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A hypothesis of anti-gravity between matter and antimatter is presented that 
results in an alternative to the conventional Einstein field equations.  Using the 
vacuum metric relationships identified by Schwarzschild in 1916, the radially 
symmetric vacuum anti-gravity metric is derived for the vacuum between a 
spherical core of either matter or anti-matter and an enclosing spherical shell of 
the other type of matter; anti-gravity prevents the shell from collapsing.  
Candidate black holes are hypothesized to consist of such a shell and core, and 
the gravitational behaviors of such a composite body are approximated.  
Observations of kinematics consistent with these behaviors would validate the 
existence of anti-gravity. 

I.	
  Introduction	
  
Morrison considered the possibility that anti-gravity might exist between matter 
and anti-matter in 1958, and he was followed by others [1].  Investigations into 
the gravitational behaviors of antimatter are ongoing at CERN studying trapped 
cold anti-hydrogen [2, 3].  The simplest conceptualization of anti-gravity between 
matter and antimatter is characterized as each canceling the geometric metric 
distance changes of the other.  The hypothesis of anti-gravity presented in 
section II is based upon this concept.  The simplest static configuration that 
would demonstrate such a dynamic is a spherical shell of one enclosing a core of 
the other with the anti-gravity between the two supporting the spherical shell.  
The geometry of the vacuum space between the core and the shell can be 
described by a metric, and that metric is derived in section III.  At some radius, 
between the shell and the core, the gravitational effects of respectively the shell 
and core on the vacuum metric distances are exactly mutually cancelling.  
Schwarzschild’s original derivation of his widely known radially symmetric exterior 
vacuum metric is uniquely suited to deriving the metric of this radially symmetric 
vacuum anti-gravity metric [4], as I demonstrate herein.  The existence of such a 
specific metric solution provides a reference example for the consideration of 
anti-gravity between matter and antimatter and whether it exists. In section IV, I 
discuss the detection of celestial bodies that might consist of a core and shell, 
with anti-gravity supporting the shell, and I expect those celestial bodies to be 
conventionally classified as candidate black holes.  Candidate black holes are 
dark stars that are gravitationally entangled with visible stars and that are inferred 
to be black holes by conventional theory because their respective inferred 
masses are too great to be that of a dark neutron star [5]. 
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II.	
  The	
  Hypothesis	
  of	
  Anti-­‐Gravity	
  
In hypothesizing that anti-gravity between matter and anti-matter exists, I am 
proposing an alternative geometric theory of gravity, a variant of conventional 
General Relativity theory.  For both the proposed and conventional geometric 
theories, the gravitational evolutions of energy tensors are consistent with parallel 
transport of the tensors along the Levi-Civita metric connection of the evolving 
pseudo-Riemann geometry.  Gravitational paths are geodesic paths of the 
geometry.  The covariant derivatives of the tensors equal 0.  All gravitational 
changes in the energy tensors can be attributed to the geometry. 
 
For the hypothesis of anti-gravity, the only forms of energy that cause changes in 
the geometries of space-time are matter and antimatter, and the geometric 
effects of each cancel the geometric metric distance changes of the other.  (This 
contrasts with conventional theory in which all energies change the geometry of 
space-time, and there are no cancelations of gravitational effects.)  The geometry 
of the Universe without material energies, matter or antimatter, is consistent with 
a Minkowskian geometry.  Particle/anti-particle creations create gravitational 
effects. The conservation of energy by the dynamic of gravity with anti-gravity is 
made apparent by the observation that since all energies gravitationally evolve 
consistent with a covariant derivative of 0, and if all material energies are 
transformed to non-material energies by particle/anti-particle annihilation, 
restoring the Universe to a Minkowskian geometry unchanged by gravity, all 
energy tensors will return to their original values, consistent with parallel transport 
on the connection.  Gravity with anti-gravity is a perfectly elastic dynamic.  This 
argument for energy conservation for gravity with anti-gravity is much simpler 
than attempts to explain energy conservation for conventional theory [6]. 
 
For the hypothesis of anti-gravity, material energies and regions of space-time 
have gravitational polarities.  Existing research does not consider the possibility 
of space-time polarities [1].  The gravitational polarities of material energies 
correspond to the distinction between matter and antimatter and to the effect 
respectively of matter or anti-matter on the geometry of a region.  For a space-
time region that matches the polarity of matter, the effects of matter on the 
geometry of the region are consistent with the conventional effects of positive 
masses, and the effects of antimatter on the geometry of the region are 
consistent with the conventional effects of negative masses.  For a space-time 
region that matches the polarity of antimatter, the respective effects of matter and 
antimatter on the geometry of the region are opposite.  The gravitational 
evolution of all material energies, both matter and anti-matter, is consistent with a 
positive mass and a covariant derivative of 0; a negative mass is employed only 
to characterize the effect of a material energy on the geometry of space-time.  
(This restricted usage of negative mass and the use of space-time polarities 
distinguishes this hypothesis from the considerations of Bondi in 1957 [7].)  
Within the surface that forms a boundary between regions of space-time with 
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opposite polarities, there are no gravitational changes in the metric distances of 
space-time; there, matter and antimatter each cancel the effects of the other. 
 
Considering the boundaries between regions of opposite polarity throughout the 
Universe and independent of the regions that they separate, the boundaries are 
consistent with surfaces in a universal Minkowskian geometry; the boundaries 
maintain a globally flat Universe independent of the local expansions within the 
regions that they separate and independent of a critical energy density required 
by conventional theory.  Cosmological expansion occurs only in the regions 
within the boundaries.  Regions of like-polarity can accelerate towards one 
another and eventually merge, pushing through a region of opposite polarity that 
originally separated them.  It is by such dynamics that anti-gravity segregates 
and respectively aggregates matter and antimatter. 
 
