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Summary 

 

A possibly novel mathematical structure is presented. The structure is a matrix whose elements are 

quaternions. The structure is distinct from a tensor. 

 

 

Preface 

 

A knowledge of quaternions, tensors, and linear algebra is required. 
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Discussion 

 

The objective of this text is to elaborate upon a mathematical structure that was first presented by 

Wolfgang Pauli
1
. That structure was a matrix whose elements were 0, ±i, or ±1. These matrices are today 

referred to as Pauli matrices. They were later applied and further developed by Paul Dirac
2 

into matrices 

that describe electron spin. Hence, those matrices are now referred to as Dirac Spinors. Dirac created 

those matrices to satisfy the equations ab = -ba and a
2
 = -b

2
. The author will argue that these matrices 

are actually members of a more general matrix structure. The author believes that this structure is 

distinct from a tensor. 

Before beginning the discussion of the topic, it is worthwhile to briefly describe quaternion 

multiplication and division. 

Quaternion Multiplication: 

Consider the details of a generic multiplication AB = C. 

��� +  ��� +  ��	 +  �
���� + �� +  �	 +  
�� =  �� +  ��� +  ��	 +  �
� 

This produces the following four equations for the scalar and individual vector components respectively: 

������: ��� −  ��� −  ��� −  �

 =  �� 

�: ��� +  ��� −  �
� +  ��
 =  �� 
	: ��� +  �
� +  ��� − ��
 =  ��  

�: �
� −  ��� +  ��� + ��
 =  �
  

This can be presented in matrix form as follows: 

��� −���� �� −�� −�
−�
 ���� �
�
 −�� �� −���� ��
� ���

����
���
� =  ��������


� 

The matrix form can be used to solve for the coefficients of B if A and C are known. If A and B are known 

then the coefficients of C can be determined directly. 

Quaternion Division: 

The method described below for matrix reduction requires the user to perform quaternion division to 

determine a ratio between two quaternions. It might not be immediately obvious how to perform this 

task. Fortunately, it is fairly straightforward. The problem is set up as follows: 
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� =  ! 

�! =   

This produces four simultaneous linear equations, with four unknown coefficients, as described above. 

This system is then solved to determine the four coefficients of A (rather than B as was done previously). 

General: 

Consider an arbitrary matrix [A] whose elements are all quaternions. The bold capital letter A is used to 

designate a quaternion and the [brackets] are used to designate a matrix. In principle, the matrix can be 

of any size. The matrix must be square if it is to be multiplied by another matrix as described above in 

the first paragraph. The author is primarily interested in matrices that can be used to manipulate 

quaternions. Therefore, the author will only consider matrices that are 4 x 4. 

"�# =  ���
��$,$ �$,&�&,$ �&,& �$,' �$,(�&,' �&,(�',$ �',&�(,$ �(,& �',' �',(�(,' �(,(���

�
 

�),* =  +��,),* + +��,),*� +  ����),*	 + +�
,),*� =  +��,),* +  +-,),* 

The variables "m" and "n" are used as indices respectively for the row and column of [A]. 

Next, define matrices [B], [C], and [D] as follows by multiplying arbitrary matrix [A] by a unit vector: 

"!# =  "�#� ; " # =  "�#	 ;  "/# =  "�#� 

Next, take the square of each matrix. 

"!#& =  −"�#& ;  " #& =  −"�#& ;  "/#& =  −"�#&: 0ℎ2�234�2 "!#& =  " #& =  "/#& =  −"�#& 

Next, perform the matrix multiplications. 

"!#" # =  "�#"�#�	 =  "�#&�; " #"!# =  "�#"�#	� =  −"�#&�: 0ℎ2�234�2 "!#" # =  −" #"!# 

"!#"/# =  "�#"�#�� =  −"�#&	; "/#"!# =  "�#"�#�� =  "�#&	: 0ℎ2�234�2 "!#"/# =  −"/#"!# 

" #"/# =  "�#"�#	� =  "�#&�;  "/#" # =  "�#"�#�	 =  −"�#&�: 0ℎ2�234�2 " #"/# =  −"/#" # 

These are precisely the requirements that Dirac sought. Any matrix [A] will satisfy the above. 

