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Abstract

This work presents a relativistic mathematical space-distributed model

for electrons and positrons, model that is based on Fundamental Particles

(FPs) that are continuously emitted and absorbed by the electrons and

positrons and where the energy is stored as rotations at the FPs defin-

ing longitudinal and transversal angular momenta. The rays of FPs from

electrons or positrons cross in space at focal points where traditionally the

energies of electrons or positrons are thought to be concentrated. Electrons

and positrons interact via the angular momenta of their FPs. The rules of

interactions between the longitudinal and transversal angular momenta of

FPs are defined in that way, that the linear momenta for all known forces

can be derived as rotors from one vector field generated by the longitudinal

and transversal angular momenta of the FPs.

The model allows the deduction of all experimentally proven basic laws

of physics, namely, Coulomb, Ampere, Lorentz, Gravitation, Maxwell and

Bragg. It also explains the coexistence of particles with same charge in

nucleons without the need of gluons, and explains the flattening of galaxies’

rotation curve without defining dark matter.

From the model results that the focal radius of a subatomic particle is

inverse proportional to its energy and, that the incremental time to generate

the force out of linear momenta is quantized.

The neutrino is defined as a pair of FPs with opposed angular momenta

and the photon introduced as a sequence of neutrinos.

1 Introduction.

The methodology of today’s theoretical physics [1] to [9] consists in introducing first all

known forces by separate definitions independent of their origin, arriving to quantum

mechanics after postulating the particle’s wave, and is then followed by attempts to

infer interactions of particles and fields postulating the invariance of the wave equa-

tion under gauge transformations allowing the addition of minimal substitutions. The

concept is shown in Fig. 1.
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Figure 1: Methodology followed by the present approach

The present approach [10] models subatomic particles as emitting and absorbing

continuously fundamental particles with longitudinal and transversal angular momenta

(fields), and postulates then the interaction laws between angular momenta in that way

that it is possible to deduce all known forces.

Today´s theoretical physics also postulates the particle-wave (de Broglie) to explain

patterns observed in particle diffraction that look similar to patterns observed in wave

diffraction experiments. The present approach shows that the patterns observed in

particle diffraction are generated by quantized bending momenta that result from the

quantized irradiated energy.

The approach is based on the following main conceptual steps: The energy of an
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electron or positron is modeled as being distributed in the space around the particle‘s

radius ro and stored in fundamental particles (FPs) with longitudinal and transversal

angular momenta. FPs are emitted continuously with the speed ve s̄e and regenerate

the electron or positron continuously with the speed vr s̄. There are two types of FPs,

one type that moves with light speed and the other type that moves with nearly infinite

speed relative to the focal point of the electron or positron. The concept is shown in

Fig. 2.
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Figure 2: Unit vector s̄e for an emitted FP and unit vectors s̄ and n̄
for a regenerating FP of a BSP moving with v 6= c

Electrons and positrons emit and are regenerated always by different types of FPs

(see sec. 11) resulting the accelerating and decelerating electrons and positrons which

have respectively regenerating FPs with light and infinite speed. The density of FPs

around the particle‘s radius ro has a radial distribution and follows the inverse square

distance law.

Field magnitudes dH̄ are defined as square roots of the energy stored in the FPs.

Interaction laws between the fields dH̄ of electrons and positrons are defined to obtain

pairs of opposed angular momenta on their regenerating FPs, pairs that generate linear

momenta responsible for the forces.

Based on the conceptual steps, equations for the vector fields dH̄ are obtained

that allow the deduction of all experimentally proven basic laws of physics, namely,

Coulomb, Ampere, Lorentz, Gravitation, Maxwell, Bragg, Stern Gerlach and the flat-

tening of galaxies’ rotation curve.
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Note: In this approach, Basic Subatomic Particles (BSPs) are the electron, the

positron and the neutrino. The electron and the positron are BSPs with speeds lower

than light speed and which emit and are regenerated by FPs. The neutrino is a BSP

with light speed formed by two FPs with opposed angular momenta.

Complex Subatomic Particles (CSPs) are the proton, neutron and nuclei of atoms.

2 Space distribution of the energy of basic sub-

atomic particles.

The total energy of a basic subatomic particle (BSP) with constant v 6= c is

E =
√
E2
o + E2

p Eo = m c2 Ep = p c p =
m v√
1− v2

c2

(1)

The total energy E = Ee is split in

Ee = Es + En with Es =
E2
o√

E2
o + E2

p

and En =
E2
p√

E2
o + E2

p

(2)

and differential emitted dEe and regenerating dEs and dEn energies are defined

dEe = Ee dκ = ν Je dEs = Es dκ = ν Js dEn = En dκ = ν Jn (3)

with the distribution equation

dκ =
c

2 v

∣∣∣∣ v̄s|v̄e| × v̄r
|v̄r|

∣∣∣∣ ror2 dr dϕ dγ

2π
=

1

2

ro
r2
dr sinϕ dϕ

dγ

2π
(4)

The distribution equation dκ gives the part of the total energy of a BSP moving

with v 6= c contained in the differential volume dV = dr rdϕ r sinϕdγ of a FP.

The differential energies are stored in the longitudinal angular momenta J̄e = Je s̄e

of emitted FPs and in the longitudinal J̄s = Js s̄ and transversal J̄n = Jn n̄ angular

momenta of regenerating FPs.

The rotation sense in moving direction of emitted longitudinal angular momenta

J̄e defines the sign of the charge of a BSP. Rotation senses of J̄e and J̄s are always

opposed. The direction of the transversal angular momentum J̄n is the direction of a

right screw that advances in the direction of the velocity v and is independent of the

sign of the charge of the BSP. The concept is shown in Fig. 2.

Conclusion: The elementary charge is replaced by the energy (or mass) of a resting
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electron (Ee = 0.511 MeV ). The charge of a complex SP (e.g. proton) is given by the

difference between the constituent numbers of BSPs with positive J̄
(+)
e and negative

J̄
(−)
e that integrate the complex SP, multiplied by the energy of a resting electron. As

examples we have for the proton with n+ = 919 and n− = 918 and a binding energy

of EBprot = −0.43371 MeV a charge of (n+ − n−) ∗ 0.511 = 0.511 MeV , and for the

neutron with n+ = 919 and n− = 919 and a binding energy of EBneutr = 0.34936 MeV

a charge of (n+ − n−) ∗ 0.511 = 0.0 MeV .

The unit of the charge thus is the Joule (or kg). The conversion from the electric

current Ic (Ampere) to the mass current Im is given by

Im =
m

q
Ic = 5, 685631378 · 10−12 Ic

[
kg

s

]
(5)

with m the electron mass in kilogram and q the elementary charge in Coulomb.

Note: The Lorentz invariance of the charge in today’s theory is equivalent to the

invariance of the difference between the constituent numbers of BSPs with positive

J̄
(+)
e and negative J̄

(−)
e that integrate the complex SP, multiplied by the energy of a

resting electron. In the present paper the denomination charge will be used according

the previous definition.