The Einstein field equations describe that the Einstein tensor of the geometry of 
space-time is proportional to the energy tensor [8].  The covariant divergence of 
the Einstein tensor equals 0 [9].  For the hypothesis of anti-gravity and within a 
region of space-time of a particular polarity, the Einstein tensor is proportional to 
the material energy tensor with the sign of the mass consistent with the polarities 
of the region and the material energy:  the effective mass is positive for matching 
polarities and negative for mismatching polarities.  The geo-energy tensor is the 
material energy tensor with matter mass characterized as positive and antimatter 
mass characterized as negative.  In the absence of transformations between 
material and non-material forms of energy, the geo-energy tensor has a covariant 
divergence of 0:  the geo-energy tensor is the difference to two energy tensors 
that each has a covariant divergence of 0.  Any transformation between material 
and non-material energies is characterized by quantum theory, and the effects of 
the transformation on the geo-energy tensor and the geometry of space-time are 
not smooth:  the derivatives of the metric are not continuous.  The Einstein tensor 
is undefined at the instant and location of material/non-material energy 
transformation.  Individually, the respective covariant derivatives of the material 
and non-material energy tensors equal 0 as they approach and depart from the 
instant of energy transformation, and the aggregate material and non-material 
energy does not change at the instant of transformation.  The Einstein and geo-
energy tensors are well defined and proportional before and after the instant of 
transformation.  The use of the geo-energy tensor is compatible with the 
architecture of the Einstein field equations; when and where the geometry is 
smooth, the proportionality between the Einstein and geo-energy tensors is 
maintained.   
 
The polarities of space-time can be incorporated into the conventional derivation 
of the Einstein field equations using the Lagrangian of the Hilbert action [10, 11].  
The action becomes: 
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 S = ∫((2k)-1R+ℒmP)(-g)½d4x. (1) 
 
R is the Ricci Scalar; ℒm is the geo-energy energy scalar; P is the polarity of 
space-time; and g is the determinant of the metric.  The P is a wave function that 
in the limit of its series expansion equals 1 or -1 in the open intervals between the 
transition boundaries between space-time regions of opposite polarity.  The 
variation of the integral of the action equals 0 for: 
 
 Guv = k(TuvP‑2ℒm𝛿P/𝛿guv), 

Guv = Ruv-½guvR, 
k = 8πGc-4, 
Tuv = ‑2(‑g)‑½𝛿((‑g)½ℒm)/𝛿guv = guvℒm-2𝛿ℒm/𝛿guv. 

(2) 

  
The first equation is the Einstein field equation generalized to accommodate anti-
gravity using geo-energies and space-time polarities.  The Guv is the Einstein 
tensor; the Ruv is the Ricci tensor; the G is the gravitational constant; and the c is 
the coordinate speed of light in Special Relativity.  The Tuv is the geo-energy 
tensor, not the conventional energy tensor.  The polarities of the geo-energy and 
space-time are the same when the signs of P and the mass of Tuv are the same.  
The ‑2ℒm𝛿P/𝛿guv term is new to the equations and results from the polarities of 
space-time. 
 
As I demonstrate in the following section for the derived metric, the metric is 
continuous for some coordinates at the transition boundary between polarities 
and not continuous for others; for all coordinates, the metric is not smooth at the 
boundary; and non-zero Riemann and Weyl tensors are undefined at the 
boundary.  As the metric approaches the boundary from either side, the Ricci and 
Einstein tensors must approach 0, consistent with a cancelation of all 
gravitational changes in metric distances at the boundary.  
 
In order for a material particle to pass through the transition boundary, its 
effective geo-energy must be cancelled so that it can exist at the boundary where 
the Ricci tensor approaches 0 from both sides of the boundary; there can be no 
gravitational changes in the metric distances at the boundary.  The ‑2ℒm𝛿P/𝛿guv 
term must allow the net effective geo-energy tensor to become equal to 0 without 
the corresponding material geo-energy tensor becoming equal to 0; at the 
boundary, TuvP‑2ℒm𝛿P/𝛿guv must equal 0, allowing the sign of the expression to 
flip at the boundary without a discontinuity.  At the boundary, the geo-energy of 
the material energy is cancelled as it follows its time-like geodesic path.  In a 
vacuum, with ℒm equal to 0, the 2ℒm𝛿P/𝛿guv term equals 0.  In order to maintain 
consistency with existing theory, sufficiently far from a transition boundary 
2ℒm𝛿P/𝛿guv must equal 0.  In contrast to material energies, non-material energies 
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do not change the geometry of space-time; non-material energies pass through 
the boundary without complication.  
 
For the hypothesis of anti-gravity and within a region of space-time of a particular 
single polarity, the observed behaviors are indistinguishable from conventional 
expectations.  Most of the material energies in the Universe exist in regions of 
space-time for which the polarity of their geo-energies matches the polarities of 
space-time:  this is the consequence of anti-gravity on the evolution of the 
Universe.  Anti-gravity segregates and respectively aggregates matter and anti-
matter, and the Universe expands with increasing respective aggregation.  
Approximately half of distant galaxies and galaxy clusters are composed 
predominantly of antimatter, in contradiction of conventional theory.  Gravity with 
anti-gravity requires that the Universe contains equal quantities of matter and 
antimatter with anti-gravity segregating the two, solving the conventional 
contradiction that accepts both that the Universe is composed predominantly of 
matter and that particle and anti-particle creations and annihilations occur in 
matching pairs. 
 