There is an additional identity for this method: 

"!#" #"/# =  "�#'�	� =  −"�#' 

The sequence of multiplication for this identity may be altered to change the sign between (+) and (-). 
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The reader may wish to envision [A] as a cube of dimensions 4 x 4 x 4. The front layer contains the scalar 

values. The next layer contains the i values. The third layer contains the j values, and the last layer 

contains the k values. 

The various rules, identities, and methods of linear algebra and matrices should be applicable to this 

structure. For example, there must be an identity matrix [I] that satisfies [A] [I] = [A]. There should also 

be an inverse matrix [A]
-1

 that satisfies [A] [A]
-1

 = [I]. It should also be possible to formulate various 

physical problems in terms of matrix operations. For example, the simple algebraic expression y = mx + b 

should have a matrix counterpart such as [Y] = [M][X] + [B]. 

�5$5&5'5(
� =  ���

�6$,$ 6$,&6&,$ 6&,& 6$,' 6$,(6&,' 6&,(6',$ 6',&6(,$ 6(,& 6',' 6',(6(,' 6(,(���
� �7$7&7'7(

� + �!$!&!'!(
�  

The solution set [X] would be determined by [X] = [M]
-1

([Y] - [B]). 

Tensor Comparison: 

The author has reviewed portions of Flügge
3
, Bishop and Goldberg

4
, and Simmonds

5
. Based upon their 

texts, the tensor structure that would most closely resemble the structure presented here is a 3rd order 

tensor with 4 dimensions. It would have 64 elements (4
3
) just as the structure presented here has 64 

elements. The difference between these two structures is that the elements of a tensor are all scalars, 

whereas the structure presented here includes the unit vectors. Both structures can operate upon 

vectors or quaternions.  

Multiplication: 

Now consider the multiplication of two arbitrary, square matrices [A] and [B] such that [A][B] = [C]. 

���
� $,$  $,& &,$  &,&  $,'  $,( &,'  &,( ',$  ',& (,$  (,&  ','  ',( (,'  (,(���

� =  ���
��$,$ �$,&�&,$ �&,& �$,' �$,(�&,' �&,(�',$ �',&�(,$ �(,& �',' �',(�(,' �(,(���

�
���
�!$,$ !$,&!&,$ !&,& !$,' !$,(!&,' !&,(!',$ !',&!(,$ !(,& !',' !',(!(,' !(,(���

�
 

The 1st term produced by this multiplication is 

 $,$ =  �$,$!$,$ +  �$,&!&,$ + �$,'!',$ +  �$,(!(,$ 

This equation appears to be fairly simple, but it is, in fact, quite difficult. Each of the two-term 

multiplications (example, A1,1B1,1) produces 16 terms (example, (a0)1,1(b0)1,1). Therefore, C1,1 is actually 

the sum of 64 terms. The matrix [C] contains 16 of these elements. Therefore, there are a total of 1024 

terms needed to produce [C]. This is 2
10

 (i.e., 2 raised to the power of 10) separate terms. 

In general, the elements of [C] can be represented as follows: 
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 ),* =  8 �),�!�,*
�9(
�9$  

In this summation, it should be understood that the scalar terms will be combined. The i terms will be 

combined, as will the j terms and the k terms. Therefore, there are actually four summations. The index 

"i" used in the summation should not be confused with the vector i. 

Next, consider the multiplication [B][A] = [D] such that the order of multiplication has been swapped. 

���
�/$,$ /$,&/&,$ /&,& /$,' /$,(/&,' /&,(/',$ /',&/(,$ /(,& /',' /',(/(,' /(,(���

� =  ���
�!$,$ !$,&!&,$ !&,& !$,' !$,(!&,' !&,(!',$ !',&!(,$ !(,& !',' !',(!(,' !(,(���

�
���
��$,$ �$,&�&,$ �&,& �$,' �$,(�&,' �&,(�',$ �',&�(,$ �(,& �',' �',(�(,' �(,(���

�
 

/),* =  8 !),���,*
�9(
�9$  

Inversion: 

Next, let us consider the inverse of matrix [A] such that [A][A]
-1

 = [I]. To avoid confusion, let us define 

the inverse matrix such that [A]
-1

 = [B]. Therefore, [A][B] = [I]. For purposes of this discussion, the matrix 

[A] is assumed to be known, and the objective is to determine the matrix [B]. 