3 Definition of the field magnitudes dHs and dHn.

The field dH at a point in space is defined as that part of the square root of the energy

of a BSP that is given by the distribution equation dκ. The differential values dE and

dH refere to the differential volume dV = dr rdϕ r sinϕdγ of a FP (see also eq. (2)).

For the emitted field we have

dH̄e = He dκ s̄e with H2
e = Ee (6)

The longitudinal component of the regenerating field at a point in space is defined

as

dH̄s = Hs dκ s̄ with H2
s = Es =

E2
o√

E2
o + E2

p

(7)

The transversal component of the regenerating field at a point in space is defined

as

dH̄n = Hn dκ n̄ with H2
n = En =

E2
p√

E2
o + E2

p

(8)

5



For the total field magnitude He it is

H2
e = H2

s + H2
n with H2

e = Ee (9)

The vector s̄e is an unit vector in the moving direction of the emitted FP. The

vector s̄ is an unit vector in the moving direction of the regenerating FP. The vector

n̄ is an unit vector transversal to the moving direction of the regenerating FP and

oriented according the right screw rule relative to the velocity v̄ of the BSP.

Conclusion: BSPs are structured particles with emitted and regenerating FPs

with longitudinal and transversal angular momenta. The rotation sense of the angu-

lar momenta of the emitted FPs define the sign of the charge of the BSP and the

transversal angular momenta of the regenerating FPs define the mechanical and mag-

netic moments.

4 Interaction laws for field components and gener-

ation of linear momentum.

The interaction laws for the field components dH̄s and dH̄n are derived from the follow-

ing interaction postulates for the longitudinal J̄s and transversal J̄n angular momenta.

1) If two fundamental particles from two static BSPs cross, their longitudinal ro-

tational momenta Js generate the following transversal rotational momentum

J̄ (s)
n1

= − sign(J̄s1) sign(J̄s2) (
√
Js1 s̄1 ×

√
Js2 s̄2) (10)

If both sides of eq. (10) are multiplied with
√
νs1 dκ1 and

√
νs2 dκ2, with νs the

rotational frequency, results the differential energy

dE(s)
n1

=
∣∣∣ √νs1 Js1 dκ1 s̄1 ×

√
νs2 Js2 dκ2 s̄2

∣∣∣ (11)

or

dE(s)
n1

= | dHs1 s̄1 × dHs2 s̄2 | with dHsi s̄i =
√
νsi Jsi dκi s̄i (12)

If at the same time two other fundamental particles from the same two static BSPs

generate a transversal rotational momentum −J̄ (s)
n1 , so that the components of the pair

are equal and opposed, the generated linear momentum on the two BSPs is

dp =
1

c
dE(s)

p with dE(s)
p =

∣∣∣∣∣
∫ ∞
rr1

dHs1 s̄1 ×
∫ ∞
rr2

dHs2 s̄2

∣∣∣∣∣ (13)
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2) If two fundamental particles from two moving BSPs cross, their transversal

rotational momenta Jn generate the following rotational momentum.

J̄
(n)
1 = − sign(J̄s1) sign(J̄s2) (

√
Jn1 n̄1 ×

√
Jn2 n̄2) (14)

If both sides of the equation are multiplied with
√
νn1 dκ1 and

√
νn2 dκ2, with νn

the rotational frequency, and the absolute value is taken, it is

dE
(n)
1 = | dHn1 n̄1 × dHn2 n̄2 | with dHni

n̄i =
√
νni

Jni
dκi n̄i (15)

If at the same time two other fundamental particles from the same two moving

BSPs cross, and their transversal rotational momenta generate a rotational momentum

−J̄ ′(n)1 , so that the components of the pair are equal and opposed, the generated linear

momentum on the two BSPs is

dp =
1

c
dE(n)

p with dE(n)
p =

∣∣∣∣∣
∫ ∞
rr1

dHn1 n̄1 ×
∫ ∞
rr2

dHn2 n̄2

∣∣∣∣∣ (16)

3) If a FP 1 with an angular momentum J̄1 crosses with a FP 2 with a longitudinal

angular momentum J̄s2 , the orthogonal component of J̄1 to J̄s2 is transferred to the

FP 2, if at the same instant between two other FPs 3 and 4 an orthogonal component

is transferred which is opposed to the first one. (see Fig. 14)

5 Fundamental equations for the calculation of lin-

ear momenta between subatomic particles.

The Fundamental equations for the calculation of linear momenta according to the

interaction postulates are:

a) The equation for the calculation of linear momentum between two static BSPs

according postulate 1) is

dpstat s̄R =
1

c

∮
R

{
d̄l · (s̄e1 × s̄s2)

2πR

∫ ∞
r1

He1 dκr1

∫ ∞
r2

Hs2 dκr2

}
s̄R (17)

where He1 dκr1 s̄e1 is the longitudinal field of the emitted FPs of particle 1 and

Hs2 dκr2 s̄s2 is the longitudinal field of the regenerating FPs of particle 2. The unit

vector s̄R is orthogonal to the plane that contains the closed path with radius R.

The linear momentum generated between two static BSPs is the origin of all move-

ments of particles. The law of Coulomb is deduced from eq. (17) and because of its
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importance is analyzed in chapter 6.

b) The equation for the calculation of linear momentum between two moving BSPs

according to postulate 2) is

dpdyn s̄R =
1

c

∮
R

{
d̄l · (n̄1 × n̄2)

2πR

∫ ∞
r1

Hn1 dκr1

∫ ∞
r2

Hn2 dκr2

}
s̄R (18)

where Hn1 dκr1n̄1 is the transversal field of the regenerating FPs of particle 1 and

Hn2 dκr2n̄2 is the transversal field of the regenerating FPs of particle 2.

The laws of Lorentz, Ampere and Bragg are deduced from equation (18).

c) The equations for the calculation of the induced linear momentum between a

moving and a static probe BSPp according to postulate 3) are

dp
(s)
ind s̄R =

1

c

∮
R

{
d̄l · s̄
2πR

∫ ∞
rr

Hs dκrr

∫ ∞
rp

Hsp dκrp

}
s̄R (19)

dp
(n)
ind s̄R =

1

c

∮
R

{
d̄l · n̄
2πR

∫ ∞
rr

Hn dκrr

∫ ∞
rp

Hsp dκrp

}
s̄R (20)

The upper indexes (s) or (n) denote that the linear momentum d
′
pind on the static

probe BSPp (subindex sp) is induced by the longitudinal (s) or transversal (n) field

component of the moving BSP.

The Maxwell and the gravitation laws are deduced from equations (19) and (20).

The total linear momentum for all equations is given by

p̄ =

∫
σ

dp s̄R (21)

where
∫
σ

symbolizes the integration over the whole space.

Conclusion: All forces can be expressed as rotors from the vector field dH̄ gener-

ated by the longitudinal and transversal angular momenta of the two types of funda-

mental particles defined in chapter 1.

dF̄ =
dp

dt
=

1

8 π

√
m ro rot

d

dt

∫ ∞
rr

dH̄ (22)

6 Analysis of linear momentum between two static

BSPs.

