Bag Model very 
correctly makes one very important point: focus carefully on what flows and does not flow across 
any closed two-dimensional surface.  And it does so using the classical formulation of Gauss’ / 
Stokes’ theorem.  This is why the integral form of Maxwell’s equations in classical field theory 
may well be a very sensible starting point studying confinement, because from the Bag Model 
viewpoint, confinement is all about what passes and does not pass through closed surfaces 
containing the extended field configuration within the baryon volume. 

 
Further, by talking about the “classical level” of “non-abelian gauge theory” right on 

page 1 of [6], Jaffe and Witten themselves recognize that Yang-Mills theory has a classical 
level, and that a reasonable starting point for developing quantum Yang-Mills theory, is to fully 
and properly develop and understand Yang-Mills gauge theory at this classical level. 
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Finally, it is certainly unrealistic to expect that a classical-only treatment of baryons 
based on Yang-Mills magnetic monopoles will explain all of the observed phenomenology of 
baryons.  It cannot and will not.  Only a proper quantum field treatment may be expected to do 
so.  Yet, at the same time, there are some important physics insights to be gained even from a 
classical treatment of the Yang-Mills monopole equation (3.3).  And we know, if we can fully 
develop a classical theory on its own terms, and then obtain its Lagrangian density ( )φL  and 

action ( )S φ  in terms of its fields φ , that we can then convert over to a quantum field theory via 

the path integration 4exp expZ D i d x D iSφ φ= =∫ ∫ ∫L .  While carrying out the path integration 

of a non-linear theory such as Yang-Mills gauge theory (and especially gravitational theory) is 
still an exceptionally challenging problem, that does not mean one ought not make the effort to 
find the correct road for doing so.  This begins by finding and fleshing out, the right classical 
theory to quantize.  
 

So what is most important is for researchers in particle, baryon and nuclear theory to be 
aware of the possibility of modelling baryons as Yang-Mills magnetic monopoles to gain 
possible insight into confinement and related QCD symmetries, so that this possible connection 
can be further developed, vetted, and empirically-tested by anyone who finds it interesting or 
promising. 
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