The hypothesis of anti-gravity is consistent with all empirical validations of 
conventional General Relativity.  We have no ability to detect the geometric 
effects of either non-material energies or the meager amounts of antimatter that 
we can locally detect or accumulate.  As Bondi explains, for geometric theories of 
gravity, Newton’s 2nd Law that every action has and equal an opposite reaction 
does not apply [7].  Within a single polarity of space-time, he demonstrates that 
the conventional field equations predict that a negative mass repels a positive 
mass, while simultaneously the positive mass attracts the negative mass.  In the 
laboratories at CERN scientists seek only to measure the matter attracting 
antimatter; and they are unable to measure whether the antimatter is repelling 
the matter [2, 3], which would indicate in conventional theory and the proposed 
theory that the gravitational effects of the anti-hydrogen were consistent with a 
negative mass.  For the proposed theory and contrary to conventional theory, a 
star deflects the path of light, and the deflected light has no effect on the path of 
the star.  The anti-neutrinos of supernova 1987A were of insufficient energy 
density to create space-time regions of opposite polarity; the geo-energies of the 
anti-neutrinos did not match the polarity of the space-time they traversed; they 
followed the same geodesics as the neutrinos; and both followed nearly the same 
geodesics as the photons from the supernova [12-15].  Most recently in 2013, 
Jentschura considered the gravitationally coupled Dirac equation for antimatter 
[16].  He considers the dynamics of the Dirac positron undergoing the geodesic 
accelerations of the Schwarzschild metric, and he concludes that its behavior due 
to gravity must be identical to that of the electron; however, he fails to allow the 
positron to flip the polarity of space-time.  
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The effective anti-gravity between bodies will be observed when a boundary 
between regions of space-time of opposite polarity is identified; it is across such 
boundaries that bodies accelerate away from each other and that space-time 
does not show evidence of cosmic expansion.  For antimatter within a bubble of 
matching space-time gravitational polarity and observed from Earth in our galaxy, 
the antimatter would be de-accelerating as it enters our galaxy and accelerating 
as it exits our galaxy; and the antimatter must be of sufficient density to cancel all 
gravitational changes in metric distances at the boundary of the bubble.  Existing 
literature does not consider such boundaries [1].  Such boundaries might exist 
amongst the galaxy cluster clumps and walls of our Universe [17].  While material 
bodies will accelerate away from the boundaries, the un-expanding space will 
diminish or eliminate any increasing separation between matter and antimatter 
galaxy clusters separated by such a boundary.  
 
Antimatter, and more specifically the positron, was discovered by Anderson in 
1932 [18], approximately 17 years after the proposal of General Relativity by 
Einstein in 1915 [8].  In the following year, 1933, Lemaître published “L'Univers 
en expansion,” and the modern science of Cosmology was fully born without 
mention of antimatter [19, 20].  The discovery of antimatter was anticipated in 
1928 by the Dirac equation that describes the relativistic quantum electron and 
for which the antimatter electron, the positron, has a negative rest energy and 
rest mass [21-23].   The electrical charges of matter and antimatter are opposite, 
and that has suggested that the gravitational interaction of matter-to-matter and 
antimatter-to-antimatter might be opposite that of matter-to-antimatter. However, 
a change in the essential relationships of General Relativity has never been 
proposed, and broadly considered, that would accommodate such dynamics and 
that would still be consistent with all empirical validations of conventional General 
Relativity.  I am motivated to advance the hypothesis of anti-gravity because I 
find that such changes are possible:  the revised theory provides simpler and 
more complete mechanisms to explain cosmological observations; validation of 
the theory appears to be possible; existing research does not exclude the 
possibility of the proposed theory; and ongoing research is unlikely to exclude it 
either.  Existing research efforts have failed first to identify a paradigm for which 
antigravity could exist within a single geometry of space-time and then to identify 
tests that would validate that paradigm and, in doing so, invalidate the paradigm 
of conventional theory. 

III.	
  Derivation	
  
Schwarzschild derived the exterior vacuum metric within months of Einstein’s 
publication of his theory of General Relativity.  In Einstein’s original publication of 
that theory, he uses a simplified calculation of the Riemann and Ricci tensors for 
metrics with a determinant equal to (-1)½, and although Schwarzschild starts with 
conventional radial coordinates, he adapts his derivation to coordinates that 
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accommodate this restriction.  He is able to solve incrementally the individual 
differential equations identified by Einstein and to identify the constants of 
integration that accumulate by that process.  For the conventional Schwarzschild 
metric, the values of the constants of integration are consistent with a 
Minkowskian geometry at infinite radius and a discontinuity at the origin of the 
coordinates of the derivation.  The discontinuity at that origin is at the 
Schwarzschild radius in reduced-circumference radius coordinates, and the static 
vacuum solution is not valid at that or any lesser reduced-circumference radii.   
 
For the circumstances of anti-gravity, the metric is Minkowskian at a finite radius 
𝜒 between the core and the shell, and the static vacuum metric is valid only for 
reduced-circumference radii greater than a limiting value.  For radii less than 𝜒, 
the gravitational effects of the core are consistent with its mass being 
characterized as positive, and for radii greater than 𝜒, the polarity of space-time 
flips, and the gravitational effects of the core are consistent with its mass being 
characterized as negative. 
 
Schwarzschild starts with a completely general radially symmetric metric using 
coordinates {t,r,θ,ɸ} and of the form: 
 
 ds2 = Fdt2-(G+Hr2)dr2-Gr2(dθ2+sin2(θ)dɸ2). (3) 
 
In the absence of gravity and for suitable coordinates, H equals 0, and F and G 
equal 1.  The existence of these coordinates within the derivation allows for 
characterizing the complete cancelation of gravitational effects at a specific 
radius with respect to anti-gravity. 
 
Schwarzschild applies a coordinate transformation using x1=r3/3, x2=-cos(θ) and 
x3=ɸ and re-organizes the metric into one with a determinant of (-1)½: 
 
 ds2 = f4dx4

2-f1dx1
2-f2dx2

2/(1-x2
2)-f3dx3

2(1-x2
2). (4) 

 
For the integration constants 𝜶,  λ,  𝝈  and ρ and in order that the Ricci tensor 
equals 0, consistent with Einstein’s expectations of a vacuum, Schwarzschild 
determined that the expressions for f1, f2, f3 and f4 must take the forms: 
 
 f2(x1) = λ(ρ+3x1)2/3, 

f3(x1) = f2(x1), 
f4(x1) = 𝝈-­‐𝜶/(λ2(ρ+3x1)1/3) and  
f1(x1) = 1/(f2(x1)2 f4(x1)). 