In this section the static eq.(17) is analyzed in order to explain

• why BSPs of equal sign don’t repel in atomic nuclei
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• how gravitation forces are generated

• why atomic nuclei radiate

Although the analysis is based only on the static eq.(17) for two BSPs, neglecting

the influence of the important dynamic eq.(18) that explains for instance the magnetic

moment of nuclei, it shows already the origin of the above listed phenomena.

With the integration limits shown in Fig. 3 and considering that for static BSPs it

is ro1 = ro2 = ro and m1 = m2 = m, the integration limits are

1 2

d

minj

maxj

1or
2or

1r2r
b

Figure 3: Integration limits for the calculation of the linear momentum
between two static basic subatomic particles at the distance d

ϕmin = arcsin
ro
d

ϕmax = π − ϕmin for d ≥
√
r2o + r2o (23)

ϕmin = arccos
d

2 ro
ϕmax = π − ϕmin for d <

√
r2o + r2o (24)

and eq.(17) transforms to

pstat =
m c r2o
4 d 2

∫ ϕ1max

ϕ1min

∫ ϕ2max

ϕ2min

| sin3(ϕ1 − ϕ2)| dϕ2 dϕ1 (25)

The double integral becomes zero for d → 0 because the integration limits ap-

proximate each other taking the values ϕmin = π
2

and ϕmax = π
2
. For d � ro the

double integral becomes a constant because the integration limits tend to ϕmin = 0

and ϕmax = π.

Fig.4 shows the curve of eq.(17) where five regions can be identified with the help

of d/ro = γ from the integration limits:

1. From 0� γ � 0.1 where pstat = 0

2. From 0.1� γ � 1.8 where pstat ∝ d 2
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Figure 4: Linear momentum pstat as function of γ = d/ro between two static
BSPs with maximum at γ = 2

3. From 1.8� γ � 2.1 where pstat ≈ constant

4. From 2.1� γ � 518 where pstat ∝ 1
d

5. From 518� γ �∞ where pstat ∝ 1
d 2 (Coulomb)

The first and second regions are where the BSPs that form the atomic nucleus

are confined and in a dynamic equilibrium. BSPs of different sign of charge don’t mix

in the nucleus because of the different signs their longitudinal angular momentum of

the emitted FPs have.

For BSPs that are in the first region, the attracting or repelling forces are zero

because the angle β between their longitudinal rotational momentum is β = π + ϕ1 −
ϕ2 = π . BSPs that migrate outside the first region are reintegrated or expelled with

high speed when their FPs cross with FPs of the remaining BSPs of the atomic nucleus

because the angle β < π.

Fig.5 shows two neutrons where at neutron 1 the migrated BSP ”b” is reintegrated,

inducing at neutron 2 the gravitational linear momentum according postulate 3) of sec

4.
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Figure 5: Transmission of momentum dp from neutron 1 to neutron 2

At stable nuclei all BSPs that migrate outside the first region are reintegrated, while

at unstable nuclei some are expelled in all possible combinations (electrons, positrons,

hadrons) together with neutrinos and photons maintaining the energy balance.

As the force described by eq. (20) induced on other particles during reintegration

has always the direction and sense of the reintegrating particle (right screw of J̄n)

independent of its charge, BSPs that are reintegrated induce on other atomic nuclei

the gravitation force. The inverse square distance law for the gravitation force results

from the inverse square distance law of the radial density of FPs that transfer their

angular momentum from the moving to the static BSPs according postulate 3) of sec.

4. Gravitation force is thus a function of the number of BSPs that migrate and are

reintegrated in the time ∆t (migration current), and the reintegration velocity.

The third region gives the width of the tunnel barrier through which the ex-

pelled particles of atomic nuclei are emitted. As the reintegration process of BSPs that

migrate outside the first region depend on the special dynamic polarization of the re-

maining BSPs of the atomic nucleus, particles are not always reintegrated but expelled

when the special dynamic polarization is not fulfilled. The emission is quantized and

follows the exponential radioactive decay law.

The fourth region is a transition region to the Coulomb law.
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The transition value γtrans = 518 to the Coulomb law was determined by comparing

the tangents of the Coulomb equation and the curve from Fig.4. At γtrans = 518 the

ratio of their tangents begin to deviate from 1.

At the transition distance dtrans, where γtrans = 518, the inverse proportionality to

the distance dtrans from the neighbor regions must give the same force Ftrans

Ftrans =
1

∆t

K
′

dtrans
=

1

∆t

K
′
F

d 2
trans

(26)

with K
′

and K
′
F the proportionality factors of the fourth and fifth regions.

The transition distance for a Carbon nucleus C12 is, with mp and mn the mass of

the proton and neutron respectively,

dtrans = γ ro = γ
~ c
Eo

= 518
~ c

6 (mp +mn) c2
= 9.0724 fm (27)

The fifth region is where the Coulomb law is valid.

7 Time quantification and the radius of a BSPs.

The relation between the total force and the linear momentum for all the fundamental

equations of chapter 5 is given by

F̄ =
∆p

∆t
s̄R with ∆p = p− 0 = p (28)

with the momentum time ∆t between the two BSPs defined as

∆t = K ro1 ro2 where K = 5.4271 · 104
[ s
m2

]
(29)

is a constant and ro1 and ro2 are the radii of the BSPs.

The constant K results when eqs. (17) and (18) are equalized respectively with the

Coulomb and the Ampere equations

Fstat =
1

4πεo

Q1 Q2

d 2
Fdyn =

µo
2π

I1 I2
d

(30)

The radius ro of a particle is given by

ro =
~ c
E

with E =
√
E2
o + E2

p for BSPs with v 6= c (31)
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and

E = ~ω for BSPs with v = c (32)

and is derived from the quantified far field of the irradiated energy of an oscillating

BSP [10].

8 Quantification of irradiated energy.

To express the energy irradiated by a BSP as quantified irradiation we start with

E = Ee = Es + En =
√
E2
o + E2

p ∆t = Krorop ro =
~ c
Ee

rop =
~ c
Eo

(33)

with ro the radius of the moving particle and rop the radius of the probe particle

and

∆ot = ∆t(v=0) = K
~2 c2

E2
o

= 8.082097 · 10−21 s with K = 5.4274 · 104 s/m2 (34)

We now define Ee ∆t and get

Ee ∆t = K
~2 c2

Eo
= K

h2

4 π2 m
= h Ee = h νe νe =

1

∆t
(35)

equation that is valid for every speed 0 ≤ v ≤ c of the BSP giving

Ee ∆t = Eo ∆ot = h Eo = h νo νo =
1

∆ot
= 1.2373 · 1020 s−1 (36)

where h is the Planck constant.

Note: In the equation Ee ∆t = h the energy Ee is the total energy of the moving

particle and the differential time ∆t is the time the differential momentum ∆p is active

to give the force F = ∆p/∆t between the moving and the probe particle.

For the expression of the energy E = J ν two different assumptions are possible:

• That the angular momentum J is variable and that an universal frequency νg

exists.