���
�:$,$ :$,&:&,$ :&,& :$,' :$,(:&,' :&,(:',$ :',&:(,$ :(,& :',' :',(:(,' :(,(���

� =  ���
��$,$ �$,&�&,$ �&,& �$,' �$,(�&,' �&,(�',$ �',&�(,$ �(,& �',' �',(�(,' �(,(���

�
���
�!$,$ !$,&!&,$ !&,& !$,' !$,(!&,' !&,(!',$ !',&!(,$ !(,& !',' !',(!(,' !(,(���

�
 

�1 00 1 0 00 00 00 0 1 00 1� =  ���
��$,$ �$,&�&,$ �&,& �$,' �$,(�&,' �&,(�',$ �',&�(,$ �(,& �',' �',(�(,' �(,(���

�
���
�!$,$ !$,&!&,$ !&,& !$,' !$,(!&,' !&,(!',$ !',&!(,$ !(,& !',' !',(!(,' !(,(���

�
 

:),* =  8 �),�!�,*
�9(
�9$  

For m = n, this becomes 

:),*9) =  8 �),�!�,*9)
�9(
�9$ = 1 

For m ≠ n, this becomes  
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:),*=) =  8 �),�!�,*=)
�9(
�9$ = 0 

Viewed as a complete system, the matrix [A] is completely defined, and the matrix [I] is completely 

defined. The matrix [B] is completely unknown. Therefore, there are 64 unknowns (b0, bi, bj, bk)m,n that 

must be determined to specify [B]. Each of the Am,iBi,n multiplications produces 4 independent, linear 

equations. There are 16 of these Am,iBi,n multiplications. Therefore, there are 64 independent, linear 

equations. The entire system is therefore described by 64 independent, linear equations with 64 

unknowns. The system is not homogeneous because [I] ≠ 0. Therefore, there should be a unique 

solution.  

The next step is to set the problem up such that it can be solved by a standard method such as Gaussian 

Elimination. Consider an arbitrary AB multiplication as follows: 

��� +  ��� +  ��	 +  �
���� + �� +  �	 +  
�� =  �� +  ��� +  ��	 +  �
� 

This produces the following four equations: 

��� −  ��� −  ��� − �

 =  �� 

��� +  ��� − �
� +  ��
 =  �� 
��� + �
� +  ��� −  ��
 =  �� 

�
� −  ��� +  ��� + ��
 =  �
 

This is then represented in matrix form as: 

��� −���� �� −�� −�
−�
 ���� �
�
 −�� �� −���� ��
� ���

����
���
� =  ��������


� 

The next decision to make is what order in which to perform the AB multiplications so as to give the 

resulting coefficient matrix a desirable structure. If the 1st column of [B] is multiplied by each of the four 

rows of [A] then all of the information associated with Bi,1 (i.e., the 1st column of [B]) will be included in 

the first 16 equations. If this is then repeated for the next three columns of B, the resulting matrix 

system will look something like the following: 

�� 00 � 0 00 00 00 0 � 00 �� �$&'(
� =  �>$>&>'>(

� 

All of the values in this representation are scalars. The coefficient matrix is sparse with the non-zero 

terms clustered around the diagonal. Each letter "a" represents a 16 x 16 group of coefficients. The 
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coefficient values "a" actually repeat 4 times, since each column of [B] is multiplied by the same set of 

values from each row of [A]. The "b" values are grouped by column. Each "b" represents the 16 

unknown values that are associated with the four Bm,n for that set of row-column multiplications. The 

values for "I" are mostly "zeros" with there being a single "1" value in each of the four groups. The value 

"1" is in a different position in each "I". This system can be solved using Gaussian Elimination. 

For diagonal matrices, the inversion problem is fairly simple because a quaternion multiplied by its 

conjugate produces a scalar term only. Therefore, it is simply a question of scaling the conjugate term 

properly to produce a value of 1 along the diagonal of [I]. 