(5) 

 
For the boundary conditions of the conventional Schwarzschild metric, 
Schwarzschild chose values of the constants of λ=1, ρ=𝜶3, 𝝈=1 and, implicitly, 
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𝜶=2Gmc-2 for c equal to 1.  For the reduced-circumference radius R equal to 
(ρ+3x1)1/3 or, equivalently, (𝜶3+r3)1/3, the metric takes its conventional form: 
 
 ds2 = (1-𝜶/R)dt2-(1-𝜶/R)-1dR2-R2(dθ2+sin2(θ)dɸ2. (6) 
 
For R less than 𝜶 and within the “Schwarzschild radius”, r is negative and has no 
mapping to space-time without gravitational effects. 
 
For the general case and in order that the Ricci tensor equals 0, 𝝈 must equal λ‑3.  
Otherwise, the following Ricci tensor components are non-zero: 
 
 R22 = (-1+λ3𝝈)/(-1+x2

2) and 
R33 = (-1+λ3𝝈)/(-1+x2

2). 
(7) 

 
 
Performing this substitution and converting back to radial coordinates {t,r,θ,ɸ} the 
functions f1, f2, f3 and f4 become: 
 
 f2(r) = λ(r3+ρ)2/3, 

f3(r) = f2(r), 
f4(r) = (1-𝜶λ/(r3+ρ)1/3)/λ3 and  
f1(r) = 1/(f2(r)2 f4(r)). 

(8) 

 
The metric in those coordinates is: 
 
 ds2 = f4(r)c2dt2-f1(r)r4dr2-f2(r)(dθ2+sin2(θ)dɸ2). (9) 
 
I have incorporated a constant factor of c2 into the gtt component to allow for 
scaling of the time coordinate.  
 
In order that the metric is Minkowskian at the radius r equal to 𝜒, λ must equal 
𝜒2/(𝜒3+ρ)2/3, resulting in a value of 𝜒2 for f2(𝜒).  I introduce a simplifying 
substitution that ρ equals ϵ𝜒3, and, then, λ equals (1+ϵ)-2/3.  In order that f4(𝜒) has 
a value of 1, consistent with a Minkowskian geometry, 𝜶 must equal 
ϵ(2+ϵ)𝜒/(1+ϵ).  The functions f1, f2, f3 and f4 become: 
 
 f2(r) = ((r3+ϵ𝜒3)/(1+ϵ))2/3, 

f3(r) = f2(r), 
f4(r) = (1+ϵ)2-ϵ(1+ϵ)1/3(2+ϵ)𝜒/(r3+ϵ𝜒3)1/3 and  
f1(r) = 1/(f2(r)2 f4(r)). 

(10) 

 
At the radius 𝜒, f2(𝜒) and f3(𝜒) equal 𝜒2, and f4(𝜒) and f1(𝜒)r4 equal 1, consistent 
with a Minkowskian geometry at that radius. 
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For reduced-circumference radius coordinates, R equals f2(r)½  or 
((r3+ϵ𝜒3)/(1+ϵ))1/3.  Substituting λ=𝜔2 and accommodating the different values of 
dr and dR, the metric in such coordinates becomes: 
 
 ds2 = f4(R)c2dt2-f1(R)(𝜔2(R/𝜔)-4)-1dR2-f2(R)(dθ2+sin2(θ)dɸ2) 

or 
ds2 = f4(R)c2dt2-f1(R)(1+ϵ)2R-4dR2-f2(R)(dθ2+sin2(θ)dɸ2), 

(11) 

 
and the functions f1, f2, f3 and f4 become: 
 
 f2(R) = R2, 

f3(R) = f2(R), 
f4(R) = 1+ϵ(2+ϵ)(1-𝜒/R) and  
f1(R) = 1/(f2(R)2 f4(R)). 

(12) 

 
At radius 𝜒, all of the metric components have the same value as when using the 
radial coordinate r except for gRR.  At that radius and for positive ϵ, gRR is (1+ϵ)2 
larger than grr, reflecting the differences in dR2 and dr2.  It is only in the 
coordinates of the derivation, r and not R, that the metric is Minkowskian at 
radius 𝜒.  Valid values of R for the static vacuum solution are greater than the 
value of R for r equal to 0 or: 
 
 R > 𝜒(ϵ/(1+ϵ))1/3. (13) 
 
Having resolved and simplified the formulation of the metric, it becomes 
necessary to relate the constant ϵ to a physical quantity that results in physical 
behaviors that are consistent with expectations and that might be validated.  
Substituting:  
 
 ϵ ≈ Gm0/(c2𝜒) in 1st order approximation and 

ϵ = (1+2Gm0/(c2𝜒))½-1, 
(14a) 

 
and the function f4(R) becomes: 
 
 f4(R) = 1-2Gm0/c2R+2Gm0/c2𝜒. (15a) 
 
For c equal to 1, this f4(R) is the gtt component of the metric.  The G is the 
gravitational constant; the m0 is the mass of the core; and the c is the coordinate 
speed of light in Special Relativity.  The second term is the conventional term of 
the conventional Schwarzschild metric.  The third term is a new term, and it 
reflects the gravitational effects of the spherical shell.  As is the case for a 
Gaussian shell in electrostatic theory, the shell would not be expected to 
generate forces within its interior; the gravitational effects of the spherical shell in 
this metric include a change in the rate of time within its interior and a 
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corresponding change in the energy of particles within the interior.  
(Consideration of the Riemann and Weyl tensors below will motivate a slightly 
different choice of value for ϵ that maintains unchanged first order 
approximations of f4(R).) 
 