• That an universal angular momentum h exists and that the frequency ν is vari-

able. This assumption will be followed now.
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We define the quantized emission of energy at a BSP defining the power as

Pe =
Ee
∆ot

= Ee νo (37)

With the equation (36) which states that Ee ∆t = Eo ∆ot = h we get

Pe =
Ee
∆ot

= Ee νo =
Eo
∆t

= Eo νe = Eo (ν
′′

s + ν
′′

n) = P
′′

s + P
′′

n =
(Es + En)

∆ot
(38)

or

Pe = Eo νe = Ee νo P
′′

s = Eo ν
′′

s = Es νo P
′′

n = Eo ν
′′

n = En νo (39)

Note: The emitted and regenerating powers have different frequencies νe, ν
′′
s and

ν
′′
n but a common energy quanta Eo.

We also get

ν
′′

s =
Es

Eo ∆ot
=
Es
Eo

νo =
Es
h

and ν
′′

n =
En

Eo ∆ot
=
En
Eo

νo =
En
h

(40)

and conclude that

Ee = h νe Es = h ν
′′

s En = h ν
′′

n with νe = ν
′′

s + ν
′′

n (41)

With

dE = E dκ dH =
√
E dκ = H dκ (42)

and

H√
∆t

=
√
E ν =

√
P (43)

the equations for the Coulomb, Ampere and induction forces of sec. 5 can be

transformed to

d
′
F s̄R =

d
′
p

∆ot
s̄R ∝

1

c

∮
R

{∫ ∞
r1

H1√
∆ot

dκr1

∫ ∞
r2

H2√
∆ot

dκr2

}
s̄R (44)

and expressed as a function of the powers of the interacting BSPs

d
′
F s̄R =

d
′
p

∆ot
s̄R ∝

1

c

∮
R

{∫ ∞
r1

√
P1 dκr1

∫ ∞
r2

√
P2 dκr2

}
s̄R (45)
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with

P1 = E1 νo = Eo ν1 and P2 = E2 νo = Eo ν2 (46)

The differential energy fluxes are given with

dPe = νe Eo dκ dPs = νs Eo dκ dPn = νn Eo dκ (47)

and with

dκ =
1

2

ro
r2
dr sinϕ dϕ

dγ

2π
and dA = r2 sinϕ dϕ dγ (48)

The concept is shown in Fig. 6.

Electron

jd

cve =
r

r

gd
h

dS

dA

j

Figure 6: Emitted Energy flux density dS of a moving electron

we define the differential energy flux density as

dS =
dP

dA
=

1

4π
ν Eo

ro
r4
dr

J

m2 s
(49)

The cumulated differential energy flux density is∫ ∞
r

dS =
1

dA

∫ ∞
r

dP = − 1

12π
ν Eo

ro
r3

J

m2 s
(50)

Note: The differential energy flux density is independent of ϕ and γ and therefore

independent of the direction of the speed v. This is because of the relativity of the

speed v that doesn´t define who is moving relative to whom.

Physical interpretation of an electron and positron as radiating and ab-

sorbing FPs:
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The emitted differential energy is

dEe = Ee dκ =
h

∆t

1

2

ro
r2
dr sinϕ dϕ

dγ

2π
(51)

With the help of Fig. 6 we see that the area of the sphere is A = 4πr2, and we get

dEe =
h

∆t A
ro dr sinϕ dϕ dγ (52)

We now define

dEe = σh ro dr sinϕ dϕ dγ with σh =
h

∆t A
(53)

where σh is the current density of fundamental angular momentum h.

We can also write

dEe = σh dA with dA = ro dr sinϕ dϕ dγ (54)

9 Ampere bending (Bragg law).

From sec. 4 we have that the momentum dp̄ generated between two moving BSPs due

to the interaction of their transversal angular momentum is

dp̄ =
1

c

∣∣∣∣∣
∫ ∞
rr1

dHn1 n̄1 ×
∫ ∞
rr2

dHn2 n̄2

∣∣∣∣∣ (55)

The Bragg equation is deduced from the equation of the force density between two

parallel conductors [6]

F

dl
=

b

c ∆ot

r2o
64 m

Im1 Im2

d

∫ γ2max

γ2min

∫ γ1max

γ1min

sin2(γ1 − γ2)√
sin γ1 sin γ2

dγ1 dγ2 (56)

with
∫ ∫

= 5.8731 and b = 0.25.

Equation (56) results from eq. (18) of sec. 4 when applied to two parallel conductors

with mass currents Im1 and Im2 where for v � c

Im = ρx m v ρx =
Nx

∆x
∆ot = K r2o (57)

The linear density ρx is defined as the number Nx of BSPs per length ∆x of the

conductor. The relation between the mass current Im and the electric current Ic is

given by

Im =
m

q
Ic = 5, 685631378 · 10−12 Ic

[
kg

s

]
(58)
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with m the electron mass in kilogram and q the elementary charge in Coulomb.

The BSPs that interact now trough their transversal angular momentum are the

moving BSP and the parallel reintegrating BSP of a nucleon described in sec. 6. The

concept is shown in Fig. 7

d
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2v

Nucleus with BSPs

Nucleus with BSPs

111 mmm D=--+

222 mmm D=--+

21 mmm D-D=

mh

Figure 7: Bending of BSPs

We get with

Im = ρx m v ρx =
Nx

∆x
=

1

2 ro
p = F ∆ot (59)

the bending momentum p

p =
b

4

5.8731

64 c

√
m v1

√
m v2

d
∆l (60)

and with
√
En =

√
h νn = Hn =

√
m v2 =

√
m v we get

p =
b

4

5.8731

64 c

h
√
νn1 νn2

d
∆l (61)

The concept is shown in Fig. 8

From sec. 8 we have that

Pn =
En
∆ot

= En νo = Eo νn or νn =
En
Eo

νo (62)

and we get

p =
b

4

5.8731

64 c

h
√
En1 En2 νo

Eo d
∆l (63)
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Figure 8: Geometric relations for single moving BSPs.

For the moving BSP we have, that ∆l = v1 ∆
′′
t and the product

√
En1 ∆

′′
t =

Hn1 ∆
′′
t =
√
m ∆l is independent of the velocity v1 for a given ∆l. The increase of

Hn1 with the speed v1 is compensated by the reduction of the time ∆
′′
t the moving BSP

remains in ∆l, reducing proportionally the number of fundamental particles emitted

by the moving BSP that can interact with fundamental particles of the reintegrating

BSP, while moving through ∆l .

We know that the bending is quantized and we introduce in the equation the quan-

tization of the energy making En1 = En2 = Eo and we get

pb =
b

4

5.8731

64 c

h νo
d

∆l n (64)

where n gives the number of energy quanta of Eo interchanged between the two

BSPs.