Here are a few simple examples: 

���
�+1 + �, 00 +1 − �, 0 00 00 00 0 +	 + �, 00 +	 − �,���

�?$
=  

��
��
��
��12 +1 − �, 0

0 12 +1 + �, 0 00 0
0 00 0

12 +−	 − �, 0
0 12 +−	 + �,��

��
��
��
 

�1 00 � 0 00 00 00 0 	 00 ��
?$

= �1 00 −� 0 00 00 00 0 −	 00 −��  
Matrix Reduction: 

In general, it is possible to convert a generic matrix [A] into forms such as upper triangular, lower 

triangular, and diagonal. This process requires the use of quaternion division and quaternion 

multiplication rather than their scalar counterparts. Suppose that we wish to convert matrix [A] into 

diagonal matrix [D]. Begin with matrix [A] as follows: 

"�# =  ���
��$,$ �$,&�&,$ �&,& �$,' �$,(�&,' �&,(�',$ �',&�(,$ �(,& �',' �',(�(,' �(,(���

�
 

Define a quaternion ratio R2,1 such that R2,1 = -A2,1/A1,1 for A1,1 ≠ 0. This R will be used to eliminate A2,1 

from row 2 of matrix [A]. There will also be R values for row 3 and row 4 of [A]. The A2,1 term is 

eliminated by multiplying the entire 1st row by R2,1 and adding the result to the 2nd row to produce a 

new 2nd row. 

�′&,* =  �$,*B&,$ +  �&,* 34� C = 1, 2, 3, 4 

This is repeated for row 3 and 4 as follows: 
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�′',* =  �$,*B',$ +  �',* 34� C = 1, 2, 3, 4 

�′(,* =  �$,*B(,$ +  �(,* 34� C = 1, 2, 3, 4 

After these operations are completed, the matrix [A'] is as follows: 

"�′# =  ���
���$,$ �$,&0 �′&,&

�$,' �$,(�′&,' �′&,(0 �′',&0 �′(,&
�′',' �′',(�′(,' �′(,(���

��
 

The next step is to eliminate A'3,2, A'4,2 and A1,2. This is done using A'2,2 in a manner similar to the above. 

Define a quaternion ratio R'3,2 such that R'3,2 = -A'3,2/A'2,2 for A'2,2 ≠ 0. There will also be R' values for row 

1 and row 4.  

�′′',* =  �′&,*B′',& +  �′',* 34� C = 2, 3, 4 

�′′(,* =  �′&,*B′(,& +  �′(,* 34� C = 2, 3, 4 

�′′$,* =  �′&,*B′$,& + �$,* 34� C = 2, 3, 4 

After these operations are completed, the matrix [A''] is as follows: 

"�′′# =  ���
���$,$ 00 �′&,& �′′$,' �′′$,(�′&,' �′&,(0 00 0 �′′',' �′′',(�′′(,' �′′(,(���

��
 

This process is repeated two more times, for a total of four reductions, with the final result being a 

diagonal matrix [D] as follows: 

"/# =  ���
���$,$ 00 �′&,& 0 00 00 00 0 �′′',' 00 �′′′(,(���

��
 

This matrix reduction can be represented by multiplication by a transformation matrix [T] as follows: 

"/# =  "F#"�# 

and 

"F#?$"/# =  "�# 

At first consideration, these relations do not appear to be useful since [D] must be generated by manual 

reduction. The matrix [T]
-1

 is determined using Gauss Elimination on the 64-equation system. The matrix 
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[T] is then determined by inverting [T]
-1

. The usefulness of [T] and [T]
-1

 will become clear when 

considering the square root of a matrix. 

Upper triangular and lower triangular reductions are produced by the same process except only the 

rows below or above the diagonal element are reduced. 

The Square of a Matrix: 

Now let us consider the square of matrix [A] such that [A]
2
 = [B]. 

���
�!$,$ !$,&!&,$ !&,& !$,' !$,(!&,' !&,(!',$ !',&!(,$ !(,& !',' !',(!(,' !(,(���

� =  ���
��$,$ �$,&�&,$ �&,& �$,' �$,(�&,' �&,(�',$ �',&�(,$ �(,& �',' �',(�(,' �(,(���

�
���
��$,$ �$,&�&,$ �&,& �$,' �$,(�&,' �&,(�',$ �',&�(,$ �(,& �',' �',(�(,' �(,(���

�
 

It is simple enough to go from [A] to [A]
2
. This is a matrix multiplication as described above where  