For static metrics with time-space cross-terms of 0, the energy of a test particle 
following time-like geodesics is proportional to gtt

-½.  The velocity of a test 
particle, characterized as a fraction of the varying coordinate speed of light, vf, 
can be calculated by ±(1-(ds/gtt

½dt)2)½, and (1-vf
2)‑½ equals |gtt

½dt/ds|.  For 
velocity v equal to vfc, with c equal to the coordinate speed of light of Special 
Relativity, and for relativistic momentum scalar p equal to mv(1-(v/c)2)-½ for m 
equal to the mass of a particle, mc2|gtt

½dt/ds| equals ((mc2)2+(pc)2)½, the total 
energy of Special Relativity.  I use the expression mc2|gtt

½dt/ds| to consider the 
energy variations of a test particle following a geodesic path, solving the 
geodesic equations for dt/ds.  The expression describes that the energy of a 
particle varies with the ratio of stationary time to path proper time.  For static 
metrics with time-space cross-terms of 0 and solving the geodesic equation for 
d2t/ds2, dt/ds is proportional to gtt

-1, and the energy of the test particle is 
proportional to mc2gtt

-½.  The constant of proportionality is gtt(𝝉)½(1-v𝝉2)-½ for gtt(𝝉) 
equal to gtt at a point 𝝉 and v𝝉 equal to the velocity of the particle as a fraction of 
the coordinate speed of light at that point.  (I think of mc2gtt(𝝉)½(1-v𝝉2)-½  as the 
effective underlying energy of a particle.)  For the total expressed energy of 
mc2gtt

-½gtt(𝝉)½(1-v𝝉2)-½, any constant factor within gtt, such as c2, is canceled by 
the product of gtt

-½ and gtt(𝝉)½. 
 
For c equal to 1 and in the first order approximations: 
 
 gtt(R)-½ ≈ 1+Gm0/c2R-Gm0/c2𝜒 and 

gtt(𝜒)-½ = 1. 
(16) 

 
The force on a test particle of either matter or antimatter, considered as a scalar 
quantity, is approximately ‑Gm0(m gtt(𝝉)½(1-v𝝉2)-½)/R2 for m equal the positive 
mass of the test particle.  For radii less than 𝜒, the signs of ϵ and m0 are positive, 
consistent with conventional theory.  In order for anti-gravity to support the shell, 
the sign of m0 in the metric for R greater than 𝜒 must be negative, resulting in a 
repulsive force.   
 
I characterize the vacuum regions separated by the radius R equal to 𝜒 as having 
opposite polarities.  If the core is of antimatter, the polarity of space-time for radii 
smaller than 𝜒 matches that of antimatter, and the effect of matter on the 
geometry of that region is to diminish gravitational effects.  The polarity of space-
time for radii larger than 𝜒 would match that of matter, and the effect of antimatter 
on the geometry of that region would be to diminish gravitational effects.  For this 
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static metric, the polarities of space-time are consistent with whichever polarity 
results in slower time and shorter metric path lengths for stationary paths. 
 
If ϵ flips its sign at R equal to 𝜒 and ϵ is non-zero, the value of ϵ is undefined at 
that radius, and any quantity that is truly dependent on the value of ϵ at that 
radius is also undefined.  The value of gRR(𝜒), equal to (1+ϵ)2, is undefined, while 
the value of grr(𝜒), equal to 1, is defined.  For coordinates using R, the metric is 
not continuous at R equal to 𝜒.  For coordinates using r, the metric is continuous 
at r equal to 𝜒.  For both coordinates, the metrics are not smooth because their 
derivatives are not continuous at R or r equal to 𝜒. 
 
For a vacuum, the Riemann tensor equals the Weyl tensor.  For the metric, the 
sign of all the components of the Riemann and Weyl tensor flip if the sign of ϵ 
and m0 flip.  In reduced-circumference coordinates, the non-zero independent 
components of the co-variant Riemann tensor at 𝜒 are: 
 
 1212:  ϵ c2(2+ϵ)/𝜒2, 

1313:  -ϵ c2(2+ϵ)/(2(1+ϵ)2), 
1414:  -ϵ c2(2+ϵ)sin2(θ)/(2(1+ϵ)2),  
2323:  ϵ(2+ϵ)/2, 
2424:  ϵ(2+ϵ) sin2(θ)/2, 
3434:  -ϵ c2(2+ϵ)𝜒2sin2(θ)/(1+ϵ)2. 

(17) 

 
The Riemann and Weyl tensors in reduced-circumference coordinates depend 
upon ϵ at radius 𝜒, and for the circumstances of anti-gravity, these tensors are 
undefined at that radius 𝜒.   
 
In the radial coordinates of the derivation, r instead of R, the non-zero 
independent components of the co-variant Riemann tensor at radius 𝜒 are: 
 
 1212:  c2(1-(1+ϵ)-2)/𝜒2, 

1313:  -c2(1-(1+ϵ)-2)/2, 
1414:  -c2(1-(1+ϵ)-2)sin2(θ)/2, 
2323:  (1-(1+ϵ)-2)/2, 
2424:  (1-(1+ϵ)-2)sin2(θ)/2, 
3434:  -𝜒2(1-(1+ϵ)-2)sin2(θ). 