If we now write the bending equation with the help of tan η = 2 sin θ for small η we

get

sin θ =
pb

2 pi
=
b

4

5.8731

64

νo
c

∆l
h

2 pi d
n (65)

and with 2 d = dA, where dA is the interatomic distance and we get

sin θ =
pb

2 pi
=

(
b

2

5.8731

64

νo
c

∆l

)
h

2 pi dA
n (66)

which is the Bragg equation except for the proportionality factor which can be

adapted to the Bragg equation through the distance ∆l that we assume is constant.
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The Bragg equation is

sin θ =
h

2 pi dA
n (67)

resulting for ∆l with νo = 1.2373 · 1020 s−1 and b = 0.25

∆l = 2
64 c

5.8731 νo
= 2.1137 · 10−10 m (68)

which is in the order of interatomic distances that are constant for each electron

diffraction experiment.

Conclusion: We have derived the Bragg equation without the concept of particle-

wave introduced by de Broglie. Numerical results obtained using the quantized ir-

radiated energy instead of the particle-wave are equivalent, different is the physical

interpretation of the underlying phenomenon.

10 BSP with light speed.

BSPs with speeds v 6= c emit and are regenerated continuously by fundamental par-

ticles that have longitudinal and transversal angular momenta. With v → c, eq. (7)

becomes zero and so the longitudinal field dH̄s and the corresponding angular momen-

tum J̄s. According eq. (8) only the transversal field dH̄n and the corresponding angular

momentum J̄n remain. With v → c, the BSP reduces to a pair of FPs with opposed

transversal angular momenta J̄n, with no emission (no charge) nor regeneration.

The concept is shown in Fig. 9

Fig. 9 shows at a) a BSP with parallel p̄
‖
c linear momentum and at b) with transver-

sal p̄⊥c linear momentum. At c) a possible configuration of a photon is shown as a

sequence of BSPs with light speed with alternated transversal linear momentums p̄⊥c ,

which gives the wave character, and intercalated BSPs with longitudinal momentums

p̄
‖
c that gives the particle character to the photon.

Conclusion: BSPs with light speed are composed of pairs of FPs with opposed

angular momenta J̄n, they don’t emit and are not regenerated by FPs. They are not

bound to en environment that supplies continuously FPs to regenerate them. The

potential linear momentum p̄c of each pair of opposed angular momenta can have any

orientation relative to the speed c̄. BSPs with light speed can be identified with the

neutrinos.
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Figure 9: Different forms of BSP with light speed

10.1 Redshift of the energy of a complex BSP with light speed

(photon) in the presence of matter.

Fig. 10 shows a sequence of BSPs with light speed (photon) with their potential linear

momenta p before and after the interaction with the ray of regenerating FPs of the

BSPs of matter. When the regenerating rays are approximately perpendicular to the

trajectory of the opposed dHn (dots and crosses) fields of the photon, part of the energy

of the dHn field is absorbed by the regenerating FPs of the ray and carried to the BSPs

of the matter. The photon doesn’t change its direction and loses energy to the BSPs of

the matter shifting its frequency to the red. The inverse process is not possible because

the BSPs of the photon (opposed dHn fields) have no regenerating rays of FPs that

can carry energy from the BSPs of matter and shift the frequency to the violet.

The process of loss of energy is according the interaction law 3) of sec. 4 which

postulates that pairs of regenerating FPs with longitudinal angular momenta from a
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Figure 10: Loss of energy of a BSP with v = c

BSP can adopt opposed pairs of transversal angular momentum from another BSP (see

Fig. 14). As photons have no regenerating FPs they can only leave pairs of transversal

angular momentum to other BSPs and lose energy. During the red shift, two adjacent

opposed potential linear momenta of the photon compensate partially by passing part

of their opposed linear momenta to the BSP of matter.

The energy exchanged between a photon and an electron is

Ei =
h c

λi
Eb =

p2b
2 mp

(69)

The frequency shift of the photon is with Ei = Eo + Eb

∆ν = νi − νo =
1

h
(Ei − Eo) =

Eb
h

z =
∆ν

νi
(70)

where Ei = h c/λi is the energy before the interaction, Eo = h c/λo the energy

after the interaction and Eb the energy carried to the BSP of matter.

Light that comes from far galaxies loses energy to cosmic matter resulting in a red

shift approximately proportional to the distance between galaxy and earth (Big Bang).

Light is not bent by gravitation nor by a bending target, it is reflected and refracted

by a target.
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11 Conventions introduced for BSPs.

Fig. 11 shows the convention used for the two types of electrons and positrons intro-

duced.

The accelerating positron emits FPs with high speed ve =∞ and positive longitu-

dinal angular momentum J̄ +
s (∞+) and is regenerated by FPs with low speed vr = c

and negative longitudinal angular momentum J̄ −s (c−).

The decelerating electron emits FPs with low speed ve = c and negative longitudinal

angular momentum J̄ −s (c−) and is regenerated by FPs with high speed vr = ∞ and

positive longitudinal angular momentum J̄ +
s (∞+).

The emitted FPs of the accelerating positron regenerate the decelerating electron

and the emitted FPs of the decelerating electron regenerate the accelerating positron.

BSP ngAccelerati

BSP ngDecelerati

BSP Positive BSP Negative

BSP NegativeBSP Positive

Figure 11: Conventions for BSPs

Fig. 12 shows a neutron and a proton with the rays for emitted and regenerat-

ing FPs. The complex BSPs are formed of accelerating positrons and decelerating

electrons.
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Figure 12: Neutron and proton
composed of accelerating positrons and decelerating electrons

Fig. 13 shows a neutron with one migrated BSP and the corresponding leaking

fields.

+¥ +¥

+¥

+

-
-c -c-

-
+

+

-c

or

+¥

+¥

-c

-c

-c

+¥utronLeaking ne

919nn == -+

+¥
-c

SPMigrated B

+¥

-c

+¥

-c

b

b

Figure 13: Neutron with migrated BSP

12 Mechanism of elastic and destructive scattering

of particles.

In the present approach the energy of a BSP is distributed in space around the radius

of the BSP. The carriers of the energy are the FPs with their angular momenta, FPs
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that are continuously emitted and regenerate the BSP. At a free moving BSP each

angular momentum of a FP is balanced by an other angular momentum of a FP of the

same BSP.

The concept is shown in Fig. 14.
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Figure 14: Linear momentum balance between static and moving BSPs

Opposed transversal angular momenta dH̄n and−dH̄n from two FPs that regenerate

the BSP produce the linear momentum p̄ of the BSP. If a second static probe BSPp

appropriates with its regenerating angular momenta (dH̄sp) angular momenta (dH̄n)

from FPs of the first BSP according postulate 3) of sec. 4, angular momenta that built

a rotor different from zero in the direction of the second BSPp generating dp̄ip , the first

BSP loses energy and its linear momentum changes to p̄− dp̄ip . The angular momenta

appropriated at point P by the probe BSPp generating the linear momentum dp̄ip are

missing now at the first BSP to compensate the angular momenta at the symmetric

point P
′
. The linear momenta at the two symmetric points are therefore equal and

opposed d
′
p̄i = −dp̄ip because of the symmetry of the energy distribution function

dκ(π − θ) = dκ(θ).

As the closed linear integral
∮
dH̄n dl̄ generates the linear momentum p̄ of a BSP,

the orientation of the field dH̄n (right screw in the direction of the velocity) must be

independent of the sign of the BSP, sign that is defined by J̄
(±)
e .