!),* =  8 �),���,*
�9(
�9$  

But what of the inverse problem? Is it possible to determine the square root of a matrix? A quick search 

of the internet indicates that the answer is in the affirmative. The website Wikipedia references several 

methods of determining the square root of a matrix. The simplest method appears to be 

diagonalization. Essentially, the matrix [B] is converted into diagonal form [D] by using transformation 

matrix [T]. The square roots are then determined for each of the diagonal elements. The resulting 

square root matrices are then transformed back into non-diagonal form using the inverse 

transformation matrix [T]
-1

. This process is easier to understand if the matrix [T] is thought of as the 

information needed to convert into diagonal form. Reverting back to non-diagonal form is then 

accomplished by the information in [T]
-1

. 

Next, let us suppose that the original matrix has been converted into diagonal form [D] such that 

�/$ 00 /& 0 00 00 00 0 /' 00 /(
� =  ��$ 00 �& 0 00 00 00 0 �' 00 �(

� ��$ 00 �& 0 00 00 00 0 �' 00 �(
� 

The problem is to determine a quaternion A for each element of the diagonal matrix such that A
2
 = D. 

The square of quaternion A simplifies to the following: 

�& =  ��& −  ���& +  ��& + �
&� +  2������ + ��	 + �
�� 

For each diagonal element, there are four equations with four unknown coefficients to determine. 

Therefore, there should be a solution for each diagonal element. However, the problem is not linear. 

The complicating factors are that the coefficients are squared for the scalar component, and they are 

multiplied by twice the scalar coefficient for the vector components. 
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As an example, let us determine the square root of the following: 

�/$ 00 /& 0 00 00 00 0 /' 00 /(
� =  �1 00 � 0 00 00 00 0 	 00 �� =  ��$ 00 �& 0 00 00 00 0 �' 00 �(

�
&

 

The value for A1 is simply ±1 since there are no vector terms in D1. The values for A2, A3, and A4 are a 

little more complicated. Next, consider A2. Since there is no scalar term (i.e., a0
2
 - ai

2
 = 0), it follows that 

a0
2
 = ai

2
, and that a0 = ±ai. Since di equals 1, it follows that 2a0ai = 1. Therefore, the signs of a0 and ai must 

either both be positive or both be negative. Therefore, a0 = ai = ±(1/sqrt 2). Since dj and dk are each 

equal to zero, it follows that aj and ak are also zero. The A3 and A4 elements are solved similarly. 

Therefore, the square root of matrix [D] is as follows: 

"�# =  ��$ 00 �& 0 00 00 00 0 �' 00 �(
� =  

���
���
��±1 00 ± 1√2 +1 + �, 0 00 0

0 00 0 ± 1√2 +1 + 	, 0
0 ± 1√2 +1 + �,���

���
��
 

The next example will illustrate how it is possible for a solution to be not unique. 

�/$ 00 /& 0 00 00 00 0 /' 00 /(
� =  �+1 00 −1 0 00 00 00 0 −1 00 −1� =  ��$ 00 �& 0 00 00 00 0 �' 00 �(

�
&

 

"�# =  ��$ 00 �& 0 00 00 00 0 �' 00 �(
� =  �±1 00 ±� 0 00 00 00 0 ±	 00 ±�� 

Other: 

In all of the above, the focus is upon multiplication of two square matrices. It is also possible to multiply 

a square matrix by a column matrix, and it is possible to multiply a square matrix by a single quaternion. 

These are illustrated below. 

" # =  "�#"!# 

� $ & ' (
� = ���

��$,$ �$,&�&,$ �&,& �$,' �$,(�&,' �&,(�',$ �',&�(,$ �(,& �',' �',(�(,' �(,(���
� �!$!&!'!(

� 
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 ) =  8 �),�!�
�9(
�9$  

" # =  "�#! 

� $ & ' (
� = ���

��$,$ �$,&�&,$ �&,& �$,' �$,(�&,' �&,(�',$ �',&�(,$ �(,& �',' �',(�(,' �(,(���
� � $&�'	(�� 

 ) =  �),$$ + �),&&� + �),''	 +  �),((� 

It is somewhat ironic that the notation for multiplication by a single quaternion is the most complex. The 

previous notations could also be utilized if it is recognized that most of the coefficients are zero. 
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