(18) 

  
The only and common dependency of the tensor components on ϵ at radius 𝜒 is 
the factor (1-(1+ϵ)-2).  For r < 𝜒, ϵ > 0, and the factor is positive; and for r > 𝜒, ϵ < 
0, and the factor is negative.  Approaching the radius 𝜒 from opposite sides and 
in these coordinates, the component values of the Riemann tensors approach 
unequal values that all respectively differ by a common constant factor less than 
0; the Riemann and Weyl tensors in these coordinates and for anti-gravity are 
also undefined at the boundary at r equal to 𝜒.  
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If ϵ equals (1-2Gm0/(c2𝜒))-½-1, instead of the (1+2Gm0/(c2𝜒))½-1 of equation 
(14a), then (1‑(1+ϵ)‑2) equals simply 2Gm0/(c2𝜒).  The first order approximations 
of these two possible expressions for ϵ are equal, and either might be the correct 
physical value.  If this alternate value of ϵ is the correct physical value, then 
components of the Riemann and Weyl tensors approach values from opposite 
sides of the boundary that are the same but for opposite signs.  I wonder whether 
and suspect that this is the general circumstance for metrics that are continuous 
across a stationary boundary that separates space-time regions of opposite 
gravitational polarities.  Specifically for a vacuum, this would be the only tensor 
constraint that must be satisfied by the location of the boundary:  the adapted 
Einstein field equations of section II do not explicitly constrain the location of the 
boundary in a vacuum.  If this circumstance reflects a physical constraint, as I 
conjecture, then the constraint determines the exact value of ϵ for the adapted 
Schwarzschild metric:   
 
 ϵ = (1-2Gm0/(c2𝜒))-½-1, 

f4(R) = 1-(2Gm0/c2R-2Gm0/c2𝜒)/(1+2Gm0/c2𝜒), and 
f4(R) ≈ 1-2Gm0/c2R+2Gm0/c2𝜒 in 1st order approximations. 

(18a) 

 
For the Newtonian approximation of anti-gravity, the gravitational potential 
energies generated by respectively matter and antimatter cancel each other.  The 
net gravitational potential energy is the negative of the absolute value of the 
difference in the potential energies attributable respectively to matter and 
antimatter.  The gravitational potential energy generated by the core at radius 𝜒 
equals the gravitational potential energy generated throughout the interior of the 
shell for the radius of the shell: 
 
 Gm0/𝜒  = 	
  Gmx(Rx+h2/Rx)‑1 

Rx = 𝜒(mx/m0)-h2/Rx 
(19) 

 
The mx is the mass of the shell; Rx is the radius to the center of the shell with 
uniform mass distribution; and 2h is the thickness of the shell.  The 
characterization of the potential energy generated by the shell is adapted from 
Singh [24].  For h sufficiently smaller than Rx, the ratio of Rx to 𝜒 is approximately 
equal to the ratio of mx to m0.  The net gravitational potential energy is 
approximately: 
 
 -|(Gm0/R-Gmx/Rx)| or 

-|(Gm0/R-Gm0/𝜒)|. 
(20) 

 
The latter approximation matches the derived approximation. 
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For spherically symmetric anti-gravity as characterized by geometry or the 
Newtonian approximation, there are no actual net repulsive forces.  Apparent 
repulsion arises from un-cancelled attractive forces; the core cancels the 
attractive forces from the other side of the shell that would otherwise have pulled 
the material of the shell to the center of the sphere, and all that remains are the 
locally attractive forces of the shell itself that are consistent with repulsion from 
the core. 

IV.	
  Detection	
  
If the space-time of the observable Universe is only of the gravitational polarity of 
matter, it may be impossible to establish whether the hypothesis of anti-gravity or 
conventional theory is the more valid description of the physical realm.  For the 
respective predictions of either theory, I can imagine no laboratory experiments 
that would validate the gravitational effects on the geometry of space-time 
predicted of non-material energies or of anti-matter energies, particularly for the 
quantities of low-energy anti-matter that can be detected or trapped.  Within a 
single polarity of space-time, it is only those effects that distinguish conventional 
theory from the hypothesis of anti-gravity.  The unambiguous validation of the 
hypothesis of anti-gravity and invalidation of conventional theory requires 
identifying where there exists a region of space-time of a gravitational polarity of 
antimatter.  
 
One process that might validate the hypothesis of anti-gravity is to make 
conjectures as to where boundaries between space-time regions of opposite 
polarities might exist, and, then, to make and analyze observations that might 
support or reject those conjectures.  How near to our galaxy might an antimatter 
galaxy exist on the far side of such a boundary?  The location of such boundaries 
might be anywhere between two proximate celestial structures that do not exhibit 
classical gravitational dynamics between themselves:  they do not accelerate 
towards one another, and they do not orbit each other.  If such bodies or 
structures on opposite sides of a boundary move away from each other, the 
newly intervening space-time un-expands and diminishes the observable effects 
of that movement.  Electromagnetic radiation crossing the un-expanding space-
time near the boundary is blue-shifted by the geometric changes, in contrast to 
the redshifts of expanding space-time.   
 
For an anti-matter particle generated in a collider by particle/anti-particle creation 
and that has sufficient energy density and momentum, it should flip the polarity of 
the space-time in which it exists and experience a reduction in momentum 
equivalent to climbing out of the “gravity well” of our region of gravitational 
polarity and, then, climbing back into the “anti-gravity well” of our region of space-
time polarity.  The anti-matter particle becomes encapsulated within its own 
space-time region of matching gravitational polarity.  The change in momentum 
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starts as the particle and the anti-particle separate, as the particle and the anti-
particle no longer respectively cancel the gravitational effects of the other.  The 
anti-particle itself is responsible for the changes in space-time geometry that 
change its momentum and, then, flip the gravitational polarity of space-time.  If 
the original energy of the particle is insufficient for the energy reduction in full, the 
gravitational polarity of space-time does not flip.   
 