In a complex SP formed by more than one BSP, a mutual regeneration between the
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BSPs exists. The emitted positive J̄
(+)
e of the positive BSPs regenerate the negative

BSPs, and the emitted negative J̄
(−)
e of the negative BSPs regenerate the positive

BSPs. BSPs that have no opposed pair inside the nucleus emit their FPs with the

longitudinal angular momenta J̄
(+)
e generating dH̄ fields beyond the radius of the

nucleus. Opposed angular momenta of the dH̄ field beyond the radius are responsible

for the ”electromagnetic” interactions.

Elastic scattering.

Elastic scattering occurs ”electromagnetically” beyond the radius ro of the nucleus,

and ”mechanically” at the radius ro.

Elastic electromagnetic scattering occurs when charged (difference between the con-

stituent numbers of BSPs with different sign) complex SPs interact without entering in

mechanical contact. Interactions are limited to the interactions of their fields beyond

the radius ro of the particles. The complex particles maintain the internal distribution

of their BSPs and, because of the weak accelerations, the internal mutual regeneration

between the BSPs that form the complex particles is not disturbed.

Elastic mechanic scattering occurs when neutral complex particles enter in mechan-

ical contact maintaining the internal distribution of their BSPs, but the acceleration is

already strong enough to disturb the internal mutual regeneration between the BSPs.

The angular momenta of the pairs of BSPs are not more compensated inside the nu-

cleus and each BSP of the complex SP interchanges opposed angular momenta with

the scattering partner (mass).

Plastic or destructive scattering.

Plastic or destructive scattering we have when distances between the scattering

partners are smaller than ro. The internal distribution of the BSPs is modified and

the acceleration disturbs the internal mutual regeneration between the BSPs. The

angular momenta of each BSP of the scattering partners interact heavily, and new basic

configurations of angular momenta are generated, configurations that are balanced or

unbalanced (stable or unstable).

In today’s point-like representation the energy of a BSP is concentrated at a point

and scattering with a second BSP requires the emission of a particle (gauge boson) to

overcome the distance to the second BSP which then absorbs the particle. The energy

violation that results in the rest frame is restricted in time through the uncertainty

principle and the maximum distance is calculated assigning a mass to the interchanged

particle (Feynman diagrams).

Conclusion: In the present approach the emission of FPs by BSPs is continuous

and not restricted to the instant particles are scattered. In the rest frame of the scat-

tering partners no energy violation occurs. When particles are destructively scattered,

during a transition time the angular momenta of all their FPs interact heavily accord-
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ing to the three interaction postulates defined in chapter 4 and new basic arrangements

of angular momenta are produced, resulting in balanced and unbalanced configurations

of angular momenta that are stable or unstable, configurations of quarks, hadrons, lep-

tons and photons. The interacting particles (force carriers) for all types of interactions

(electromagnetic, strong, weak, gravitation) are the FPs with their longitudinal and

transversal angular momenta.

13 Dark matter.

In sec. 6 we have seen that the origin of the gravitation force is the induced force due

to the reintegration of migrated BSPs in the direction of the two gravitating bodies.

When a BSP is reintegrated to a neutron, the two BSPs of different signs that interact,

produce an equivalent current in the direction of the positive BSP as shown in Fig. 15.
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Figure 15: Resulting current due to reintegration of migrated BSPs

As the numbers of positive (∆+
R) and negative (∆−R) BSPs that migrate in one

direction at one neutron are equal, no average current should exists in that direction

in the time ∆t. It is

∆R = ∆+
R + ∆−R = 0 (71)

We now assume, that because of the energy interchange between the two neutrons, a

synchronization exists between the reintegration of BSPs of equal sign in the orthogonal

direction of the two neutrons, resulting in parallel currents of equal signs that generate
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an attracting force between the neutrons. Thus the resulting attractive force between

the two neutrons is produced by two components; the induced force FG due to the

reintegration of migrated BSPs in the direction of the two gravitating bodies and the

force FR due to parallel currents of reintegrating BSPs.

FT = FG + FR with FG = G
M1 M2

d2
and FR = R

M1 M2

d
(72)

To obtain an equation for the force FR we start with eq. (64) from sec. 9 which

was calculated for one pair of parallel moving BSPs

pb =
1

4

5.8731

64 c

h νo
d

∆l n (73)

with

νo = 1.2373 · 10 20 s−1 ∆l = 5.2843 · 10−11 m ∆o t = 8.0821 · 10−21 s−1 (74)

and

dFR =
pb

∆ot
n = 1 (75)

The force for one pair of BSPs is given by

dFR =
pb

∆ot
=
KDark

d
with KDark =

1

2

h

∆ot
= 4.09924 · 10−14 m (76)

The total force is

FR =
KDark

d
∆R1 ∆R2 = R

M1 M2

d
(77)

We get

∆R1 ∆R2 =
R

KDark

M1 M2 (78)

or

∆R1 ∆R2 = γ2R M1 M2 with γ2R =
R

KDark

(79)

and

∆R = γR M (80)
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The total attraction force gives

FT = FG + FR =

[
G

d2
+
R

d

]
M1 M2 (81)

For sub-galactic distances the induced force FG is predominant, while for galactic

distances the force of parallel reintegrating BSPs FR predominates, as shown in Fig.

16.
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Figure 16: Gravitation forces at sub-galactic and galactic distances.

Calculation example:

For the sun with vorb = 220 km/s and M2 = M� = 2 · 1030 kg and a distance to

the core of the Milky Way of d = 25 · 1019 m we get a centrifugal force of

Fc = M2
v2orb
d

= 3.872 · 1020 N (82)

With the mass of the core of the Milky Way of M1 = 4 · 106 M� and

Fc = FT ≈ FR = R
M1 M2

d
we get R = 6.05 · 10−27 Nm/kg2 (83)

and with

FG = FR we get dgal =
G

R
= 1.103 · 1016 m (84)

justifying our assumption for Fc ≈ FR because the distance between the sun and

the core of the Milky Way is d� dgal.
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We also have that

γR =

√
R

KDark

= 3.842 · 10−7 kg−1 (85)

If we compare with γG = 6.061 · 107 kg−1 for the induced force we see that γR is

very small.

Conclusion: The gravitation force is composed of an induced component and a

component due to parallel currents of reintegrating BSPs. For galactic distances the

induced component can be neglected remaining the component generated by parallel

currents which is responsible for the flattening of galaxies´ rotation curves.

Note: We also may assume that the synchronization of the reintegrating BSPs

in the orthogonal direction of the two neutrons results in parallel currents of opposed

signs, generating a repulsive force between the two neutrons.

14 Quantification of forces between BSPs and CSPs.

In the section “ Induction between an accelerated and a probe BSP expressed as closed

path integration over the whole space” from [10] we have that the maximum speed a

reintegrating BSP gets is vmax = k c with k = 7.4115 · 10−2. We define the elementary

linear momentum pelem as follows:

pelem = m c k =
h

c ∆ot
k = 2.0309 · 10−23 kg m s−1 (86)

with ∆t(v = 0) = ∆ot = 8.082110−21 s.

In the following subsections we ill express all known forces quantized in elementary

linear momenta pelem

14.1 Quantification of the Coulomb force.

In Sec. 5 we have presented eq. (17) which for the Coulomb force between two BSPs

gives the following equation

F2 =
a m c r2o
4 ∆t d 2

∫ ∫
Coulomb

with

∫ ∫
Coulomb

= 2.0887 (87)

where a = is a tuning constant.

With v = 0 we write the equation as follows

F2 = NC(d)
1

∆ot
pelem = NC(d) νo pelem (88)
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with

NC(d) =
a r2o

4 k d 2

∫ ∫
Coulomb

= 9.18124 · 10−26
1

d2
(89)

NC(d) gives the number of FPs of the two BSPs that cross and interact in space

during the time ∆ot and which generate elementary linear momentum pelem resulting

in the force F2.

For an inter-atomic distance of d = 10−10 m we get NC = 9.18124 · 10−6 resulting

a frequency of crossings of FPs of

νC(d) = NC(d) νo = 1.13599 · 1015 s−1 for d = 10−10 m (90)

14.2 Quantification of the Ampere force between straight in-

finite parallel conductors.

In Sec. 5 we have presented eq. (18) which for the Ampere force between two parallel

conductors gives the following equation

F

dl
=

1

c ∆t

r2o
64 m

Im1 Im2

d

∫ ∫
Ampere

with

∫ ∫
Ampere

= 5.8731 (91)

We now write the equation in the following form assuming that the velocity of

the electrons is v << c so that ∆t ≈ ∆ot and the currents are Im ≈ ρx m v, where

ρx = Nx/∆x is the linear density of electrons that move with speed v in the conductors.

F = NA(d, Im1 , Im2 , ∆l) νo pelem pelem = m c k νo =
1

∆ot
(92)

with

NA(d, Im1 , Im2 , ∆l) =
r2o

64 k m2 c2
Im1 Im2

d

∫ ∫
Ampere

∆l (93)

or

NA(d, Im1 , Im2 , ∆l) = 2.46222 · 1018 Im1 Im2

d
∆l (94)

For a distance of 1m between parallel conductors with a length of 1m and currents

of 1A we get NA = 2.46222 · 1018 elementary linear momentum during the time ∆ot

that generate the force F . The frequency of the crossing of FPs is for this particular
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case

νA = NA(d, Im1 , Im2 , ∆l) νo = 3.0465 · 1038 s−1 (95)

14.3 Quantification of the induced force between aligned rein-

tegrating BSPs.

In sec. 5 we have presented eq. (20) which for the force between two aligned reinte-

grating BSPs and with h νn = h νo = Eo = m c2 gives the following equation

Fi =

√
h νo
√
mp

4 K d 2

∫ ∫
Induction

with

∫ ∫
Induction

= 2.4662 (96)

which we can write with ∆ot = K r2o and pelem = m c k as

Fi = Ni νo pelem with Ni =
r2o

4 k d 2

∫ ∫
Induction

(97)

Considering that ∆G1 ∆G2 = γ2G M1 M2 we can write

FG = Fi ∆G1 ∆G2 = NG νo pelem with NG = Ni ∆G1 ∆G2 (98)

Finally we get

FG = NG(M1,M2, d) νo pelem with NG = 2.65558 · 10−8
M1 M2

d2
(99)

The frequency with which FPs cross in space is

νG = NG(M1,M2, d) νo = 3.28575 · 1012 M1 M2

d2
(100)

For the earth with a mass of M⊕ = 5.974 · 1024 kg and the sun with a mass of

M� = 1.9889 · 1030 kg and a distance of d = 147.1 · 109 m we get a frequency of

νG = 1.8043 · 1046 s−1 for aligned reintegrating BSPs.
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14.4 Quantification of Ampere force between parallel reinte-

grating BSPs.

From sec. 13 we get with eq. (73) and eq. (75) the following equation for the force

between a pair of parallel reintegrating BSPs.

dFR =
pb

∆ot
=

1

4

5.8731

64 c

h νo
∆ot

∆l

d
(101)

which we can write as

dFR = N νo pelem with pelem = m c k and N =
1

4

5.8731

64 k

∆l

d
(102)

For ∆R1 and ∆R2 BSPs we get for the total force

FR = dFR ∆R1 ∆R2 = NR νo pelem with NR = N ∆R1 ∆R2 (103)

and with ∆R1 ∆R2 = γ2R M1 M2 we get

FR = NR(M1,M2, d,∆l) νo pelem with NR = 4.55686 · 10−14
M1 M2

d
∆l (104)

The frequency with which FPs cross in space is

νR = NR(M1,M2, d,∆l) νo = 5.6382 · 106 M1 M2

d
∆l s−1 (105)

For the earth with a mass of M⊕ = 5.974 · 1024 kg and the sun with a mass of

M� = 1.9889 · 1030 kg and a distance of d = 147.1 · 109 m we get a frequency of

νR = 2.4065 · 1040 s−1 for parallel reintegrating BSPs. The frequency νG for aligned

BSPs is nearly 106 times grater than the frequency for parallel reintegrating BSPs an

so the corresponding forces.

14.5 Quantification of the total gravitation force.

The total gravitation force is given by the sum of the induced force between aligned

reintegrating BSPs and the force between parallel reintegrating BSPs.

FT = FG + FR = [NG(M1,M2, d) + NR(M1,M2, d,∆l)] pelem νo (106)
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or with ∆l = 5.2843 · 10−11 m

FT = FG + FR = pelem νo

[
1.9735 · 10−9

d2
+

1.7895 · 10−25

d

]
M1 M2 (107)

We define the distance dgal as the distance for which FG = FR and get

dgal =
1.9735 · 10−9

1.7895 · 10−25
= 1.103 · 1016 m (108)

15 Spin of level electrons and the formation of ele-

ments

In sec. 11 two types of electrons and positrons were identified according the velocities

of their regenerating and emitting fundamental particles; they were named accelerating

and decelerating BSPs.

We know, that the two electrons in any individual orbit must have opposed spins.

This is interpreted in the present model that two electrons of any individual orbit must

be of opposed type, namely accelerating and decelerating electrons.

For each type of level electron, a corresponding opposed type of positron must

exist in the atomic nucleus, to allow that the emitted fundamental particles of one can

regenerate the other. This leads to the conclusion, that protons and neutrons are also

composed of BSPs of different types.

Neutron: Composed of 919 electrons and 919 positrons. The 919 electrons are com-

posed of 459 accelerating, 459 decelerating and 1 acc/dec electrons. The 919

positrons are composed of 459 accelerating, 459 decelerating and 1 dec/acc positrons.

Proton; Composed of 918 electrons and 919 positrons. The 918 electrons are com-

posed of 459 accelerating and 459 decelerating electrons. The 919 positrons are

composed of 459 accelerating, 459 decelerating and 1 acc/dec positrons.