The top anti-quark, the most massive elementary fermion, is a candidate to flip 
the gravitational polarity of our local space-time; however, for the top anti-quark, 
the ratio of its mass to the Planck length is approximately 8 orders of magnitude 
smaller than the ratio of Earth mass to Earth radius and approximately 12 orders 
of magnitude smaller than the ratio of estimated Milky Way mass to the radius of 
the Sun’s galactic orbit.  In the Newtonian approximation of gravitational effects, 
the radius of the top anti-quark must be of radius much smaller than the Planck 
length to cancel our local gravitational changes in metric distances due to matter; 
however, both conventional General Relativity and the hypothesis of anti-gravity 
depart significantly from Newtonian relationships with respect to radii sufficiently 
near sufficiently dense masses, as evidenced by the calculation and usage of 
reduced-circumference radii in the previous section for the conventional and 
adapted Schwarzschild metrics.  The anti-particle and the kinetic energy of that 
anti-particle that would flip the gravitational polarity of its local space-time in our 
proximity are undetermined.  
 
I make the conjecture of a more pervasive manifestation of anti-gravity.  I 
hypothesize that black holes do not form, from either matter or antimatter stars.  
For a matter star, a composite configuration forms consisting of a matter shell, an 
anti-matter core and a vacuum between the core and shell; for an antimatter star, 
the roles of matter and antimatter are swapped.  For the static approximation, the 
metric derived in section III describes the geometry of the vacuum.  The 
gravitational behaviors of such a celestial body would be observably different 
from a conventional body, and such observations would emphatically validate the 
hypothesis of anti-gravity. 
 
The possibility of the validity of the conjecture becomes apparent by considering 
the energy densities of a collapsing star and by distinguishing rest energies from 
the energies that arise from gravity or, equivalently, the geometries of space-
time.  The latter energies are conventionally characterized as increasing the 
material energies of the star as momentums and pressures and as contributing to 
increasing energy densities in the Einstein field equations.  The collapsing stellar 
materials transfer the energies due to gravity to the center of the star and 
concentrate them there.  For the anti-gravity hypothesis, if those energies that 
arise from gravity are expressed as photons, unconfined gluons, mesons, Z 
bosons or W bosons, those energies express no net geo-energies; they do not 
contribute to gravitational collapse; and, significantly, they can result in 
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particle/anti-particle production.  Fundamentally and in contrast to conventional 
theory, energies that arise from gravity become both positive and negative geo-
energies; in order for gravitational stellar collapse to stop, it is necessary only for 
there to be sufficient generation of the two types of geo-energies and for the 
positive and negative geo-energies to organize into configurations that stop the 
collapse.  For conventional theory, there is no such possibility, and theorists have 
reluctantly accepted the formation of gravitational singularities, black holes, as 
nearly settled science. 
 
For a matter star experiencing gravitational collapse, anti-matter production of 
sufficient quantity and energy density would provide the necessary material for 
an anti-matter core to form in a region of space-time of matching gravitational 
polarity; that formation would stop gravitational collapse without violating 
conservation of energy; and this is why the anti-gravity alternative to black holes 
is possible.  The energy configuration of a matter shell and an anti-matter core is 
at a lower energy state than the conventional alternative of a black hole, and that 
makes the anti-gravity alternative a preferred end state.   
 
I observe that if the anti-matter particles generated at the center of a collapsing 
matter star are sufficiently dense and energetic, their momentum will decrease, 
and they will flip the gravitational polarity of space-time; in comparison to its 
energy at the moment of particle/anti-particle creation, the anti-particle will have 
lost kinetic energy, as I describe above for the circumstances of a collider.  
Assuming sufficient mobility and lifetimes for particles and anti-particles at the 
stellar center, for those created anti-matter particles, with that loss of kinetic 
energy and in contrast to their sibling matter particles, the anti-matter particles 
will stay near the center of the star.  At the center, the anti-particles that have 
flipped the polarity of space-time will gravitationally attract one another and repel 
particles or anti-particles that exist in space-time of opposite gravitational polarity.  
The existence of the antimatter at the center of the collapse decreases the 
energy density required there for other anti-particles to flip the polarity of space-
time to a matching polarity.  An antimatter core will form. 
 
I hypothesize that stars, currently classified as candidate black holes, including 
galactic centers, are actually these composite configurations.  The formation of 
such a stable composite body of matter and antimatter would appear to be a 
black hole:  the existing limits on redshifts for celestial bodies are predicated on 
the densest material sinking away from the surface [25], and the anti-gravity of 
the core makes such material in the shell fall towards the exterior surface.  In the 
absence of being able to exclude the possibility of the conjecture and with the 
incentive of validating an alternative to the formation of gravitational singularities, 
I advocate attempting to validate that such composite bodies of matter and anti-
matter form during gravitational collapse before the details of that possible 
formation are more fully understood.  The most compelling validation of the 
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hypothesis of anti-gravity would be observations consistent with anti-gravity 
preventing the formation of black holes.  
 
Consider a composite body of matter and antimatter orbiting a conventional non-
composite body:  the conventional body and the shell of the composite body are 
either both composed of matter or both composed of antimatter.  For the velocity 
of the composite star, there is a conventional geodesic path; however, the 
composite star does not follow that geodesic path for an orbit of the conventional 
star.  The core within its region of space-time with opposite polarity, independent 
of the shell, would follow a different geodesic that accelerates away from the 
conventional star.  The shell and core alter the geometries in which they each 
exist such that their geodesic paths are different from a conventional orbit of the 
conventional star, and it is necessary to use Newtonian approximations of anti-
gravity to approximate the dynamics.  Using the Newtonian approximation and 
using m0 for the mass of the conventional star, mc for the mass of the core and 
ms for the mass of the shell, all positive masses, the aggregate force on the 
composite star is ‑Gm0(ms‑mc)/r2, and the inertial mass of the composite star is 
ms+mc.  For the effective gravitational mass mg equal to ms-mc and the effective 
inertial mass mi equal to ms+mc, a circular orbit for the composite body requires 
the gravitational force to equal the negative of the centrifugal force: 
 
 -Gm0mg/r2 = -miV(r)2/r and 

V(r) = (Gm0/r)½(mg/mi)½. 
(21) 

 
For the circular approximation, the orbital velocity of a composite star is reduced 
by a factor of (mg/mi)½.  Using Bondi’s characterizations of masses [7], the 
effective active and passive gravitational masses are equal, and both are less 
than the apparent inertial mass. 
 