The definition of two types of electrons and positrons has let to protons that are

formed of BSPs that complement each other and which are of two types:

• Protons formed of accelerating positrons and decelerating electrons and

• Protons formed of decelerating positrons and accelerating electrons

The level electron associated to a proton is of the same type as the electrons of the

proton. Elements in the Periodic Table are classified according to the growing number
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of protons in their nuclei and with level electrons that alternate their spin. In the

present approach the elements of the periodic table are built with alternating types of

protons and the two types of electrons with opposed spin from our standard theory are

replaced by the accelerating and decelerating electrons.

The concept is shown in Fig. 17.
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Figure 17: Level electrons of Hydrogen and Helium Atoms

15.1 Stern-Gerlach experiment and the spin of the electron.

In the Stern-Gerlach experiment neutral particles are shot through a strong inhomoge-

neous magnetic field and observed deflections are attributed in standard theory to the

magnetic angular momentum of the external unpaired electron. Stern-Gerlach experi-

ments with charged particles are not possible because of the strong Lorentz force that

makes impossible to verify the spin and associated magnetic momentum of an isolated

electron.

In the present approach there are two types of electrons and positrons that explain

the two different states electrons take in energy levels of atoms, states that in standard

theory are attributed to the spin of the electron. It remains the question how to explain

the deflections of neutral particles in the Stern-Gerlach experiment.

In the present approach the deflections are attributed to the interactions between
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the two parallel currents of BSPs, namely, the currents that generate the magnetic

inhomogeneous field and the currents due to reintegration of BSPs at the nuclei of the

neutral particles of the atomic ray. The interactions between parallel currents of BSPs

are quantized in energy quanta equal to the rest energy of an electron, what explains

the quantization of the deflection of the atoms of the ray.

To obtain an equation for the force FR we start with eq. (64) from sec. 9 which

was calculated for one pair of parallel BSPs

pb =
1

4

5.8731

64 c

h νo
d

∆l n (109)

and with

νo = 1.2373 · 10 20 s−1 ∆l = 5.2843 · 10−11 m ∆o t = 8.0821 · 10−21 s (110)

and

dFb =
pb

∆ot
n = 1 (111)

the force for one pair of BSPs is given by

dFb =
pb

∆ot
=
Kb

d
with Kb =

1

2

h

∆ot
= 4.09924 · 10−14 Nm (112)

The resulting forces are given by the different possible combinations of the currents

I1 and the reintegrating currents im.

The concept is shown in Fig. 18.

At a) the forces are shown which can appear individually or combined depending

of how many regenerating BSPs interact simultaneously with the currents I1.

At b) a top view of a) is shown with the regenerating currents im of the atomic

nucleus and the resulting forces Fb.

At c) a sequential Stern-Gerlach experiment is shown where the particles +Z from

SG1 are passed through SG2 and where only particles +Z are obtained if a homo-

geneous magnetic field Hz is applied between SG1 and SG2. The explanation given

by standard theory is that the magnetic momentum of the valence electron must hold

unchanged during the pass from SG1 to SG2.

The present approach explains the up or down deflections with the special combina-

tions of interacting currents I1 and im which are defined by the special configurations

the orbital electrons and reintegrating BSPs of the atom take when entering the ex-

ternal inhomogeneous magnetic field. To have the same combination of interacting

35



Source z

+z

z

+z

-z No z

SG 1 SG 2

Hz

a) b)

+

z

D

+v
r

1bF
r

2bF
r

1I 1I-

2bF
r

-
1bF
r

-

c)

1I 1I-

2bF
r

1bF
r

1mi

2mi

-

v
r

Figure 18: Stern-Gerlach experiment

currents with the same deflection at SG2 it is necessary to hold the configuration of

the orbital electrons and reintegrating BSPs of the atoms applying the homogeneous

magnetic field Hz between the two SG devices.

The approach concludes that the deflections are a characteristic only of complex

particles like the neutrons, protons, and atoms and not a characteristic of BSPs like

electrons, positrons and neutrinos.

To introduce in standard theory the spin of an electron the assumption is made,

that at the Ag atom for instance, 46 of the electrons form together with the nucleus a

close inner core of total angular momentum zero and that the one remaining electron

has no orbital angular momentum. This would mean that the remaining level electron

is static without the possibility to compensate with its centrifugal force the attracting

force of the nucleus and collapse. Another argument against the spin of an electron is

that all theoretical efforts made to explain the magnetic moment of an electron as a

rotating charge have let to not acceptable conclusions.

16 Findings of the proposed approach.

The main findings of the proposed model [10], from which the present paper is an

extract, are:

• The energy of a BSP is stored in the longitudinal angular momenta of the emitted
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fundamental particles. The rotation sense of the longitudinal angular momenta

of emitted fundamental particles defines the sign of the charge of the BSP.

• All the basic laws of physics (Coulomb, Ampere, Lorentz, Maxwell, Gravitation,

bending of particles and interference of photons, Bragg) are derived from one

vector field generated by the longitudinal and transversal angular momenta of

fundamental particles, laws that in today’s theoretical physics are introduced by

separate definitions.

• The interacting particles (force carriers) for all types of interactions (electro-

magnetic, strong, weak, gravitation) are the FPs with their longitudinal and

transversal angular momenta.

• Quantification and probability are inherent to the approach.

• The incremental time to generate the force out of linear momenta is quantized.

• The emitted and regenerating energies of a BSP are quantized in energy quanta

Eo.

• Gravitation has its origin in the induced momenta when BSPs that have migrated

outside their nuclei are reintegrated.

• The gravitation force is composed of an induced component and a component

due to parallel currents of reintegrating BSPs. For galactic distances the induced

component can be neglected, what explains the flattening of galaxies´ rotation

curve. (dark matter).

• The photon is a sequence of BSPs with potentially opposed transversal linear mo-

menta, which are generated by transversal angular momenta of FPs that comply

with specific symmetry conditions.

• Permanent magnets are explained through closed energy flows at static BSPs

stored in transversal angular momenta of FPs.

• The addition of a wave to a particle (de Broglie) is effectively replaced by a

relation between the particles radius and its energy. Deflection of particles such

as the electron is now a result of the quantified bending linear momenta between

BSPs.

• The uncertainty relation of quantum mechanics form pairs of canonical conju-

gated variables between ”energy and space” and ”momentum and time”. The

Schrödinger equation results as the particular time independent case of a more
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general wave differential equation where the wave function is differentiated two

times towards time and one towards space.

• The new quantum mechanics theory, based on wave function derived from the

radius-energy relation, is in accordance with the quantum mechanics theory based

on the correspondence principle.

• The present approach has no energy violation in a virtual process at a vertex of

a Fynmann diagram.

• As the model relies on BSPs permitting the transmission of linear momenta at

infinite speed via FPs, it is possible to explain that entangled photons show no

time delay when they change their state.

• The two possible states of the electron spin are replaced by the two types of

electrons defined by the present theory, namely the accelerating and decelerating

electrons.

• The splitting of the atomic beam in the Stern-Gerlach experiment is explained

with the interaction of parallel moving BSPs, interaction that is quantized in

energy quanta of one resting electron.
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