For a conventional star, the galactic orbital velocity of a star is approximated by 
V(r)=(G M(r)/r)½, for V(r) equal to the circular galactic orbital velocities at radius r, 
G equal to the gravitational constant and M(r) equal to the effective active 
gravitational mass within the radius r [26].  For the proposed theory, the galactic 
circular orbits for a composite configuration of matter and antimatter equal 
(G(mg/mi)M(r)/r)½, slower than the orbit of conventional visible stars.  
Conventional visible stars would overtake such presumably dark composite 
bodies, and the visible star(s) and the dark composite body could become 
gravitationally entangled.  The aggregate average orbital velocity of such 
entangled stars would be: 
 
 V(r) = (G(mv+mg)(mv+mi)‑1M(r)/r)½  (22) 
 
for mv equal to the mass of the entangled conventional visible stars.  In 1962, 
Rubin et al. examined the kinematics of 888 early type stars in our Galaxy 
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beyond the sun and reported that “the rotation curve is approximately flat” [26, 
27].  Slower orbits should be readily apparent.  If the observed galactic orbital 
velocities of entangled candidate black holes were consistently slower than those 
of un-entangled conventional stars at approximately the same radii, that 
observation would validate the possibility that candidate black holes were 
composite bodies of matter and antimatter, confirming the hypothesis of anti-
gravity. 
 
Alternatively, the gravitational behaviors of the entangled configurations of 
conventional stars and candidate black holes can be considered.  For 
conventional binary stars consisting of a visible star and a dark star, the following 
approximation holds [5, 28, 29]: 
 
 Vv

3P/2πG = mdsin3θ/(mv/md+1)2 (23) 
 
The left-side value is calculated from observed measurements of the visible star.  
The Vv is the velocity component of the visible star inferred by the observed 
relativistic red shift as the star travels towards and away from the Earth.  The P is 
the period of the orbits.  The G is the gravitational constant.  The md is the mass 
of the dark star.  The θ is the angle of the orbital plane, which can be 
approximated by curve fitting. The mv is the mass of the visible star.  The mv is 
inferred from the type of the visible star.  The equation can be solved for md. 
 
For a dark composite star with unequal effective active gravitational and apparent 
inertial masses, the second expression becomes: 
 
 Vv

3P/2πG =  mgsin3θ/(mv/mi+1)2.   (24) 
 
The mg is the effective gravitational mass of the dark star.  The mi is the apparent 
inertial mass of the dark star.  In the limit of mi much greater than mv, only the mg 
matters, and the visible star rotates around the dark star at velocities and radii 
consistent with only mg.  In such circumstances, the mg may be less than the mv, 
and high velocities and small periods for the visible star may be the consequence 
of small orbital radii.  It is not possible to solve for both mg and mi with this single 
equation.  In order to identify that mg does not equal mi, it is necessary to infer 
the size of the orbit of the dark star by some independent observation, for 
instance by some indirect observation of its velocity.  If that is not possible, it will 
be necessary to consider more than 2 gravitationally coupled stars.  For example, 
in a configuration of 3 stars for which one of the stars has significantly greater 
apparent inertial mass than effective active gravitational mass, that star will have 
a dampened gravitational acceleration for the combined gravitational attraction of 
the other two stars as the 2 periodically come together. 
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If the core within a composite body escapes its shell of opposite-type matter, the 
liberated core will accelerate out of the space-time region of opposite 
gravitational polarity.  Observation of such bodies accelerating out of galaxies 
would validate the hypothesis of anti-gravity.  If the hypervelocity stars that were 
observed to be exiting our galaxy by Brown et al [30, 31] were accelerating as 
they exit, they would likely be such escaped cores of composite stars.  The 
observation of such acceleration would validate the hypothesis of anti-gravity.   

V.	
  Conclusion	
  
John Wheeler was first to use the term “black hole” in publication, in 1968, and, in 
his autobiography, he recounts how physicists in 1939, at the dawn of the atomic 
age, readily verified the “postulate of fission” devised by Otto Frisch and Lise 
Meitner because atomic fission had an easily detected energy signature, and 
many physicists verified that energy signature within a day of receiving reports of 
the postulate [32].  Prior to those directed observations, that signature had never 
been both observed and reported.  Signatures, or indicators, of a Universe with 
anti-gravity and without black holes are observed candidate black holes with 
unequal apparent inertial mass and effective gravitational mass, and there are 
currently no reports of whether that signature does or does not exist.  
 
The presentation of the derivation of the radially symmetric vacuum anti-gravity 
metric solution establishes that geometric gravity is compatible with anti-gravity.  
The mathematical relationships of the metric are derived and not speculative; it is 
only the applicability of the metric to the physical realm that is subject to the 
confirmation of the anti-gravity hypothesis.   
 
The presentation of the anti-gravity hypothesis establishes that the hypothesis is 
credible and possibly a better characterization of the physical realm than 
conventional General Relativity.  All empirical validations of General Relativity 
across the 98 years since its proposal are also consistent with the hypothesis of 
anti-gravity.  I distinguish validation from inference.  For anti-gravity and in 
contrast to conventional theory, a different geometric structure for the Universe, 
one that includes boundaries between space-time regions of opposite 
gravitational polarities, and a timeline for its evolution will be inferred from 
existing and future observations.  
 
My hope is that my presentation on the detection of anti-gravity will motivate 
astronomers to look for candidate black holes with a greater apparent inertial 
mass than effective gravitational mass or for accelerating escaped composite 
star cores and that their observations would validate the hypothesis of anti-
gravity.  If the hypothesis of anti-gravity is correct, the long delayed unification of 
gravity with the other physical dynamics will likely happen only in the context of 
gravity with anti-gravity.   
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